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Abstract—Consider a human who interacts with the physical
world to autonomously learn in a task non-specific way through
lifetime. It seems obvious that the fully autonomous learner does
not have the luxury to have the mother to provide temporally
dense state labels, but the context/state at every frame is beneficial
(e.g., to generate attention for the next frame). How can we enable
the learner to generate frame-wise contexts/states on the fly? Our
past work on Developmental Network (DN-1) has shown that
frame-wise state labels (e.g., stages within a phoneme) are useful
to generate temporally sparse label (the type of the phoneme).
However, such dense and sparse labels were handcrafted from
a static data set, using human identified frame-wise equivalence.
In this paper, we study a conceptually challenging problem —
how to enable an autonomous learner to generate frame-wise
states autonomously without human handcrafting dense labels at
all. We propose that frame-wise muscle actions (e.g., producing
a sound) are not only temporally dense and high-dimensional,
but also natural as dense labels. However, it is unknown how a
neural network can use such high-dimensional vectors as dense
labels. In this work, we provide a model for this new issue and
experiment with Developmental Network-2 (DN-2) for imitation
of audio sequences. Our experimental results showed DN-2 can
successfully emerge high-dimensional real-valued vector actions.
These actions provide DN-2 with frame-wise temporal context
information. This work corresponds to a key step toward our
goal to enable the agent to fully autonomously generate frame-
wise actions without human-provided dense labels and with only
a few human-provided sparse labels.

I. INTRODUCTION

Many research works in machine learning have been fruit-
fully inspired by studies of human learning. However, most
of these traditional learning techniques differ from human
mental development. Although they aim at providing a general
framework for learning and development in some aspects,
these methods do not perform autonomous development. Their
computational frameworks (including rigid symbolic nodes
and boundaries) are handcrafted based on the human de-
signer’s understanding of a given task at hand. In contrast, the
autonomous development paradigm [1] requires that the devel-
opmental program (like functions of the genome) is decided
before given any specific tasks to learn so that incremental
learning takes places across an open array of tasks, skills
acquired during early tasks assisting the later learning of later
tasks (called scaffolding in developmental psychology [2]). As
summarized in [3], there are five essential factors determine

the capability of the agent in the autonomous development
paradigm:

1) the sensors,
2) the effectors,
3) the computational resources,
4) the developmental program (genome),
5) the environment agent experienced.

This work focuses on 2) effectors and 5) the environment that
facilitates the agent’s autonomous development. In particular,
we study how the actions emerged from the effectors not
only directly perform in the environment but also provide
context/state information to facilitate the development of the
agent’s behaviors.

The actions we discuss in this work correspond to real-
valued and frame-wise muscle vectors. They can correspond
to two types of skills [4], declarative skills (e.g., telling a story)
and non-declarative skills (e.g., bike riding). The declarative
skills are usually learned in classification or recognition tasks,
while the non-declarative skills are often learned in robotic
navigation and manipulative tasks. During learning, the actions
carried out by the agent are for both declarative and non-
declarative skills.

Although we used phonemes as experimental corpuses in
this work, our theory and simulations on bilingual natural
language acquisition [5] have shown that the frame-wise
action vectors here have the potential to autonomously develop
“higher” or more abstract labels for longer sequences, like in
natural language acquisition. However, due to limited space,
the scope of this work does not include natural languages.

A. From symbolic to emergent representations

In recent years, much effort has been focused on temporal
processing problems. Addressing these problems depend on
both spatial contents from the current sensory inputs and the
relevant context from the attended past. Often (e.g., during
robotic navigation), the agent not only acts according to the
current sensory inputs but also the recent dynamic history of
the agent and the environment. By recent dynamic history, we
mean the state/context of the spatiotemporal context. In the
remainder of this paper, state, context, action are interchange-
ably equivalent, unless explicitly stated otherwise.
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Hidden Markov Models (HMMs) based methods are based
on symbolic states. The set of states is often formed through
k-means clustering on a static set of sensory data. Although
the raw data or feature data (e.g., MFCC) are vectors, the
output from the clustering algorithm is symbolic. To alleviate
inconsistency between state transitions, these HMM based
methods use probabilities [6]. HMMs are often cascaded to
construct layered probabilistic representations for the data with
a hierarchical structure. In [7], the hierarchical HMMs model
is used for a mobile robot to learn to track another robot’s
motion by observation.

The Bayesian Networks, also symbolic, can explicitly rep-
resent the causal relation since the conditioning variables are
parent nodes, and dependent nodes are child nodes inside. And
the links between the nodes are from causal to dependent
variables. The Dynamic Bayesian Networks, which is from
Bayesian Network, models the causality and variations across
time series. At each time slice there exists a Bayesian Network
in which parent of the current node at time t is a node at time
t− 1. The Dynamic Bayesian Networks was used to estimate
the face pose from video sequences in real-time in [8].

The above computational models deal satisfactorily with
high-level discrete concepts since their symbolic represen-
tations are carefully and statically designed by a human
based on a static data set and a given task. Compared with
these symbolic representations, the emergent representations
in our work are fully grounded, natural, and fault-tolerant.
By natural, we mean that the sensory vectors and motor
vectors for our emergent representation are developed from
raw and natural sensors (e.g., microphones) and effectors
(e.g., speakers). Emergent patterns from the same sensors or
effectors have distances in the neuronal feature spaces, but
in the symbolic representations two symbols are treated either
same or different — distances between data are lost along with
the rich relations among raw sensory data and motor data. With
the emergent representations, never observed patterns can be
naturally processed according to their distances with observed
emergent patterns. Furthermore, emergent representations do
not require a human in the loop of handcrafting, suited
for open-ended autonomous development from earlier simple
tasks to later more complicated tasks.

Many neural networks use emergent representations, at least
partially. The Hopfield network is a kind of recurrent network
in which all the notes are binary threshold units. These units
also give feedback to other units as the influence of “memory”.
The work in [9] utilized the Hopfield network to do simple
facial expression recognition. In [10], a memristive Hopfield
network was constructed to demonstrate that different patterns
can be stored and retrieved successfully like associative mem-
ory behaviors.

The deep neural networks have a variable structure with
the flexible connections among units in temporal trajectories.
Emergent patterns are often extracted from the sensory end
and mixed with symbolic representations in the higher layers.
The Recurrent neural network (RNN) is meant to deal with
sequences since it includes the connections along temporal

trajectories. In [11], an RNN tree that contains multiple
RNNs in a tree hierarchy was established to recognize the
human actions from video sequences. Recently, along with
Convolutional Neural Networks (CNNs) for spatial problems,
Long Short-Term Memory (LSTM) RNN [12], [13] became
popular in experimental studies for temporal problems as they
detect latent temporal dependencies.

Networks like Hopfield Networks, CNN and LSTM partially
use emergent representations. These methods are meant for
classification of sensory data since their emergent representa-
tions are extracted directly from the sensory domain.

B. Developmental methods

All above methods do not learn an emergent Finite Au-
tomata (FA). In particular, they do not directly take patterns
from the motor ends as contexts/states/actions, which means
they do not use the concept of spatiotemporal states during
processing. However, current temporal processing tasks may
contain many different scenarios or involve sequential data
of multiple modalities. The developmental framework which
follows the autonomous development paradigm is needed to
handle more complex temporal processing with frame-wise
states that the framework of FA and Turing Machine (TM)
entails.

Besides using emergent representations for FA and TM, the
developmental methods are task non-specific and use strictly
frame-wise incremental learning. Task non-specific learning
allows the agent to develop through different tasks with
emergent behaviors. Incremental learning is crucial so that
the next sensory frame can depend on the current action —
sensorimotor recursive — and learning takes place on the fly.

DN-1 is a biologically plausible developmental model of a
simplified brain, and is a typical developmental method [3].
By extracting emergent patterns from sensorimotor domains,
DN-1 incrementally develops through the sequence of inputs
and outputs. The emergent patterns used in motor area can
directly self-supervise DN-1 so that learning can take place
with human teachers or without.

DN-1 has been successfully experimented with using visual
modality [14], auditory modality [15], and natural language
acquisition [5] using text as inputs. Although DN-1 has been
tested with multiple hidden areas, there are two restrictions.
(A) the boundary of each area is fixed in the sense that the
number of neurons assigned to each area is fixed. (B) there
are no excitatory connections between two neurons in the
same hidden area. Namely, although a DN-1 can learn any
Universal TM so that it has been proved that DN-1 can perform
Autonomous Programming For General Purposes (APFGP)
[16], its generalization power from view examples is limited
by these two restrictions (A) and (B).

To address these issues, DN-2 [17] was proposed based
on DN-1 by adding several new mechanisms. With new
mechanisms, each neuron in DN-2 automatically develops its
excitatory connections and its own inhibition zone. So the
number of areas and their inter-connection relations are auto-
matically determined by the learning experience instead of pre-
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handcrafted. DN-2 can generate more flexible and hierarchical
inner representations to abstract concrete examples better.

This work investigates how the agent automatically emerges
actions for every time frame. We also analyze how these
emergent frame-wise actions can liberate humans from the
tedious labeling work and may help the model to emerge some
sparse labels as high-level concepts. We regard actions and
states are the same, and include both declarative skills and
non-declarative skills.

In this paper, the automatically generable actions in our ex-
periments are temporally dense (i.e., frame-wise for each time
frame of 20ms length) and high-dimensional patterns – raw
phoneme waveforms (e.g., from a speaker). This work seems
to demonstrate, for the first time, that it is algorithmically
possible for a machine to learn fully autonomously without a
human to feed any labels to the effector end.

The remainder of the paper is organized as follows: the
theory is discussed in Section II. The new mechanisms and
the algorithm of DN-2 are presented in Section III. The
experimental steps and results are reported in Section IV.
Section V provides concluding remarks.

II. THEORY

Let us first discuss what it means by DN-1 acting on
temporal sequences.

A. Equivalent classes

Weng 2015 [18] proved that the control of a Turing Machine
is an FA. The main ideas are: (a) Allow FA to output states so
the resulting FA is called agent FA. (b) Expand the definition
of the states of FA to include further agent actions — writing
symbols of the Turing Machine and head motions of the
Turing Machine. Therefore, although we will use actions as
examples below, these actions should be considered states,
writing symbols, and head motions of any Turing Machine.

A Universal Turing Machine is a general-purpose computer
model of all modern digital computers. Its input has two
parts, a program and the data for the program. The Universal
Turing Machine simulates the program on the data. Because
the program (e.g., the knowledge of a teacher) can be for any
purpose, the Universal Turing Machine can be programmed
for any practical purposes. Therefore, although we will use
sensory inputs as examples below, these sensory inputs should
be considered not just data, but also instructions of any
program for any purpose. This makes sense, as for example,
an auditory sensory sequence can represent rules (e.g., sound
from reading a textbook).

Consider the input space of DN-1 to be X = Rl, where R is
the set of real numbers and X consists of real-valued vectors
of dimension l (e.g., images each with l pixels or sound frames
each of l dimensionality). Consider the motor space of DN-1
to be Z = Rn, where Z consists of real-valued vectors of
dimension n. For example, l = n = 882 for each time frame
in our sound experiments: The leaner voices sound and hears
sound. The “brain” neurons in DN-1 are hidden and all hidden
neurons form the hidden area Y of DN-1.

According to the DN-1 theory [18], a DN-1 learns an Emer-
gent Turing Machine, where the motor area Z corresponds to
the set of state vectors of the FA controller of the Turing
Machine; X corresponds to the set of input vectors of the FA.
The number of neurons in DN-1 corresponds to the entries of
FA that have been observed and learned. Because the number
m of (hidden) Y neurons in DN-1 is finite, what does the DN-
1 does for the inputs in X and the outputs in Z? Next, we
use the theory of FA to reach the following new theorem. The
same theorem is true for DN-2. We simply state DN, which
applies to both DN-1 and DN-2.

Theorem 1 (DN equivalent classes): Suppose X and Z are
represented by finite resolution real-valued vectors as in digital
computers. The DN with a finite number of neurons groups all
input sequences in X into a finite number of equivalent classes,
meaning that all sequences from X produce the same output
vector in motor space Z. Further, there is a minimum-state DN
that has the fewest states among all functionally equivalent
DNs. This minimum-state DN corresponds to the most-coarse
partition of the sensory space X .

Proof: According to the proof of Theorem 1 in [18],
using inner product distance metrics in real-valued joint space
(X,Z), DN partitions the real-valued space X into a large
number of equivalent classes per automata theory [19]. All
vector sequences (not individual vectors) in X that belong
to the same equivalent class generate the same output vector
in Z since Z has a finite resolution in digital computers
and, therefore, Z contains only a finite number of states.
The minimum-state DN corresponds to the corresponding
minimum-state FA.

Each sequence in X is like a spatiotemporal experience
from the time the agent opens his eye in the morning of a
day. Two sequences x1 and x2 belong to the same equivalent
class means that x1 and x2 result in the same state/action
z ∈ Z. A non-minimum-state DN is like a colleague who
requires a larger brain or consumes more hidden neurons to
reach the same behavior performance than the minimum-state
DN. Obviously, whether a DN is a minimum-state DN depends
on all five essential factors in Section I.

B. Action encoding

We used the phoneme recognition experiment to demon-
strate that temporally dense actions have higher entropy and
can provide more context information for DN-1 to learn [15].

Let us consider how to enable the DN-2 to learn to speak by
listening. Because the agent must perform continuous actions
(i.e., say sound waves), we must consider how the agent
learns to produce such temporally dense and high-dimensional
vectors.

A new method for generating high-dimensional vectors
as action supervision is needed without using dense hand-
crafted labels. We need to map the sound waves to a lower-
dimensional space to obtain lower-dimensional patterns so
that the number of Z neurons is contained. We did not take
raw sensory inputs as supervised patterns directly because the
raw sound waves are of very high dimensional space. In this
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work, we use Principal Component Analysis (PCA) [20] as an
encoding method to reduce the dimension of the raw source
waves as action vectors. PCA has the least mean error given
the dimension of PCA vectors. Specifically, we calculate the
covariance matrix of all the data frames (each data frame
ui ∈ Rm). Then calculate and choose the first n eigenvectors
ej (j = 1, 2, ..., n) based on the covariance matrix. These
eigenvectors form the projecting matrix W = {e1, e2, ..., en}
(W ∈ Rm×n). The projecting matrix is used for generat-
ing lower-dimensional supervised action vector: ai = Wui

(ai ∈ Rn). In our phoneme imitation experiments, the frame
data’s dimension m is 882, and the action vector’s dimension
n is 40.

Some characteristics of encoding sensory inputs as actions
are:

1) Encoding the sensory inputs as actions avoids hand-
crafted labeling work. All the sensory inputs are encoded
under the same rule. The generated actions can be
considered as self-supervision.

2) Encoding the sensory inputs as actions implicitly links
the sensory and motor area. After learning, the agent can
emerge certain actions followed by a specific sensory
input.

3) Encoding the sensory inputs as actions can make the
agent insensibly learn to imitation. With some high-level
concepts, the agent could even realize what actions it
emerges.

4) Encoding the sensory inputs as actions can also provide
abundant context information to the agent. These con-
texts are most relevant since they are directly extracted
from the sensory inputs.

When encoding the sensory inputs as actions, continuous
actions emerge to form a natural behavior. Then short behav-
iors chain together to constitute a meaningful skill. Consider
the example of language acquisition in the early years. Babies
start with babbling and only pronounce simple phonemes.
Later, they learn words from phonemes and sentences from
words. The work in [21] studied the robot’s learning of speech
production based on sensory context by integrating the high
dimensional action space and the high dimensional context
space.

As shown in Fig. 1, phoneme-level auditory streams are fed
to DN-2 frame by frame as well as the corresponding actions.
In our experiments below, the streams are from 5 vowels of
English. Each frame spans 20ms long. During learning, DN-
2 dynamically clusters to generate the dense action patterns
according to the sensorimotor inputs. As intermediate states,
these actions assist the agent to generate required spatiotempo-
ral patterns leading to a successful pronunciation of the vowel.

Besides forming a natural behavior, the fine-grained level
emerged actions can also assist the agent to learn some
abstractive high-level concepts. In this case, DN-2 only need
sparse supervision for those high-level concepts or even just
some sparse reward or punishment signals (in reinforcement
learning mode). These fine-grained level emerged actions
could be intermediate states for “thinking”. By “thinking”, we

Motor

area

Sensory

area

...

Encoding

Processing

... ... ... ... ...

... ...

... ...

Decoding

Waveform input Waveform output

... ... ... ...

... ...

Sensory input (Dense)

Action (Dense)

Fig. 1. During learning, the environment provides sensory input (dense)
directly to the sensory area of DN-2. The sensory input (dense) is also encoded
to desirable action (dense) for the motor area of DN-2. The sensory input and
generated action are fed to DN-2 in each frame as the context-input pair. The
DN-2 incrementally learns one frame at a time. After learning, DN-2 can
emerge action to produce the waveform as output.

mean that the emerged actions do not necessarily drive actual
muscle contraction if the action pattern is weak. “Thinking” is
useful for the mature DN-2 to deal with the delayed rewards.

Let us take using DN-2 for phoneme imitation and recogni-
tion together as an example. DN-2 insensibly learns to imitate
the phoneme based on the sensory inputs and corresponding
contexts provided by the emerged actions. During this proce-
dure, the sparse phoneme class label can be offered to DN-
2 to link its imitation with the phoneme class concept. The
supervision time is important since there are some special
situations (e.g., time warping and time duration ) that need
to be carefully considered.

III. DEVELOPMENTAL NETWORK-2

DN-2 is developed from DN-1. It inherits the emergent rep-
resentations, incremental learning and general-purpose learn-
ing framework from DN-1. DN-2 also follows the finite
automaton logic (by extending more updates in Y area
across time), and can directly perceive information from self-
generated motor patterns. In DN-2, the neurons’ learning
follows the Lobe Component Analysis (LCA) algorithm [22].

DN-2 shares the same basic structure with DN-1. It contains
three areas — X , Y and Z. X is the sensory input area which
extracts the sensory information. Z is the motor area which
receives supervisions or generates actions. Y is the hidden area
which is “skull-closed”. By “skull-closed”, we mean it cannot
be accessed for any direct manipulation after birth. The Y area
bi-directional connects with X and Z areas to learn context-
input features.

A. New mechanisms

Several biology-inspired mechanisms are included to help
DN-2 to process sequences more efficiently. We just briefly
introduce these new mechanisms here. The biology and neu-
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roscience studies which support these mechanisms are listed
in our previous work [23].

The Y neurons with different connections: Y neurons
with different connections are initialized in DN-2. We named
these neurons in the format of three binary bits according to
their connection relationship with X , Y and Z areas. For each
bit, “1” represents there are connections between this type of
Y neuron and the corresponding area, while “0” represents no
connections. For example, type 101 indicates the Y neurons
having connections with the X and Z areas.

The Y neurons with different connection modes can focus
on different local features more efficiently. This will help DN-
2 to generate reasonable representations more quickly in the
early period. In our phoneme imitation experiments, type 100
and type 111 Y neurons are mainly grown to learn different
inner representations.

Local receptive fields and local inhibitions zones: The
local receptive field is designed for Y neurons which have
connections with X area in DN-2. The local receptive fields
make these Y neurons flexibly extract different local features.
The local top-k competition mechanism is used in DN-2. Each
Y neuron only competes with other Y neurons which have the
same connection mode. The local top-k competition ensures
DN-2’s inner representations contain more local features.

In the previous work [17], we take type 100 Y neurons
as an example to explain how the local receptive field and
refined local top-k competition mechanisms work. Type 100
Y neurons have local receptive fields with the same scale
but focusing on different locations of the input domain. The
refined local top-k competition zones are formed based on
the locations of these neurons’ receptive fields so that these
neurons only compete with others having similar receptive
fields. These mechanisms work together to guarantee the
neuronal resources are evenly arranged for each part of the
sensory regions.

Lateral connections among Y neurons: In DN-2, Y
neurons having the lateral connections with other Y neurons
transmit the spatiotemporal information among these neurons.
When DN-2 is processing sequences, the spikes from the
last frame are extracted as inputs for the neuron’s lateral
connections. This follows the Hebbian learning principle [24].

Synaptic maintenance mechanism is applied to the lateral
connections to automatically fine-tune the connection patterns
according to the statistics in the learning experience. Growing
the potential connections is included in the synaptic mainte-
nance so that DN-2 can discover new statistic dependencies.
The algorithm about how to grow lateral connections is in our
previous work [17]. After synaptic maintenance, the lateral
connections among Y neurons record the causation relation-
ships across time series and dynamically build the hierarchical
structure inside. and shape the hierarchical structure.

B. Real value sections in motor area

In DN-2, there are several handcrafted concept zones in the
motor area Z for different learning tasks. Each concept zone
represents a concept class. For example, the object location

and type concept zones are designed in the object detection
task. This is some kind of local competition in the Z area since
only the neurons in the same concept zone compete with each
other to fire.

In this paper, we use the real value sections in the motor area
to replace the original concept zones. Each real value section
represents the real values in some range. Each firing pattern in
the real value section indicates a real value. The firing patterns
in all real value sections together can form a real-valued vector
that may be suitable for simulating a complex signal. This kind
of complex signal is the key point for driving the muscles of
an agent to perform subtle and flexible actions.

In our phoneme imitation experiments, we used 40 real
value sections in the motor area to emerge a 1 × 40 real-
valued vector at each time. Each real value section contains
128 Z neurons to indicate a real value in the range from -1
to 1.

C. Work flow of DN-2

During learning, DN-2 incrementally generates optimal
spatiotemporal clustering based on the incremental Hebbian
learning theory. In each area, each neuron has weights to
match the corresponding domain inputs. Among each type of
neurons (for Y area) or each concept zone (for Z area), the
local top-k competition mechanism allows k neurons with the
best matches of inputs to fire and learn.

Specifically, the Y neurons receive the input pair
(xt−1,yt−1, zt−1) at time t. Each Y neuron i compute the
inner-product between its weights and corresponding inputs
as its response yi,t. Among each type, the Y neurons compete
according to their response values to fire. If all neurons cannot
match the inputs well (the response under a threshold), a new
neuron grows to learn as neuron splitting (mitosis).

At time t + 1, the Z neurons fire according to the super-
vised pattern if the supervision is provided by the teacher or
environment, and link the Y area’s firing pattern yt at time t.
Without the supervision, the Z neurons complete to fire and
learn based on the match with yt. The learning for each neuron
is the incremental update of its weights and firing ages. This
procedure is shown in Fig. 2.

It is demonstrated in [25] that DN-2 can incrementally learn
any finite automaton (or equivalently Turing machine) one
transition at a time after “birth”. The Y neurons in DN-2
exactly match the current context-input vector (xt, zt) and
then store this pattern in their weights. And after several
updates, the firing Y neurons form a pattern corresponds to
an output state zt+n (n = 1, 2, ...). This procedure can be
represented in the FA’s transition form: (xt, zt)→ zt+n.

DN-2 uses Y neurons as clusters to approximate the samples
in Z×X space. When the neuronal resource is sufficient, DN-
2 learns error-free by growing Y neurons with new weight
(wx,wy,wz). The newborn Y neuron newly initializes a
different cluster that exactly matches the new context-input
sample. When the neuronal resource is limited, the Y neurons
are doing optimal tessellation (in the sense of maximum
likelihood) in the Z ×X space.
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Fig. 2. The DN-2’s learning procedure across time series is listed. In Y area,
we just illustrate 2 types of Y neurons mainly grown in our phoneme imitation
experiments. Different types of Y neurons compete to fire and learn at each
moment. DN-2 incrementally initializes new Y neurons when the existing
Y neurons cannot represent the context-input sample (x, z) well. The green
nodes in Y area represent type 111 neurons, while the yellow nodes in Y
area represent type 100 neurons. The neurons with red outlines represent firing
neurons. The motor firing patterns are formed by all the real value sections.
The raw waveform frames are processed into the feature patterns as sensory
inputs. They are also encoded to real-valued actions as motor supervision.

D. The algorithm of DN-2

We list the outline of the DN-2 algorithm as follows.
Algorithm 1 (DN-2): Input areas: X and Z. Output areas: Z.

1) For Y area, initialize its adaptive part Ny = (V,G)
(where V is the synaptic weights and G is the neural
ages) and response vector y. Every Y neuron has been
initialized with random weights, zero firing age and zero
response as the initial state (later these Y neurons can
transfer to active state). The corresponding location of
every neuron is also stored. Set the total number of Y
neuron to be ny . A boundary cy indicates the number of
active neurons (cy ≤ ny). Z area initializes its adaptive
part Nz and the response vector z in similar way.

2) At time t = 0, supervise initial state z(t = 0). Input the
first sensory input x(t = 0).

3) At time t = 1, ..., repeat the following steps forever
(executing steps 3a, 3b in parallel, before step 3c):

a) All Y neurons compute in parallel:

(y(t), N ′y) = fy(py, Ny) (1)

where py = (x(t−1),y(t−1), z(t−1)), and fy is
the Y area function to be explained below, which
computes the response vector y(t) and updates
the adaptive part N ′y of the Y area. If active Y
neurons cannot match the input vector well, area
Y transfers new neurons to active state. And update
the boundary cy .

b) Components in z(t) are supervised if they are never
fired. Otherwise, Z neurons compute Z area’s

response vector z(t) and the adaptive part N ′z in
parallel:

(z(t), N ′z) = fz(pz, Nz) (2)

where pz = (y(t − 1)), and fz is the Z area
function to be explained below.

c) Update asynchronously: Ny ← N ′y and Nz ← N ′z .
Supervise input x(t).

The area function fy in Eq.(1) and area function fz in Eq.(2)
include 1) the computation of response vectors y(t) and z(t)
and 2) the maintenance of adaptive parts N ′y and N ′z for Y
area and Z area, respectively. The detailed steps of these area
functions can be found in our previous work [17].

IV. EXPERIMENTS

The experiments in this work used DN-2 for phoneme
imitation through time series as the example of dense action
generation. In the experiments, the dense actions are real-
valued vectors which can be played as sound waveform
frames. We trained DN-2 using supervised mode in this work
since we want to demonstrate the feasibility of the dense action
generation. We plan to teach DN-2 to concurrently imitate and
recognize the phonemes later. For this task, the reinforcement
learning paradigm is under our consideration.

A. Input processing and label encoding

In this work, the used audition raw data are 5 phonemes
(short vowels) from the audition dataset of the 2016 Artificial
Intelligent Machine Learning (AIML) Contest [26].

The lengths of these phonemes are between 210 ms to
350 ms. All the phonemes are cut into 20 ms frames. The
adjacent frames have 10 ms overlap. The sampling rate of the
raw waveform data is fs = 44.1 KHz, so each frame has
882 elements. The training and test sequences are created by
linking the 5 phoneme sequences together. There are 30 ms
silence frames between the adjacent phoneme frames.

We simulated the process of the cochlea for each input
frame (raw waveform data) to generate a feature pattern.
Specifically, the raw waveform frame is multiplied with a
series of sine functions. These sine functions have different
frequencies and initial phases to simulate the hair cells at dif-
ferent positions in the cochlea which extract different features.
For each frame, the 11 × 10 feature matrix is generated as
well as the 1×4 volume level vector appended. The steps and
explanations of this processing can be found in our previous
work [15].

There are 882 real-valued components in each data frame,
which is too dense to directly used as labels. We applied the
PCA to the data frame to generate a real-valued vector with
a lower dimension. The dimension of 40 is selected in the
experiments as a tradeoff between dimensionality reduction
and maintaining variance. Specifically, we use all the input
frames to construct the projecting matrix W (W ∈ R882×40),
and map the original input samples onto a lower-dimensional
feature space. Later, the transposition of this projecting matrix
WT is used in the reconstructions of the waveform frames.
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Fig. 3. The comparison of generated and original waveforms for phoneme
/2/ is illustrated. The blue lines represent the original input waveform, while
the red lines represent DN-2’s generated waveform. On the top end, the
comparisons of three 20 ms segments are listed. The three segments are cut
from the beginning, middle and end parts of phoneme /2/, respectively.

So 40 real value sections are designed in the motor area to
represent the dense supervision or emergent actions. There
are128 Z neurons in each real value section to approximate a
real value in the range from -1 to 1.

B. Training and test procedure

In the experiments, we trained DN-2 to learn to produce the
sounds (phonemes) which imitate the waveforms it “hears”.
During training, the type 100 and 111 Y neurons are mainly
grown for leaning. At first, type 100 Y neurons are mainly
grown and learn volume information. Then type 111 Y neu-
rons are mainly grown to learn different spatial and temporal
feature patterns.

After training, the test sequence (same data but without
supervision) are fed to DN-2 to generate dense actions. Based
on these real-valued actions, we used WT to reconstruct the
waveform frames, and further reconstruct the phonemes. We
should mention that the actions generated by itself during the
test also provide the context information for DN-2.

C. Results and analysis

The comparisons of phoneme waveforms generated by DN-
2 and the original inputs are listed in Fig. 3 and Fig. 4. In
these figures, the blue lines represent original input data, while
the red lines represent DN-2’s generated data. We can see
clearly that at most moments the red lines cover the blue lines.
This indicates that DN-2 successfully imitate the phonemes it
received. In Fig. 3, we take phoneme /2/ as the example to
illustrate the comparisons of the beginning, middle and end
frames. We can see the imitation of the beginning and end
frames are not as perfect as the middle one. This is because
the waveform amplitudes of the beginning and end parts are
smaller which increases the difficulty of imitation.

To demonstrate type 111 neurons chaining the temporal in-
formation during learning, we illustrated the lateral connection
situation of type 111 neurons in two modes. In Fig. 5, 9 type
111 neurons are randomly chosen from DN-2 to show their
lateral weights as images. Each weight of the type 111 neurons
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Fig. 4. The comparison of generated and original waveforms for phoneme /@/,
/e/, /u/ and /i/ are listed. The blue lines represent the original input waveform,
while the red lines represent DN-2’s generated waveform.

is shown as the 13×12 images: row major representation. Each
pixel in the weight images corresponds to a component in the
weight vectors. The darker color means a higher value. Each
weight ends in the first element in the final row, the remaining
white area in the final row is used for completeness. We can
see clearly these neurons record different Y firing patterns
combined by type 100 and 111 neurons.

In Fig. 6, The lateral connections among type 111 neurons
are shown. These connections form temporal relationships
among the abstractions. the formed representation learns the
transition across sequential data based on every context-input
pair. The plotted lateral connections are grouped with the same
color for each phoneme waveform.

The experimental results show that DN-2 can emerge
the actions (high-dimensional real-valued vector) with self-
supervision. We plan to study different dimensionality reduc-
tion and reconstruction technologies (e.g., Candid Covariance-
free Incremental PCA (CCI PCA) [27]) to further reduce the
error between the reconstructed data and original data.

V. CONCLUSIONS AND DISCUSSIONS

The emergent Turing Machine learned by a DN results in
the partition of all sequences of input space into a larger
number of equivalent classes. Such equivalent classes have
very different sizes, including do-not-care scene elements and
highly scene elements. Given first four essential factors, the
fifth factor learning experience seems to be especially critical
for further study.

The experimental results have demonstrated that DN-2 can
perfectly imitate the sequential waveform data. The results also
indicated that the motor area can be set to real value sections
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Neuron 1 Neuron 2 Neuron 3

Neuron 4 Neuron 5 Neuron 6

Neuron 7 Neuron 8 Neuron 9

Fig. 5. The lateral weight images of 9 randomly chosen type 111 Y
neurons are listed. Each weight is presented as a 13× 12 image: row major
representation. Each pixel corresponds to a weight component. The darker
color indicates higher value. The white area in the final row is used for
completeness.

/e/ /i/

/ʌ/

/ə/

/u/

Fig. 6. Type 111 neurons’ embedding and lateral connections among the same
type neurons are visualized. Each type 111 Y neuron embedding colored
according to the phoneme it learned. The black shapes (circles, squares,
triangles, etc) represent type 111 Y neurons grown in the phoneme imitation
experiments. The connection between Y neurons indicates that these neurons
are laterally connected across time sequence (when a neuron is connected to
multiple hidden neurons, we choose one with the strongest connection).

to approximate the real values in different ranges, but more
experimental work is needed. We will use longer and more
complicated auditory imitation experiments (e.g., word and
sentence). Other sensory modalities are also in our plan.
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