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Abstract—The neural basis of spatial cognition and learning
in mammals has been studied extensively for several decades.
Research has focused in particular on the place cells of the
hippocampus and the grid cells found in the entorhinal cortex.
In turn, these studies have inspired several models for robotic
navigation. One interesting, experimentally observed, feature of
spatial learning in rodents is the importance of replay, where
animals replay sequences of spatial representations they have
experienced in order to learn and make decisions. This feature
too has been incorporated into some computational models. In
this paper, we describe a new approach to learning navigation
in mazes using replay of intrinsically generated sequences rather
than relying only on experienced sequences. We show that this
improves generalization, and leads to effective one-shot learning
that is closer to what is observed in animals.

I. INTRODUCTION

Spatial mapping and navigation are of central importance in
animals such as mammals and birds, and understanding their
biological basis is critical to the understanding of cognition
and behavior. This topic has been studied extensively for
several decades through experiments, modeling, and computa-
tional simulation. More recently, the results from these studies
have also inspired methods for mapping and navigation in
robots, typically in combination with neural learning algo-
rithms, as is the case in this paper.

It is well-known that the hippocampus and its surrounding
regions play a central role in spatial cognition in mammals
[1]–[3]. This brain area contains (among others) place cells
[2], [4], [5], grid cells [6], [7], and head-direction cells [8].
Major research efforts in this area over the past 30 years have
led to a detailed understanding of these cells and the way they
may support the construction of cognitive maps.

In brief, cognitive maps are supported primarily by place
cells [2], [9] in the hippocampus and grid cells [1], [10]–[12] in
the entorhinal cortex. During the formation of a cognitive map,
each place cell becomes associated with a particular location
in the environment, i.e., the place field of the cell [2], [4],
[13], [14].

Grid cells are organized in a way that maximizes their
spatial resolution for the fewest number of cells [15], [16],
forming discrete modules differing in scale, ranging from a
few centimeters to several meters in rodents [17]. A leading
hypothesis about grid cell function is that they provide a path
integration-based input to place cells [10], [18], [19]. Together,
the place and grid systems allow animals to localize and
navigate by integrating sensory and ideothetic information.

These insights from neuroscience, in turn, have inspired
several research groups to develop methods for mapping and
navigation in robots. These efforts have yielded impressive
results. For example, RatSLAM [20]–[23] has been shown to
be able navigate office spaces [24] and map large outdoor
environments [25]. The algorithm has also been used suc-
cessfully with multiple sensors (including cameras, sonar, and
electromagnetic sensors) and to support sensor fusion [26]–
[28].

Reinforcement learning (RL) is a biologically-inspired
learning method for training agents by optimizing rewards.
It has proven to be a powerful technique, in particular when
complete knowledge of the environment is unavailable, render-
ing supervised training impossible. The primary inspiration for
reinforcement learning is the naturally occurring learning by
trial and error in animals, which can explore new environments
and quickly learn how to maximize rewards in those environ-
ments, e.g., learning where to find food. However, despite the
progress in the underlying neuroscience, biological RL is far
from fully understood. In particular, computational models of
RL are unable to reproduce the ability of animals to learn from
a small number of trials. One potential explanation for this
ability is that animals can augment real-time learning with off-
line learning by replaying experiences. Such replay has been
observed in the hippocampus during sleep [29]–[31]. Replay
has also incorporated into several RL models of hippocampal
function [32]–[34] and generated interesting results.

In this paper, we follow these previous models in assuming
that hippocampal replay plays a key part in natural RL for
navigation tasks. However, our model differs from previous
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ones because we focus on awake replay in sharp wave ripples
during the receipt of rewards, and propose that the learning
process is better modelled as asynchronous dynamic program-
ming estimating the value function rather that the traditional
view of temporal difference (TD) learning.

II. BACKGROUND

A. Reinforcement Learning
Reinforcement learning problems are typically formulated

as Markov decision processes (MDPs) described by the tuple
(S,A, T ,R) where:
• S is the set of agent-environment states.
• A is the set of available actions to the agent.
• The state transition function, T (s, a) → s′, maps a

state-action pair to the next state – deterministically or
stochastically.

• The reward function,R(s′|s, a)→ r, indicates the reward
in transitioning to state s′ from state s by taking action
a.

The task is then to find a deterministic policy, π(s)→ a, that
maps states to actions to maximize the expected sum of future
rewards i.e.

π∗(s) := argmaxa
∑
s′

(R(s′|s, a) + γV (s′)) (1)

where V (s) is the value function which provides the sum
of discounted rewards that can be earned from state s by
following the policy π(s) discounted by a factor γ ∈ [0, 1]
at every step, i.e.

V (s) :=
∑
s′

(Rπ(s)(s
′|s) + γV (s′)) (2)

Solving this problem usually involves updating both the
value and policy functions recursively using approaches such
as temporal difference (TD) learning, Monte Carlo methods,
or dynamic programming when complete knowledge of the
environment and rewards is available. TD and Monte Carlo
generally work by using the error δt between the estimated
value of the current state V̂ (s) and the better estimate Rt+1+
γV̂ (s′)− V̂ (s) obtained either after each state transition (TD)
or after entire episodes of experience (Monte Carlo). Dynamic
programming, which is more computationally intensive, can be
thought of as proceeding backward in time to back-propagate
the maximum value reachable from each state, discounted by
the number of steps taken and combining it with the reward
at the state to update its value. The policy is then computed
from this value function using Equation 1. Explicitly:

Vi+1(s) := max
a

∑
s′

(R(s′|s, a) + γVi(s
′)) (3)

where i is the iteration number.

B. Spatial Cognition in the Hippocampus
As discussed above, spatial cognition in mammals is me-

diated by spatially-tuned cells in the hippocampus and sur-
rounding brain regions. The details of these representations
have been elucidated by many studies, but three features are
of special relevance to the model presented in this paper.

1) Markovian Aspect of Place Cells: Neuroscientists have
discovered a great variety of spatially modulated cells that
are believed to be crucial for spatial cognition. For this work,
we focus on hippocampal place cells, which are neurons that
increase their firing in localized regions of the environment
termed their place fields. It has been observed that place cells
appear to learn a Markovian (rather than Euclidean) state-space
representation [33], i.e., it reflects the sequential nature of the
animal’s experience during the traversal of the environment
rather than purely metric relationships between locations.
Given the strongly recurrent structure of the CA3 region of
the hippocampus where place cells are often found, spike
time-dependent plasticity (STDP) can cause their synapses to
represent sequential information obtained during navigation.
This is also reflected in the fact that place fields typically do
not straddle impenetrable boundaries [35] in the environment
– presumably because locations across the boundary are never
experienced sequentially, and the correct action at each one is
unlikely to be the same despite their proximity in Euclidean
space.

2) Place Cell Backward Replay: A particularly interesting
phenomenon observed in place cell networks is the backward
replay of the place cell sequences that led to rewards during
the consumption of the rewards [36]. Dynamic programming
has traditionally been seen as a purely algorithmic formulation
with no equivalent in biological neural networks as it proceeds
backward in time. However, the backward replay of sequences
observed at reward sites can potentially enable a similar
process to occur.

3) Reward Cells: Rewards, or the expectation thereof,
appear to be represented by neurons in the ventral striatum
that show ramping activity as the animal moves toward re-
warded sites [37]–[39]. This is a downstream structure from
the hippocampus that shows high synchronization with the
hippocampus during active movement.

III. THE MODEL

We define and implement a hippocampally-inspired model
of mapping and navigation for a simple animat (simulated an-
imal). The model involves four types of cells: Head-direction
cells, boundary vector cells, place cells, and reward cells that
produce a reward of +1 at specific locations. The current
version of the model does not include grid cells, which will
be added in future versions.

A. Head Direction Network

The head direction (HD) network consists of head direction
cells with neurons that fire maximally when the agent’s
allocentric head direction is aligned with the cell’s preferred
direction. Experimental findings indicate the presence of head
direction cells in the entorhinal cortex [40] and the postsubicu-
lum [41]. The model proposed in this work uses only eight
HD cells tuned at 45° intervals for simplicity. Mathematically,
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The activity vector H of the neurons in the HD network is
modeled as in the work of Erdem and Hasselmo [42]:

D =

[
cos(0), cos(45°)...cos(315°)
sin(0), sin(45°)...sin(315°)

]
(4a)

H = v · D (4b)

where D is the tuning kernel, v is the velocity (row) vector,
and some fixed distal cue is taken as the 0° heading.

B. Place Cell Network

Place cells are implemented using the previously proposed
boundary vector cell model [43]. Boundary vector (BV) cells
are neurons found in the subiculum of rodents that encode
insurmountable obstacles or boundaries at specific distances
and allocentric directions from the animal. This translates to
BV cells having band-like receptive fields as illustrated in Fig
1 (left) for a circular environment.

In the boundary vector cell model of place cells, place cells
multiplicatively combine the firing of multiple boundary vector
cells with different preferred directions. We implement this
model using boundary vector cells tuned to the eight directions
represented in the head direction network with randomly
distributed preferred distances. Place cells receive connections
from a set of eight BV cells, one for each encoded head
direction, with random preferred distances. Mathematically,
for place cell i, its gross firing rate f̂i(x) at a position x is
given as:

f̂i(x) =
8∏
j=1

exp

[
− (rj − dj)2

2σ2
rad

]
(5)

where rj is the distance of the nearest boundary in the
preferred direction of boundary vector cell j and dj is the
preferred distance. The gross firing rates are normalized at
each time-step as a fraction of the maximum firing rate at the
current position across all place cells to get the final firing
rate:

fi(x) =
f̂i(x)

f̂j(x)
(6)

where j is the index of the place cell with the maximum firing
rate at x.

C. Markov Decision Process Problem Formulation

1) S: The set of agent-environment states, S, can be taken
as the vector of place cell firing rates, i.e given n place cells;

S = {f1(x), f2(x), ..., fn(x)} (7)

2) A: For simplicity, we assume the animat moves at
a constant speed |v| in any direction, which is represented
by head direction cells [41] coding for the eight allocentric
cardinal directions. Therefore, the set of available actions, A,
is,

A = [|v| 0°, |v| 315°) (8)

3) V: The value function, V , is simply the firing rate of
the ventral striatum reward cell associated with the currently
sought reward which also receives projections from place cells.
We assume that a higher level brain structure which we do not
model assigns reward cells to the rewards found, and selects
which reward cells to evaluate when seeking known goals.

V = r + WSRS (9)

where r is a binary value representing the receipt of the reward
and WSR is the weight matrix from the place cells to the
reward cell.

4) T : As the reward locations and place field adjacencies
are initially unknown, the policy is randomly initialized to
allow exploration. We represent the state transition function
T (s, a) as a 3 dimensional place cell to place cell synapse
matrix WSS where WSS [k][i][j] represents the strength of
connection from the ith place cell to the jth in the kth

head direction. During exploration, WSS is updated after
every time-step using Hebbian learning modulated by the head
direction network activity:

W′SS = H(WSS + η1((S ′ST )|1−WSS |) (10)

where H and S are the head direction and state vectors
respectively as previously described, η1 is the learning rate,
and self connections are not allowed i.e the diagonals are
zero.W′SS and S ′ represent WSS and S on the next timestep.

D. Replay

As previously stated, rodents are known to replay the
place cell activation sequences in reverse order upon reaching
rewards at the end of runs [36]. This occurs during a very
synchronous neural state termed sharp wave ripples. This is
believed to emerge due to the absence of the theta-modulated
inhibition of the place cell to place cell connections during
exploration [44], [45]. Since the synapses between place cells
with adjacent place fields would have been potentiated during
exploration, a temporary lack of theta mediated inhibition
causes the currently active place cells, i.e., those active at
the goal location, to depolarize place cells adjacent to them,
which then do the same and so on, resulting in a time-
compressed backwards replay of all (or many) of the pre-
viously experienced paths to the goal. If the active ventral
striatum reward cell receives projections from the place cells,
spike-time-dependent-plasticity during this backward spread of
activity will modify the synapses from each activated place cell
to the active reward cell in inverse proportion to the distance
from that place cell’s field to the reward location. Crucially,
if a location’s place cell has been part of several previous
paths to the goal, its first activation in the backward replay
corresponds to the shortest known path from that location to
the goal. Thus, the learning process automatically adjusts the
synaptic modification to account for the most accurate value
estimate. Over the course of experience, which is reflected in
the increase of its synaptic strength to the reward cell.

We approximate this in our rate-coded model in the fol-
lowing manner. When receiving a reward, the selected reward
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Fig. 1. Left: The smoothed spatial activity patterns in a circular arena during a random run are shown for eight boundary vector cells that are tuned to
boundaries at different distances in the eight cardinal directions. Right: The resulting place field of a place cell receiving input from the eight boundary vector
cells and competing with other place cells for excitation.

cell receives a signal r = 1 and becomes active. Hebbian
learning then occurs so that the synapses from the currently
active place cells get strengthened. Then backward replay
ensues from the currently active place cells spreading out to
all connected neurons along the strongest synapse i.e., the
head direction most strongly connecting them. The strongest
synapse is used as it represents the most efficient known
action or shortest path. As place cells might have shown some
activation during the previous time-step due to place field
overlap and/or future time-steps due to the undirected nature
of the spreading activation replay, the place cell to reward cell
synapse is set to be the maximum of its previous value and
currently implied value. This indicates when the place cell and
its field are at the peak of the spreading activation. Activation
then spreads from these place cells after which learning occurs
again and so on for a specified number of steps, nrs, forming
what can be thought of as a ripple in physical space starting at
the reward location and spreading out along the known paths.
To prevent the network becoming unstable, the net activation
is normalized at every time-step.

This entire process is summarized in Algorithm 1, where
η2 is the time-decay learning rate, A <i,j B is used to mean
A[i, j] ≥ B[i, j] and maxk WSS is the maximum of WSS

along the direction axis i.e. the maximum synapse strength
between each place cell pair.

Algorithm 1: Replay Generation Method

for ri ← 1 to nrs do
ŴSR ← e

−η2
nrs S;

if ŴSR <i,j WSR then
WSR[i][j]← ŴSR[i][j];

end
Ŝ ← maxk WSSS;
S ← Ŝ

||Ŝ|| ;
end

The net effect of the replay and associated learning is to
establish in the place-to-reward cell synapses an implicit value

map for the environment with respect to that goal. If there can
be multiple reward locations, each with its own reward cell,
different maps can be learned without mutual interference for
each such location using the same place fields. When a specific
goal/reward is sought, the animat can estimate the value of
each possible move via the activity each proposed location
induces in the appropriate reward cell.

E. Exploration vs Exploitation

The animat operates in two modes:
During exploration, it moves around randomly and so that

it is equally likely to maintain its current heading or to make a
90° turn that is equally likely to be to the right or the left – all
the while avoiding obstacles. This enables it to learn a partial
value map over the locations visited during exploration, which
is generalized by off-line reverse replay. During exploitation,
the animat moves based on the value map it has inferred,
taking the highest value action at each step.

In simulation, once a value map has been learned, the animat
employs a stochastic greedy exploration/exploitation strategy
where the probability of exploitation is inversely exponentially
proportional to the expected reward value.

In a familiar environment, rodents are known to stop and
vicariously sample the different options at decision points
[46]–[48]. This behaviour which manifests physically as small
head movements alternating between the potential choices
has more recently been discovered to be accompanied by
an activation of the place cell sequences associated with the
sampled paths [49] and the reward cells [50]. If the strength of
the synapses between place cells and the reward cells reflect
the proximity of the place cell’s field to the reward location
as we propose, this provides a way for the animal to evaluate
the value of the available actions at each state i.e. V(s′|s, a).

We approximate this in the following way for the actions
being considered next from the current location. Given the
current state S:

1) For each proposed next action a ∈ A, generate S ′ –
the place cell activity for the new location – by letting
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activation spread between place cells along the synapse
representing the action:

S ′ = WSS [i]S (11)

where i is the index of the evaluated action a in A.
2) Evaluate the value V for each proposed location S ′:

V(S ′) = WSRS ′ (12)

3) Choose the action a∗ that gives the maximum value and
move to the corresponding location.

The complete process is explained in Algorithm 2 with V
as defined in (12) and π∗ as defined in (1).
Algorithm 2: Exploration/Exploitation Strategy

while r < 1 do
if reward previously found then

Select most recently activated reward cell;
Evaluate R(s′|s, a) for all a ∈ A i.e
V(s′|s, a)− V(s);

if max(R(s′|s, a)) > 0 then
v∗ = V(s) +max(R(s′|s, a));
p← exp(−β/v∗);
Follow π∗(s) with a probability p or
explore with a probability 1− p;

else
Explore

end
else

Explore
end

end

IV. EXPERIMENTAL ENVIRONMENT

We implemented our model on the Khepera IV robot in
Webots [51], a commercial mobile robot simulation software
developed by Cyberbotics Ltd. In addition to the standard
package, the robot was equipped with a 360° LIDAR sensor to
detect obstacle distances, and a compass to get its allocentric
heading.

The model was tested on the classic reference memory water
maze task. The Morris water maze task [52], [53] involves
placing a rat into a circular tank of colored water where there
is a hidden platform. Its natural aversion to swimming (though
rats are perfectly capable of it) motivates the rat to find the
platform which is considered the end of the episode.

In our experiment, the animat moved in a circular environ-
ment, with a platform placed at a random location (Figure 2).
Arriving at the platform produced a reward. The experiment
was run ten times with random initial starting positions and
platform (reward) locations. We considered a single run to be
four episodes from random initial starting locations, no prior
knowledge of the environment and a fixed goal location.

Variable parameters were set to the values described in the
table below:

Parameter η1 η2 nrs β
Value 1 0 3 .135

Fig. 2. The simulation environment is shown with the robot in the upper left
corner and the goal represented in white towards the bottom right corner.

V. RESULTS

Figure 3 shows the mean normalized escape latency
(MNEL) – the time from start to reaching the platform scaled
by the distance between the start point and the platform –
for the four episodes in each trial. The rapid decrease in the
MNEL from the first to the second trial indicates that the
system exhibits strong one-shot learning, i.e., one exploratory
episode is sufficient for the animat to build a reasonable value
map of the environment. As can be expected, however, when
the initial run only covers a limited part of the environment,
the animat needs to explore further on a subsequent run that
does not start in a part of the environment it had previously
seen. This is the cause of the relatively high escape latency
variance on the second run. By the third and fourth run, most
of the environment has been explored, leading to almost direct
paths. A sample trial is shown in Figure 4, where the animat
explored the environment extensively before finding the goal

Fig. 3. The normalized escape latency is shown over four runs. It drops
consistently over the four runs, indicating that the animat is able to build and
successfully use a value map from experience.
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Fig. 4. A sample trial where the animat had explored most of the environment before finding the escape platform. This enabled the animat to build an
extensive value map resulting in it finding fairly direct paths from the multiple different starting locations on subsequent runs.

Fig. 5. A sample trial where the animat found the escape platform quickly without exploring most of the maze. On the second run from an unfamiliar
location, it has to explore again to find the goal.

Fig. 6. Optimization of the path taken to the goal from the same starting point is shown over four runs. On the initial run, the goal location is unknown and
the animat explores randomly till it discovers it. On subsequent runs, it exploits the previously learnt reward map and gradually improves it to generate a
more efficient path.

in the first episode, and was thus able to build a value map
with broad coverage. This enabled it to find the goal efficiently
from new start positions on the subsequent episodes.

Figure 5 shows a trial in which the animat found the escape
platform quickly in the first episode before exploring most of
the environment. In the second episode from an unfamiliar
starting location, it had to explore further to find the goal and
then update the value map with this experience. This value
map was then exploited on the third and fourth runs when it
started near previously seen locations.

As the place fields have some overlap, i.e., place cells with
place fields adjacent to the maximally active place cell also
have some level of activation, the value map learned by the
animat is not confined only to the locations it has explored;
it also interpolates naturally to locations in between. Thus,
after sufficient exploration, the animat is also able to infer
completely novel shortcuts. This is shown in Fig. 6 where the
animat begins from the same start location on each of the
four runs. After finding the goal on the first run, it follows an
inefficient path that reflects its experience. However, it is able
to gradually improve this path over the next runs as it learns

that the adjacent place fields are more direct.

VI. DISCUSSION

Our model succeeds in learning the explored portion of
the maze in one shot with the intrinsically generated replay,
which effectively approximates dynamic programming. While
this is not a particularly novel concept in computation, it has
previously been unclear how this might occur in biologically-
plausible neural networks. While we do not claim our model
be true to the biology in its details, the previously discussed
Markovian nature of place cells and the backward replay
observed at reward sites indicate that a similar process might
occur in the hippocampus.

An interesting aspect of the model, and one that distin-
guishes it from previous models, is that replay occurs in all
directions from the reward location. What has typically been
observed in experimental studies is replay in the direction
from which the animal approached the goal, i.e., only replay
of the most recent path. This could imply a more complex
mechanism that preferentially selects recently activated place
cells or is perhaps more likely to be an artifact of the testing
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environments that usually feature one-dimensional tracks and,
as a result, directional place cells. Also, in our model, even
in the direction of approach, the replay might not follow
exactly the same sequence as that taken to reach the goal.
That is, once an environment has been learned sufficiently,
regardless of the path taken to find the reward in the current
episode, place cells will replay the best sequence of known
positions backwards from the reward. This is similar to what
has been observed experimentally in humans [54] showing
replay reorganized to reflect learned rules over the immediately
preceding experience.

A notable limitation in our model is that set by nrs on the
number of replays or how far out the value map spreads from
the reward location. Outside the laboratory, many mammals
navigate and learn on scales from centimeters to tens of
kilometers [55]. Future work on this model would include
devising a method to spread out the value map to the range
required of the task.

An aspect of our model which is biologically implausible
is the directionality of the place cell to place cell synapses.
Rather than having a single synapse connecting each place cell
pair, we represent this using eight synapses, one for each of the
encoded head directions. This is unlikely to be the case in the
hippocampus but was necessitated to enable evaluation of the
value of the possible actions. In a more biologically plausible
model, this could be replaced by a model of the entorhinal
cortex, which has been suggested to underlie path integration.
Such a model would likely require recurrent connectivity
between the hippocampus and entorhinal cortex, as has been
found in anatomical studies [56]. The location encoded in the
hippocampus, as well as the action under consideration, would
be transmitted to the entorhinal cortex where the expected new
location from taking the selected action would be determined
and fed back to the hippocampus.

In this work, we have only focused on online replay that
happens while the animal is awake. However, offline replay
that occurs while the animal is asleep has also been observed
experimentally [29]–[31]. This could further increase the reso-
lution of the model and spread out the learnt value map beyond
the range of the initial online replays.

VII. CONCLUSIONS

In this paper, we presented a hippocampally-inspired model
of goal-seeking navigation using replay and reinforcement
learning. A simple version of the model implemented on a
similated robot showed that the model could rapidly build a
value map in an environment, and use it to find the goal very
efficiently – including discovering shortcuts that had not be
experienced during learning. In future work, this model will
be extended to include grid cells of the entorhinal cortex, to
deal with obstacles, and to work in environments of varying
size and complexity.
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