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Abstract—Accurate automatic segmentation of the retinal
vessels is crucial for early detection and diagnosis of vision-
threatening retinal diseases. A new supervised method using
a variant of the fully convolutional neural network is pro-
posed with the advantages of reduced hyper-parameters, reduced
computational/memory requirements, and robust performance
in capturing tiny vessel information. The fully convolutional
architectures previously employed for vessel segmentation have
multiple tunable hyperparameters and difficulty in end-to-end
training due to their decoder structure. We resolve this problem
by sharing information from the encoder for upsampling at the
decoder stage, resulting in a significantly smaller number of
tunable parameters and low computational overhead at the train
and test stages. Moreover, the need for pre- and post-processing
steps are eradicated. Consequently, the detection accuracy is
significantly improved with scores of 0.9620, 0.9623, and 0.9620
on DRIVE, STARE, and CHASE DB1 datasets respectively.

Index Terms—Retinal vessel segmentation, Deep fully con-
volutional neural network, Semantic segmentation, Low-level
semantic information, Residual edge information

I. INTRODUCTION

Many established eye diseases including retinal vascular
occlusions, age-related macular degeneration (AMD), diabetic
retinopathy (DR) chronic systematic hypoxemia, and glau-
coma can be characterized by appearance changes in retinal
blood vessels. Early detection, diagnosis, and tracking of
disease progression can prevent vision loss in the case of
AMD and DR, and lead to cost-effective treatment options for
other conditions [1]–[3]. Therefore, the role of retinal vascular

tree segmentation for the implementation of automated retinal
screening programs is peerless [4].

Manual delineation requires the images to be manually
segmented by trained ophthalmologists or optometrists. It is
a tedious, time consuming, and skill demanding task, where
there is a fundamental limit on the amount of reliable infor-
mation that can be extracted from retinal images. In contrast,
automatic segmentation algorithms have the potential to be de-
ployed for large public screening with increased accuracy and
reduced labor. However, the accuracy of computer algorithms
is limited due to the miscellaneous challenges of automatic
vessel segmentation.

Automatic vessel segmentation has been widely accepted as
a challenging task but is vital for a computer-aided diagnostic
system for ophthalmic diseases [5]–[8]. Vessel segmentation is
a multifaceted problem that poses several challenges including
variation in shape, size, intensity, and direction of vessels [1],
[9], [10]. Other difficulties include branching, the crossing of
vessels, and the centerline reflex. Moreover, other structures
such as an optic disc, macula, pathologies (exudates and
lesions), and optic disc boundary add to its complexity. The
environmental factors, such as camera acquisition noise, must
also be taken into account.

Deep neural networks (DNNs) have achieved state-of-the-art
performance in retinal vessel segmentation [11]–[14], which
advocates their application to automated retinal image analysis
and diagnostics. This performance is achieved at the expense
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of costly strategies including ensemble networks, pre- and
post-processing approaches, and parametric loss functions.
These studies ignore important factors such as memory over-
head, computational train, test times, and the number of hyper-
parameters to tune. Also, effective data augmentation strategies
for training DNNs have not been rigorously investigated in the
past.

Recently, U-Net based architectures [15]–[17] have shown
noteworthy performance in terms of all performance measures
on the task of retinal vessel segmentation. The architecture
of U-Net is well-suited for medical image segmentation,
however, the depth of the architecture and the various stages
of processing makes it parameter heavy. In contrast, we
present an encoder-decoder based architecture inspired by the
network of Badrinarayanan et al. [18]. The proposed network
consists of ∼7 times lesser parameters as compared to the
basic U-Net architecture. Moreover, the proposed network is
independent of pre- and post-processing steps. The proposed
architecture is found to be better in performance in comparison
to the mentioned approaches while having lower memory
requirements.

II. PROPOSED METHOD

We present an encoder-decoder based fully convolutional
architecture for vessel segmentation. The proposed network
is inspired by the fully convolutional encoder-decoder archi-
tecture of [18]. The details of the proposed convolutional
networks are presented in subsequent sections.

A. Vessel Segmentation Using Encoder-Decoder Architecture

The architectural level block diagram of the proposed
encoder-decoder fully convolutional neural network is pre-
sented in Fig. 1. We call the proposed network VessSeg in
this paper. The encoder network consists of 13 convolutional
layers similar to the VGG16 network and a corresponding
decoder network. The output of the final decoder in the
decoder network is fed to a two-class softmax classifier for
pixel-wise classification. The output of the softmax classifier
is pixel probabilities which categorize pixels either belonging
to the vessel or the non-vessel class.

The block-level diagram of one encoder block in the encoder
network is presented in Fig. 2. Each individual encoder
produces a feature set by convolving the input image with
a filter bank. The features are then batch normalized [19]
and subsequently subjected to element-wise rectified linear
nonlinearity (ReLU) max(0;x). These resulting maps are then
subjected to a stride 2, non-overlapping 2×2 max-pooling
windows. While the iterative max-pooling operation allows
for increasingly robust classification, the feature maps undergo
a loss in spatial resolution due to sub-sampling. This is
problematic as boundary details are key to capture blood
vessels. An efficient solution to this problem is storing the
max-pooling indices in each pooling window per feature map.
The output is sub-sampled by a factor of 2, resulting in a larger
per-pixel spatial window to obtain the down-sampled feature
map.

The VessSeg decoder network starts with the down-sampled
feature map produced by the last encoder and successively
up-samples it where needed. The up-sampling is achieved by
using the max-pooling indices archived by their corresponding
encoders. The maps are sparse in nature. The density of the
map is increased via convolution using a trainable filter bank.
Finally, the dense feature maps are batch normalized. The
typical working of a single decoder is summarized in Fig. 3.
Each decoder feeds the next decoder and so on repeating the
same process. The produced feature maps are consistent in
channel size and number to their equivalent encoder inputs.
However, the last decoder corresponding to the first encoder
is an exception. While the input to the first encoder is a 3
channel RGB image, the output produced by the last decoder
is a multi-channel feature map. Each individual pixel of this
high dimensional feature representation is classified as either
“vessel” or “non-vessel”. Each pixel is classified independently
using a trainable soft-max classifier. The output is an image
of probabilities with two channels corresponding to the two
classes. The prediction of the resulting segmentation is based
on the class with the highest probability.

B. Training of Networks

Owing to the limited number of annotations in all datasets
for the segmentation task, we perform task-dependent data
augmentation. As the vessels naturally occur at varying ori-
entations in the vascular structure, we rotate the image at
numerous orientations to enhance the generalization of the
proposed approach. Besides orientation, the contrast and the
illumination variations in fundus images affect the generaliza-
tion of the network. Therefore, we perform contrast and illumi-
nation adjustment to improve the generalization ability of the
proposed network in addition to exposing it to images with
systematically introduced noise. Stochastic gradient descent
with a fixed learning rate of 0.001 was used as the optimizer
for training. A batch size of 5 images was used to train the
VessSeg network.

The objective function used to train the networks was
a cross-entropy loss. The cross-entropy loss defined as
−(ylog(p) + (1 − y)log(1 − p)) is a probability function
for probability p that increases (tends to 1) as the predicted
class diverges from the actual class. The losses are summed
up over all the pixels. Inherently for the problem of vessel
segmentation, the “non-vessel” pixels in every retinal image
massively outweigh the “vessel” pixels. This large variation
in pixel count between classes can be problematic when the
cross-entropy loss is used for training. This problem can be
mitigated using class balancing. In class balancing, weights
are assigned to every class in the loss function, in such a way
that the high-frequency classes have low weights and vice-
versa. There are a number of ways that these weights can be
assigned. For the purpose of training VessSeg architectures,
the weights were derived using median frequency balancing
[20]. The weights for each class were computed by dividing
the median of class frequencies over the entire training set
by the class frequency. As a result of frequency balancing,
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Fig. 1. Block diagram of VessSeg-1.
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the “non-vessel” class achieved a weight of 0.577 while the
“vessel” class 3.72.

C. Hyperparameter Tuning

Table I presents the hyperparameter settings for the VessSeg
network. The weights and biases were initialized using the
VGG16 weights. The mini-batch size and the learning rate
decay λ were determined empirically in terms of minimal
resulting cross-validation loss.

III. EXPERIMENTAL RESULTS

A. Materials

The proposed method was evaluated on standard pub-
licly available retinal vessel segmentation datasets including
CHASE DB1: Individual retinal images of both eyes of 14
pediatric subjects [21], Digital Retinal Images for Vessel
Extraction (DRIVE): Retinal images of diabetic patients over

TABLE I
HYPERPARAMETER SETTINGS FOR VESSSEG-1 AND VESSSEG-2

ARCHITECTURES.

Stage Hyperparameter VessSeg-1 VessSeg-2

Initialization
Bias VGG16 VGG16
Weights VGG16 VGG16

Training
Epochs 60 40
Mini-batch size 5 6
Learning rate decay λ 0.0005 0.0005

a wide age range, collected in the Netherlands [22] and
Structured Analysis of the Retina (STARE): A set of 20 images
from a total of 400 retinal images collected in the USA [23].

In DRIVE, the vessel trees are manually segmented in each
available image. Furthermore, each image is accompanied
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by a binary mask demarcating the field of view (FOV) area.
Unlike DRIVE, binary FOV masks are not available for
STARE and CHASE DB1. Consequently, their respective
masks must be generated using existing techniques [24]. It
is important to note that the sample input patches may be
from any part of the image and not confined within the mask.
However, the network is expected to learn to distinguish
between the edges of the mask and the blood vessels in the
retina.

The DRIVE and CHASE DB1 databases have separate sets
for training and testing. However, this is not the case with
the STARE data set. A selection of random images from the
dataset can be used for training, which is not an unprecedented
approach. This technique has been shown to be viable when
training and testing data are not separately provided. However,
due to data overlap, the results are unrealistically optimistic
[25], [26]. A “leave-one-out” approach has been shown
to deliver relatively reliable outcomes [22], [24]. In this
technique, for a dataset of size ‘n’, the system is trained using
n-1 samples and tested on the one remaining sample, so that
there is no overlap. This process is repeated ‘n’ number of
times, “leaving out” each sample in the dataset at least once.
This study used the “leave-one-out” approach for training the
system using the STARE dataset.

B. Evaluation Criterion

Vessel segmentation algorithms can be considered as binary
classifiers that are designed to distinguish between vessels
and non-vessels. Their performance is evaluated by comparing
their results with the “ground truth”. The ground truth is a set
of images that are annotated manually by human observers.
The following four parameters can be extracted by comparing
the algorithm output with the ground truth:

1) True Positive (TP): when vessels are rightfully predicted
to be vessels

2) False Negative (FN): when vessels are predicted to be
non-vessels

3) True Negative (TN): When non-vessels are correctly
identified as non-vessels &

4) False Positive (FP): When non-vessels are denoted to be
vessels

These parameters can be used to evaluate the quality of
the segmentation algorithm for the pixels inside the FOV as
follows above [28]:

Se = TP
TP+FN ,

Sp = TN
TN+FP ,

Acc = TP+TN
TP+FN+TN+FP ,

Here, Se is the sensitivity, indicating how well the classifier
can identify vessel pixels. Sp is the specificity, which is the
ability of the classifier to identify non-vessel pixels. Acc is
the accuracy of the segmentation algorithm, reflecting the
ratio between the collection of all correctly classified pixels
(vessels or non-vessels) to all the pixels in the field of view

described by the mask.

FPR is the fraction of pixels wrongly classified as vessels
and is equal to 1 − Sp. A receiver operating characteristic
(ROC) curve is plotted with Se versus FPR while changing
the threshold on the probability map due to the quantitative
measure’s reliance on the threshold. The performance of the
methods is also evaluated in the area under the ROC curve
(AUC). In the case of an ideal classifier, the AUC should
always be equal to 1.

C. Comparison with state-of-the-art

A comprehensive comparison of the proposed VessSeg
method is presented with 19 unsupervised and supervised
state-of-the-art methods on the DRIVE database, 8 state-
of-the-art methods on the CHASE DB1 database, and 14
methods on the STARE database. Qualitative and quantitative
comparison results obtained by the benchmark methods in
comparison to the proposed method are shown in Figs. 4, 5,
6 and Tables II, III, IV. The visual results on the DRIVE
database in Fig. 4 show that the proposed method captures
tiny vessels that are missed by the approach of [27]. Also, the
pathological noise and the part of the optic disc erroneously
included by the output of Orlando et al. [27] in test images 8
and 14 are successfully suppressed by the proposed method.
The visual results on the CHASE DB1 dataset in Fig. 5 clearly
demonstrate that the output of the proposed method is in
high agreement with the ground truth, where the approach
of Orlando et al. struggles to suppress pathological noise
and the optic disc boundary. Fig. 6 exhibits zoomed regions
of the images containing pathologies and the corresponding
outputs of the methods. The noise suppression ability and the
sensitivity to tiny vessels of the proposed approach are further
confirmed by the visual outputs in Fig. 6.

The quantitative comparison of the proposed approach in
terms of described performance measures with benchmark
methods is presented in Tables II, III, IV for the selected
datasets. The highest three values for each performance mea-
sure in the tables are color-coded, where red is used to
represent the highest score, green color represents the second-
highest score while the third-highest score is depicted in
blue. As per Table II for the DRIVE dataset, the proposed
method obtained better results as compares to the unsupervised
methods with performance improvements of 2.63% and 0.18%
in terms of Se and Acc in comparison to the best-performing
unsupervised method. The proposed method also exhibits
better performance as compared to methods that employ pre-
processing [12] and the parameter heavy U-Net variants [15],
[16]. The proposed method outperformed all the supervised
methods in terms of Se, Acc, and AUC on the DRIVE
dataset. Performance improvements of 8.7% and 1.8% in terms
of Se and Acc can be observed in comparison to the best
performing unsupervised method on the CHASE DB1 dataset
in Table. III. The proposed VessSeg model obtained better or
at par performance as compared to the supervised methods
on the CHASE images. It is noteworthy that the proposed
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Fig. 4. Analysis of Segmented Output of three sample images (test image 3, 8, 14) of DRIVE dataset. Second column shows the ground truth images. Column
3 and 4 shows the output of [27] UP and [27] FC , respectively. The visual output of the proposed method is shown in the last column.

Fig. 5. Analysis of segmented output of three sample images (image 25, 26, 28) of CHASE DB1 dataset. Second column shows the ground truth images.
Column 3 and 4 shows the output of [27] UP and [27] FC , respectively. Column 5 shows the output of the proposed VessSeg architecture.
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DRIVE

DATASET.

Type Methods Year Se Sp Acc AUC

Unsupervised methods

Zhang [29] 2016 0.7743 0.9725 0.9476
Aguiree [30] 2018 0.7854 0.9662 0.950

Khan [31] 2018 0.730 0.979 0.958
Khawaja (CLAHE) [32] 2019 0.8027 0.9733 0.9561

Khawaja (GLM) [32] 2019 0.7907 0.9790 0.9603
Khawaja [33] 2019 0.8043 0.9730 0.9553

Zhou [34] 2020 0.7262 0.9803 0.9475

Supervised methods

Marin et al. [35] 2011 0.7067 0.9801 0.9452 0.9588
Fraz et al. [36] 2012 0.7406 0.9807 0.9480 0.9747

Cheng et al. [26] 2014 0.7252 0.9798 0.9474 0.9648
Li et al. [12] 2016 0.7569 0.9816 0.9527 0.9738

Orlando et al. [27] FC 2017 0.7893 0.9792 N.A 0.9507
Orlando et al. [27] UP 2017 0.7076 0.9870 N.A 0.9474

Dasgupta and Singh [37] 2017 0.9691 0.9801 0.9533 0.9744
Yan et al. [38] 2018 0.7653 0.9818 0.9542 0.9752

Olaf et al. [15] U-Net 2018 0.7537 0.9820 0.9531 0.9755
Azad et al. [16] BCDU-Net 2019 0.8007 0.9786 0.9560 0.9798

Soomro et al. [39] Strided U-Net 2019 0.8020 0.9740 0.9590 0.9480
Proposed (VessSeg) 2020 0.8255 0.9760 0.9620 0.9730

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CHASE DB1

DATASET

Type Methods Year Se Sp Acc AUC

Unsupervised methods
Roychowdhury et al. [40] 2015 0.7615 0.9575 0.9467 0.9623

Azzopardi et al. [41] 2015 0.7585 0.9587 0.9387 0.9487
Zhang et al. [28] 2016 0.7626 0.9661 0.9452 0.9606

Supervised methods

Fraz et al. [36] 2012 0.7224 0.9711 0.9569 0.9712
Li et al. [12] 2015 0.7507 0.9793 0.9581 0.9716

Orlando et al. [27] FC 2017 0.7277 0.9712 N.A N.A
Yan et al. [38] 2018 0.7633 0.9809 0.9610 0.9781

Olaf et al. [15] U-Net 2018 0.8288 0.9701 0.9578 0.9772
Proposed (VessSeg) 2020 0.8291 0.9730 0.9620 0.9765

method obtained comparable performance as compared with
the U-Net variants despite having an order of magnitude
lesser parameters. Similar results were obtained on the STARE
database as evident from Table IV.

The average time required to segment one image on a PC
(Intel Core i7, 2.21 GHz with 16GB RAM) is approximately
3 seconds for VessSeg. The method is implemented using
MATLAB2017a. For GPU (NVIDIA GTX1070, 8GB), the
VessSeg-1’s average time is 400 millisecond while VessSeg-
2 takes only 300 milliseconds on average to process one
image. The average time required to train the network for
one dataset is approximately 8 hours for VessSeg. In terms

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE STARE

DATASET

Type Methods Year Se Sp Acc AUC

Unsupervised methods

Zhang [29] 2016 0.7791 0.9758 0.9554
Aguiree [30] 2018 0.7116 0.9454 0.9231

Khan [31] 2018 0.790 0.965 0.951
Khawaja (CLAHE) [32] 2019 0.7980 0.9732 0.9561

Khawaja (GLM) [32] 2019 0.7860 0.9725 0.9583
Khawaja [33] 2019 0.8011 0.9694 0.9545

Supervised methods

Marin et al. [35] 2011 0.6944 0.9819 0.9526 0.9769
Fraz et al. [36] 2012 0.7548 0.9763 0.9534 0.9768
Li at al. [12] 2016 0.7726 0.9844 0.9628 0.9879

Orlando et al. [27] FC 2017 0.7680 0.9738 N.A N.A
Orlando et al. [27] UP 2017 0.7692 0.9675 N.A N.A

Yan et al. [38] 2018 0.7581 0.9846 0.9612 0.9801
Olaf et al. [15] U-Net 2018 0.8270 0.9842 0.9690 0.9898

Azad et al. [16] BCDU-Net 2019 0.7699 0.9833 0.9574 0.9787
‘ Soomro et al. [39] Strided U-Net 2019 0.8010 0.9690 0.9610 0.9450

Proposed (VessSeg) 2020 0.8318 0.9758 0.9623 0.9758

TABLE V
AVERAGE TIME FOR PROCESSING ONE IMAGE

Type Methods Year Processing time

Unsupervised methods

Jiang and Mojon [42] 2003 10 s
Mendonca and Campilho [43] 2006 2.5 min
Al-Diri et al. [44] 2009 11 min
Azzopardi et al. [41] 2015 10 s

Supervised methods

Staal et al. [22] 2004 15 min
Soares et al. [24] 2006 3 min
Martin et al. [35] 2011 1.5 min
Fraz et al. [36] 2012 2 min
Li et al. [12] 2015 1.2 min
VessSeg (PC) 2020 3 s
VessSeg (GPU) 2020 400 ms

of processing time ( Table V), the proposed method has a
lower computational complexity in comparison to published
algorithms, owing to its lower memory requirements and a
lesser number of parameters.

IV. CONCLUSIONS

This work introduced a new model for the task of retinal
vessel segmentation. It was established through the analysis of
the activation layers of the proposed network that preserving
low-level edge information from early convolution layers can
aid the networks in robust tiny vessel information detection
and help in an overall boost of the performance. The perfor-
mance of the proposed method on images with pathologies was
observed to be more convincing than the performance of the
state-of-the-art. The performance of the proposed method as
found to be considerably better as compared with the current
state-of-the-art in terms of specificity, accuracy, and especially
the area under the ROC curve. Considering the robustness of
the proposed method to tiny vessel information, pathological
images, and real-time computation overhead motivates their
application in retinal image diagnosis systems.

We believe that further architectural considerations, such
as residual connections between inner convolutional and de-
convolutional layers, can provide further insights and lead
to further performance improvements in the future. With
reference to wide-field imaging, architectural modifications
to handle higher resolution images and more detailed vessel
structures and pathologies are two subjects of our future
research. Deployment of the current method in real-time
screening and diagnosis is also to be achieved in the future.
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