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Abstract—Convolutional Neural Networks(CNNs) have become
the work horse for image classification tasks. This success
has driven the exploration of Spike Time Dependent Plasticity
(STDP) learning rule applied to the convolutional architecture for
complex datasets as opposed to the fully connected architecture.
Inhibitory neurons and adaptive threshold are widely adopted
methods of inducing homeostasis in fully connected spiking
networks to aid the unsupervised learning process. These methods
ensure that all neurons have approximately equal firing activity
across time and that their receptive fields are different, generally
referred to as homeostatic behavior. While the adaptive threshold
is straightforward to implement in spiking CNNs, adding in-
hibitory neurons is not suitable to the convolutional architecture
due to its shared weight nature. In this work, we first show that
adaptive threshold in isolation is weak in obtaining approximate
equal firing activity across activation maps in a spiking CNN.
Next, we develop weight and offset decay mechanisms that enable
the desired behavior to complement the STDP learning rule
and adaptive threshold. We empirically show that these decay
mechanisms improve feature learning as compared to baseline
STDP in terms of accuracy (up to 1.4%) as well as enhanced
homeostatic behavior among activation maps (more than halving
the standard deviation). We discuss the complementary behavior
of the decay mechanisms as compared to the adaptive threshold
in terms of the variance in the activity induced. Finally, we show
that when the convolutional features are trained on a subset of
classes using STDP with decay mechanisms, the features learned
are transferable to the subset of classes that are unseen to
the convolutional layers. Thus, the decay mechanisms not only
encourage the network to learn better features corresponding
to the task being trained for but learn common structure
prevalent among the classes while encouraging contribution from
all activation maps. We perform experiments and present our
findings on the Extended MNIST (EMNIST) dataset.

Index Terms—spiking CNNs, homeostatic behavior, temporal
decay mechanisms

I. INTRODUCTION

OVER the last decade, enormous increase in the availabil-
ity of data and compute power have led to the develop-

ment of powerful algorithms to perform pattern recognition.
The most successful class of algorithms gave rise to the
deep learning revolution that has led to the development of
numerous supervised [1], [2] and reinforcement [3] learning

algorithms . However, two areas that require substantial work
are unsupervised learning from an algorithmic perspective
and power efficiency from a hardware perspective. Spiking
Neural Networks (SNNs), touted as the third generation of
neural networks, show potential to address these issues. In
contrast to deep learning methods, SNNs consist of neuron
models governed by differential equations and learning meth-
ods inspired from spiking activity observed in neuroscience
experiments [4], [5]. SNNs use spikes at different time instants
to transmit information from one neuron to another. In strong
association with the brain, time is an inherent characteristic of
such networks while information transfer in terms of spikes is
widely believed to be the reason for the power efficiency. A
commonly used unsupervised learning rule to train SNNs is
the Spike Time Dependent Plasticity (STDP), which defines
the update of the weight between two neurons, referred to as
the pre and post neurons, to be inversely proportional to the
time that the post neuron takes to fire relative to the time at
which the pre-neuron had last fired.

Akin to multi-layer perceptron inspired architectures in
deep learning, initial models of SNNs trained using STDP
exhibited a fully connected architecture [6]. The success of the
Convolutional Neural Network (CNN) architecture for vision
tasks has pushed for the exploration of STDP to spiking
CNNs. We mention a select subset of the multiple methods
that have emerged to train spiking CNNs using STDP. Layer-
wise spiking representation learning approaches have been
implemented in multiple flavors [7], [8]. An alternate approach
uses a Difference of Gaussians (DoG) filtered input for the
convolutional layers trained using STDP [9]. An extension
introduces inter and intra map inhibitory layers to remove
unfavorable interactions in the Winner Take All (WTA) layer
being trained and subsequently removed after training [10].

In all the above works, we note the presence of inhibitory
neurons and adaptive threshold as mechanisms to induce
homeostasis. Homeostasis encourages a dynamic system to
regulate its activity such that it maintains an approximate
equal activity across its constituents over a time duration.
This is essential in SNNs trained using unsupervised methods
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to ensure that all the constituent elements of the network
play a contributing role. It is relatively easier to define the
homeostatic action in a fully connected architecture, wherein
inhibitory neurons and adaptive threshold enforce different
receptive fields among neurons in a complementary manner.
In the event of a certain excitatory neuron firing, inhibitory
neurons restrict any other excitatory neuron from firing. On
the other hand, adaptive threshold of the neuron that fired is
increased so as to enable other neurons to play a contributing
role in a different time instant. However, in spiking CNNs
trained using unsupervised STDP, incorporating inhibitory
neurons is difficult due to their shared weight nature across
multiple neurons. The shared weight structure (and common
feature learning) is inherent to the success of the CNN archi-
tecture and its generalizing capabilities. In order to circumvent
this issue, previous works specifically state a restriction on
the initialization [9], which maybe necessary in part due to
absence of mechanisms to enable a reasonable degree of
homeostasis. The method of adding inhibition highly specific
to WTA feature representations [10] do not capitalize on the
ability to learn shared feature representations provided by
CNNs. In a different work, the norm of weights is used for
homeostasis, much like regularization used in deep learning,
which does not capture the temporal activity inherent to the
network [11].

On the other hand, recent work has shown that temporal
decay in synapses of fully connected networks aids in learning
better features [12]. Drawing inspiration, our approach to
employing decay mechanisms is motivated from the obser-
vation that the absence of inhibitory neurons leads to a
large difference in the activity of the activation maps. This
is attributed to the difference in the proportion of positive
weights in the weight kernel. As the weight updates according
to the STDP rule are performed in the event of a post spike,
kernels with smaller positive and negative weights are rarely
updated as the frequency of these kernels causing a post spike
is low. In addition, the weight updates are small as the time
difference between the pre and post spike tend to be longer.
Thus, all kernels do not contribute equally in the classification
process and the activity tends to be dictated in part by the
proportion of positive weights during initialization. In this
work, we show that decay mechanisms in spiking CNNs could
bring about the necessary homeostatic behavior encouraging
all activation maps to have approximately equal activity across
time. In addition, we show that decay mechanisms lead to
better feature learning in the convolutional architecture using
accuracy as the metric. The decay mechanisms are temporally
dependent on the kernel weights and the activity produced by
the kernel which is reflected in the threshold of neurons in the
activation maps. To the best of our knowledge, this is the first
work that presents decay mechanisms in spiking CNNs trained
with STDP to enhance the learning process and to enable a
higher degree of homeostasis in a controllable manner.

Overall, the key contributions of our work are:
1. We present methods to formulate decay mechanisms in

synapses and the offset term while training spiking CNNs

using unsupervised STDP. We show that these formulations
lead to a controllable homeostatic behavior in the absence
of inhibitory neurons with each convolutional filter exhibiting
comparable activity in their respective activation maps.

2. The same formulations also lead to better feature learning
and increased test accuracy. In addition, we also show that
modulating the learning rate coupled with decay mechanisms
further improves learning.

3. We show that the convolutional features learned by
unsupervised STDP are not specific to certain classes. The
improved feature learning using the decay mechanisms retains
this characteristic as there is an increase in accuracy for the
classes being trained as well as for the classes that are not
shown during training.

The rest of the paper is organized as follows. In Section
2, we detail the fundamentals of spiking CNNs and the
architecture used in this work. This is followed by identifying
the parameters of interest, formulation of decay mechanisms
and training methodology in Section 3. Section 4 constitutes
results and discussion of experiments performed on the full
dataset and transfer learning before concluding in Section 5.

II. FUNDAMENTALS

A. Spiking Neuron Model

The fundamental unit of an SNN is a spiking neuron. At
any time instant, a spiking neuron exhibits one of two states,
it either emits a spike (denoted as state 1) or not (denoted
as state 0). We use a spiking neuron referred to as a Leaky
Integrate and Fire (LIF) neuron which is parameterized by its
membrane potential Vmem, threshold potential vth and the leak
constant τ . The input Ipost/G to the neuron at a time step is
the activity of the neurons it is connected during the previous
time step weighted by the plasticity of their connection. The
membrane potential of the neuron that receives this input is
increased by the sum of the inputs from all the neurons.
The membrane potential of the LIF neuron is decayed by an
amount dictated by the leak constant τ at every time instant.
The neuron equation is given by

τ
Vmem

dt
= −Vmem + Ipost/G (1)

A spiking neuron in which the membrane potential is not
decayed is referred to as the Integrate and Fire (IF) neuron. A
spiking neuron emits a spike at the time instant its membrane
potential reaches the threshold voltage as shown in Figure 1a.
Once the neuron emits a spike at a time instant, its membrane
potential is reset. Apart from the resetting of the membrane
potential, the threshold of the neuron is increased if an adaptive
threshold is used.

B. Synapse Model and STDP

The synapses in our spiking CNN are updated according to
the unsupervised STDP rule given by Equation 2, wherein the
update is proportional to the difference in the time of spiking
of the pre and post neuron and scaled by a term that is a
function of the present weight [13]. Potentiation (increase) in
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weights happens up to a certain difference in time dictated
by the offset term in Equation 2 exceeding which leads to
depression (reduction) in the weight of the synapse as shown in
Figure 1b. In the absence of a temporal decay in the synapses,
the update is only dictated by Equation 2, where tpre and
tpost are the time instants of spiking activity of pre and post
neurons respectively, η is the learning rate, wmax and wmin

are bounds on the weights with w being the present weight.
In the presence of a weight decay, the weights move towards
zero based on their temporal activity at every time instant.
The presence of temporal decay in the offset term works in a
similar manner.

(a) (b)

Fig. 1: a) LIF Neuron and b) Weight update using STDP

δw = η∗(exp(
tpre − tpost

τ
)−offset)∗(wmax−w)∗(w−wmin)

(2)
Next, we briefly describe the adoption of Equation 2 to the

minibatch scenario in CNNs. At each time step, the minibatch
leads to spiking of post neurons in the Conv1 layer as the
weight kernel is moved over the input. The spiking activity
of each post neuron is normalized across the minibatch.
Following this, we identify the inputs for which each post
neuron had spiked. This leads to a weight update of the
corresponding kernel that is proportional to the time difference
between spiking of this post neuron and the k×k pre-neurons
according to Equation 2. We follow the implementation in
[14] apart from using real valued weights and refer the reader
to the same for further details. The key detail that we are
interested in is the adaptive threshold of an activation map. As
the threshold of the activation map is dictated by its activity,
the threshold value at any time instant is indicative of its past
activity. All neurons in an activation map are governed by the
same adaptive threshold, loosely referred to as the adaptive
threshold of the activation map. The threshold is initialized to
zero before training and the update of the adaptive threshold
is a function of the activity of the map at a time instant is
given by

∆thresh = βthresh ×
output spike count

output map size
(3)

C. Architecture

The architecture of the spiking CNN used in this work
consists a convolutional layer followed by pooling layer which
feeds into a softmax layer of dimension equivalent to the

number of output classes as shown in Figure 2. The convolu-
tional layer consist of LIF neurons while the pooling layer is
composed of Integrate and Fire (IF) neurons. We do not add
any hidden layers that are trained using backpropagation as
we are interested in understanding the effect of decay on the
convolutional feature learning and the softmax directly taps
into the these convolution layers. The input to this network is
encoded as a Poisson spike train which is fed into the spiking
neurons in Conv1 as the convolutional kernels move across the
input each time step. The firing rate of the Poisson spike train
for each pixel is governed by its intensity. The input, which
is either 0 or 1 at a given time instant in multiplied by the
corresponding weights of the kernels. The membrane potential
of the post neuron in the Conv1 layer to which the input is
fed into is increased by this value. The time instant at which
the membrane potential of the neuron reaches its threshold
voltage, it emits a spike or its state at that specific time step
is 1. The output spikes at the convolutional layer Conv1 are
accumulated, pooled in AvgPool1 layer and fed to a softmax
layer which is trained using traditional backpropagation.

In the transfer learning experiments, the convolutional layers
are trained using STDP over a subset of classes, and not all
classes. The STDP training hyperparameters are chosen so as
to maximize the accuracy of the subset of classes it is being
trained over. The learned feature maps are then analyzed for
their performance on unseen classes. With respect to EMNIST,
we define Task 1 on which the convolutional layers are trained
to encompass first 13 alphabets of the English language while
the Task 2 refers to the rest of the alphabets.

III. METHODOLOGY

The weights of the convolutional layer are learned using
unsupervised STDP. All experiments are performed using Py-
Torch [15]. It is worth noting that kernels initialized using the
default PyTorch (Kaiming) initialization perform reasonably
well with CNN architecture. This is due to the inherent local
structure preserving nature of CNNs that is a well matching
inductive bias for vision data. In addition, the initialization
bears interesting properties [16]. Incorporating homeostatic
behavior with the widely adopted initialization provides the
best of both worlds. Thus, we use weights initialized using the
above method as our baseline for STDP learning. The STDP
learning would in turn serve as a baseline for STDP coupled
with weight and offset decay mechanisms.

We perform experiments on the full dataset as well as a
subset of the data in order to show that the features learned
are the common structure possessed among the dataset. In
the complete dataset scenario, both the convolutional layers
and the softmax are trained with all classes of the dataset
albeit different amounts of data. The transfer learning scenario
involves convolutional layers trained on only a subset of
classes using unsupervised STDP which feed into two softmax
layers, each of which are trained on different subsets of the
data. We are keen on understanding the effect of the decay
mechanisms on the generalization of convolutional features
learned using STDP.
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Fig. 2: The architecture of the Spiking CNN. Two softmax layers are used for transfer learning experiments which are replaced
by one softmax for complete dataset experiments
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Fig. 3: Naive exponential decay performance a) test error
rate for the classes (Task 1) which are used to train the
convolutional layers using STDP and b) test error rate for the
classes (Task 2) that are unseen to the convolutional layers

A. Naive weight decay

First, we detail an experiment with a naive exponential
decay in the synapses, that is, a decay in weights proportional
to their present value that occurs every k time steps during the
training, where k ∈ {3, 5, 7}. We show this in the framework
of transfer learning to set a baseline and motivate our further
formulations. We denote this type of decay naive as it does not
account for the temporal activations produced by the weights
in a feature map but depends only on the values of weights
across time. In addition to deciding on the interval, the decay
rate that is a multiplicative factor determines the extent of the
decay when the decay happens once in k time steps. These
values of k and the decay rate were empirically determined
so as to ensure that the decay does not overpower the weight
updates by learning rule but complement it. The results are
shown in Fig. 3. As observable, such a naive decay mechanism
does not lead to improvement in the learning process.

B. Adaptive Threshold

A widely adopted homeostasis enabling method in fully
connected SNNs is adaptive threshold, wherein the neuron’s
threshold is increased based on its activity. This enables other
neurons learn a receptive field that is different. In spiking
CNNs, the adaptive threshold is defined per activation map,
with all neurons in an activation map bearing the same
threshold [14]. As the threshold of the activation map is
dictated by its activity, the threshold value at any time instant
is indicative of its past activity. We perform an experiment
to show that adaptive threshold in spiking CNNs applied in
isolation does not lead to the desired homeostatic behavior.

Figure 4 shows Gaussian curves fitted to the distribution of
thresholds of the activation maps after the completion of
training as βthresh in Equation 3 is varied. The increase in the
mean of the distributions is a direct consequence but we are
interested in the variance of the distribution which is observed
to increase as well. Thus, adaptive threshold in isolation is
likely not sufficient to encourage approximate equal activity
of the activation maps over time.

Fig. 4: Gaussian distribution fitted to the distribution of
thresholds across activation maps on completion of training
while varying βthresh. Increase in βthresh leads to an increase
in both the mean and variance.

C. Identification of temporal parameters of interest

Motivated by the need to incorporate additional temporal
parameters that dictate the decay mechanisms, we shed light
on the temporal information captured by different parameters
present in the network. First, we note that in fully connected
spiking networks [12], weight decay was implemented such
that it depends on the present activity of post trace and the
cumulative past activity represented by the threshold of the
neuron. Drawing inspiration, the threshold of the activation
maps in spiking CNNs, which is indicative of the average
post neuronal activity, was chosen to be the temporal metric for
weight decay. In addition, it is important to note that in spiking
CNNs, we are interested in the relative activity between the
maps and not the absolute value of the threshold as the relative
activity of the maps is representative of homeostasis. Thus, we
use a metric henceforth referred to as normalized threshold
vnormalized
th , wherein the normalization is done across the

maps so as to capture the relative activity across maps.
Although a decay mechanism based on the vnormalized

th

may seem to be a reasonable metric that could provide
homeostasis across activation maps, we observe empirically
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that the vnormalized
th varies marginally over time. This is due

to the fact that the activity of the maps is reflective of the
distribution of weights in the kernels to a good extent. This
implies that a map that has a corresponding kernel with
higher proportion of positive weights is likely to have a high
threshold and dominate the normalized threshold. Any decay
mechanism based on only the vnormalized

th would only decay
the weights of this dominant kernel with relatively no effect
on the other maps. Also note that the dominant kernels cause
a higher proportion of post neurons to spike, leading to higher
frequency of weight updates. As the rate of decay is much
smaller than the order of the initialized weights and the weight
updates, there is effectively no regulation. This leads to the
inference that vnormalized

th does not provide the necessary
temporal information of the post neuronal activity but only
captures the information on the proportion of positive weights
in the corresponding kernel.
vdeltath is a measure of the activity of the activation map

at the present time instant while vnormalized
th is a measure of

the proportion of the positive weights in the kernel over time.
At any time instant, the product of vdeltath and vnormalized

th

provides a metric that captures the temporal information of
the post neuronal activity.

Bearing the above discussion in mind, we recall the STDP
learning rule in Equation 2 in order to elaborate on the
formulation of the decay mechanisms. We observe that if
the exponent of the difference between tpre and tpost is
greater than the offset, the weight update would be in the
positive direction. The latter weight dependent terms further
modulate the weight update [13]. It is also important to note
that the weight updates happen only when the post neuron
fires. Cumulatively, we describe the scenarios under which we
propose to decay offset and weights in Table I. Interpreting
Equation 2 for a shared weight scenario, high vnormalized

th

and high vdeltath in a map implies that the weights in the
corresponding kernel are predominantly highly positive. This
corresponds to the top left of the table wherein the weights
are decayed. On the other hand, if their product is low, this
would imply that the weights are highly negative, thus the
offset is decayed to enable learning to take place. Additionally,
if the vdeltath is high but the vnormalized

th is low, the learning
rate is increased so as to enable the larger weight updates
for less frequent weight updates. We use the expectation of
prod, E[prod], as the metric to evaluate high and low as we
are interested in the relative activity. Building on the above
insight on when the offset and weights have to be decayed,
we now formulate the weight decay and offset decay.

4 cases of prod vnormalized
th : High vnormalized

th : Low
vdeltath : High Decay weights Increase learning rate
vdeltath : Low Unlikely Decay offset

TABLE I: Proposed decay mechanisms

We define prod = vnormalized
th × vdeltath .

At each time instant, prod is evaluated for every map. Next,
we identify the category under which each of the maps fall.

All maps having the product higher than E[prod] fall in the
upper left category in the table and undergo weight decay in
their kernels while all maps lower than E[prod] fall in the
lower right category of the table and undergo offset decay.
We also define diffmap = prodmap − E[prod]. Next, we
use these temporal metrics to design weight and offset decay
mechanisms.

A representative of the effect of the decay function is shown
in Fig. 5, where the mean is set to 1. The blue and orange
lines to depict the activity of maps at various time instants. For
the given mean, both these maps are on the same side of the
mean. From the formulation of the decay function, it is easy
to observe that higher the activity is from the mean, higher the
decay as seen in the Fig. 5. The blue map is initially higher in
activity, analogous to the initialization of some weight kernels
with higher proportion of positive weights. The decay of the
blue map is much higher initially while at ≈ 100th time
step, the orange map’s activity and decay is higher before
they eventually reach similar activity which is representative
of homeostasis.

Fig. 5: A graphical representative of the effect of decay
mechanisms on the activity of the maps

D. Relative Temporal Activation Driven Decay (R-Decay)

We model the weight and offset decay using the same type
of function. We design the function to capture the essence
of homeostasis such that higher the difference in activity on
either side of the average of prod, higher is decay in weights
or offset. Thus, a square term is used for the difference so as
to capture either sides of the mean. The value of α, the decay
constant, is decided empirically to complement the STDP
weight updates and not overpower it. Thus, we have

δw = αweights ∗ (exp(diff2map − 1) ∗ w
δoffset = αoffset ∗ (exp(diff2map − 1)) ∗ offset

E. Range Adaptive Relative Temporal Activation Driven De-
cay (RAR-Decay)

On further observation from experiments, we notice that the
range of prod dynamically varies as the training progresses.
The range of prod for the dataset under consideration is
significantly larger in its first few mini batches than its range
later. In contrast, the decay does not modulate itself since the
decay constant is fixed. Thus, the decay equation is modified
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to adapt with the range of prod. The constant α in the equation
is replaced by

αweights− > βweights[diffmax − diffmin]
−1

αoffset− > βoffset[diffmax − diffmin]
−1

where

diffmax = max
maps

diffmap and diffmin = min
maps

diffmap

F. Relative Temporal Activation Driven Learning Rate (R-LR)

In addition to the above decay mechanisms, we propose a
method to account for the case of low vnormalized

th and high
vdeltath in the upper right scenario in Table I, which occurs
when a kernel with a small proportion of weights is activated
for a certain input. As this scenario implies that the frequency
of weight updates to these kernels is low, we suggest an
increase in learning rate. This is also motivated by the fact that
although the offset decay helps learn better, it is important to
note that learning happens only when the post neuron spikes.
During initialization, if there are a large proportion of negative
weights, the post neurons in corresponding maps spike less,
due which there is a low frequency of updates to these negative
weights. We propose to make the learning rate dependent on
the inverse of the vnormalized

th . The STDP learning rate is
changed to a variant of sigmoid function defined beta and
gamma are determined to place the decay to modulate the
learning rate in favorable regions. Thus, the learning rate
adopted for each map ηmap, with γ1 and γ2 being constants,
is given by

ηmap = γ1 ∗ (1 + γ2 ∗ exp( −1
vnormalized
th map

))−1

We finally depict our methodology in the form of a pseudo
algorithm given by Algorithm 1.

IV. RESULTS

We perform experiments on the Extended MNIST dataset.
The Extended MNIST dataset consists of 145,600 images
from 26 balanced classes that represent the alphabets of the
English language, consisting of both lower and upper case
together within the same class. The dimension of the input
space is 784 as a 2D square image. All images are used
to train the softmax layer, in order to avoid overfitting, but
a subset of the images are used to train the convolutional
layers using STDP. This is due to a common observation that
STDP learns its features from reasonably few examples and
then saturates in its capacity, observed in both fully connected
and convolutional architectures. The neuron time constant is
set to τ = 0.9 and the STDP learning rate used is 0.001.
We perform the STDP training using minibatches of sizes of
200 and use 40 minibatches, constituting 8000 images, with
the number of time steps being 25 and Poisson frequency of
200 Hz. The number of convolutional maps used are 8 unless
mentioned otherwise. We make this choice due to the fact that
an increase in number of maps also leads to an increase in the
number of parameters mapping to the softmax layer trained
using backpropagation. It is important to note that higher the

Data: training and test examples
Result: Weights, Mean and std dev
wd ← [-1,1] according to Kaiming’s initialization;
for x in STDP training set do

for t in time steps do
calculate the vnormalized

th and vdeltath for each
map;

STDP weight update with learning rate
proportional to (vnormalized

th )
−1;

evaluate the prodmap, diffmap for each map;
for map in maps do

if diffmap > 0 then
w− =
βweights[diffmax − diffmin]

−1 ∗
(exp(diff2map − 1) ∗ w

end
else

offset− =
βoffset[diffmax − diffmin]

−1 ∗
(exp(diff2map − 1)) ∗ offset

end
end

end
end
return w0, ...., wD+1

Algorithm 1: STDP coupled with decay mechanisms

number of parameters trained using backpropagation, more
difficult it is to analyze the effect of variations in the training
of convolutional layers using STDP and the decay mechanisms
as the latter is overshadowed by the former. As we are keen on
understanding the effect of decay mechanisms on the STDP
training of the convolutional layers, we restrict the number of
parameters trained using backpropagation to a minimum. This
is also the reason for not adding any hidden layers trained
using backpropagation. It is without doubt that the accuracy
can be improved by adding a hidden layer or by increasing
the number of maps, which we detail later. The softmax layer
is trained with all the training examples using a batch size
of 256 with Adam optimizer and cross entropy loss. For a
given number of maps, the softmax training is done for a fixed
number of epochs across the STDP variants used to maintain
consistency in the contribution of backpropagation.

We use the standard method of initialization used for
convolutional weight kernels in PyTorch, the Kaiming’s initial-
ization. These properties of random initialization tend to im-
prove the baselines substantially for architectures such as the
CNNs that perform localized projections [16]. We incorporate
the above insight in this work, with Kaiming’s initialization
serving as the baseline for STDP while we show improvement
with decay mechanisms over the baseline STDP.

First, we quantitatively show that the offset and weight
decay mechanisms, coupled with adaptive threshold, lead to
homeostatic behavior. In order to do so, we fit a Gaussian dis-
tribution to the thresholds across the maps. We observe that by
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modulating the weights and offset decay constants, we are able
to obtain a desired amount of homeostasis. Figure 6a shows
the homeostatic behavior for a sweep across offset decay
constant at a fixed weight decay constant (βweights = 4) while
Figure 6b shows the same across a sweep on the weight decay
parameter with fixed offset decay constant (βoffset = 16). The
steeper the distribution, the higher is the homeostatic behavior
of the temporal activations. We observe that higher decay
constants lead to higher homeostatic behavior and is highly
controllable. However, akin to any regularization technique,
there exists an optimal amount of regularization that leads to
good generalization, which we measure using accuracy as a
metric in the following experiments.

(a) (b)

Fig. 6: The distribution of thresholds across maps after STDP
training modulated by a) offset and b) weights weights decay
constant while the other is kept constant [(a) βweights = 4 and
b) βoffset = 16]. Increase in the decay constants change the
variance substantially while marginally changing the mean
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Fig. 7: Performance of RAR-Decay with R-LR as compared
to STDP and random baselines over the complete dataset

For accuracy metrics, we first discuss our results on the full
dataset across 26 classes. We consider a single softmax in this
scenario with 26 output neurons. For the random baseline, we
do not train the convolutional layer but only train the softmax
using backpropagation. The results obtained with RAR-Decay
with hyperparameters βweights = 4, βoffset = 16, γ1 = 0.003
and γ2 = 5 are compared with baseline STDP and Random
kernels in Fig. 7. We observe a that our decay mechanisms
leads to improved learning with reduction in error rate up to
1.4% over the baseline STDP.

We show enhanced homeostatic behavior, obtained in addi-
tion to the improved accuracy, by plotting the weight kernels.

(a)

(b)

Fig. 8: Weight kernels when trained with a) baseline STDP;
corresponding activation maps report Mean: 0.59, Std. Dev:
0.32 b) RAR-Decay + R-LR; corresponding activation maps
report Mean: 0.62, Std. Dev: 0.15
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Fig. 9: Performance of our decay mechanisms a) test error rate
for the classes (Task 1) which a used to train the convolutional
layers using STDP and b) test error rate for the classes (Task
2) that are unseen to the convolutional layers

To quantify the same, we provide the mean and standard
deviation of a Gaussian fitted to the thresholds of the maps.
It is visibly noticeable in Fig. 8 that certain weight kernels
have an improved contribution to the classification process.
This is also corroborated by the reduced variance of the
fitted Gaussian. This shows that the weight kernels produce
activity that is relatively much closer to the mean among the
maps, thus attaining the desired homeostatic behavior. This is
complementary to the behavior observed on increasing βthresh
in isolation, where the variance increases.

Next, we conduct experiments to show that the decay mech-
anisms not only help learn the features for classes being trained
better, these features are in fact transferable to classes that are
not shown. We train the convolutional layers using STDP on
only a subset of classes to demonstrate that the features learned
are are useful for the data distribution in general. Thus, we
keep a subset of data on which the convolutional layers are
never trained on (referred to as Task 2) while they are trained
on a different subset (referred to as Task 1). Fig. 9a) shows
the performance on the subset that the convolutional layers are
shown and for which the hyperparameters are adjusted while
Fig. 9b) shows that the learned features serve the classes that
are unseen as well. The hyperparameters used for R-Decay are
αweights = 750 and αweights = 1500 while good performance
in the RAR-Decay experiments are obtained with the same
parameters used in the case of the full dataset. We note that the
accuracy range difference between the two tasks is an artifact
of the dataset.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Maps Random Baseline STDP RAR-Decay + R-LR
Error Rate (%) T1 test T2 Test T1 Test T2 Test T1 Test T2 Test

8 14.58 9.29 13.83 8.66 12.82 7.48
16 12.35 7.35 12.00 6.85 11.38 5.98
24 11.79 6.75 11.17 6.18 10.71 5.77

TABLE II: Error rate across sweep of number of maps

From Fig. 7 and Fig. 9, we observe the effect of the
decay mechanisms on error rate. The temporal activation
driven decays perform significantly better in comparison with
baselines obtained with the naive weight decay in Fig. 3 as
well as baseline STDP. As observed, the adaptation of the
relative decay among maps to be in a certain range independent
of the absolute value of the prod, as in the case of RAR-Decay
as opposed to R-Decay, enables better feature learning. We
observe that such a temporal decay mechanisms work better
for both transfer learning and learning the task at hand.
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Fig. 10: Performance on the unseen classes (Task 2) with
convolutional layer trained using STDP variants on a subset
of classes (Task 1)

We also perform a sweep across the number of convolu-
tional maps for completeness, keeping all other parameters
as mentioned above and report our finding in Table II. As
elucidated earlier, increasing maps leads to an increase in
the number of parameters trained using backpropagation. In
order to account for the same, and perform an iso-comparison
across the effect of these backpropagation trained parameters,
we compare across the number of epochs that achieve 90%
of the saturation value. Finally, in order to quantitatively
address the role of each variant of the decay mechanisms, we
plot Task 2 performance when the convolutional features are
trained on Task 1. We observe from Fig 10 that the learning
rate being inversely proportional to vnormalized

th together with
RAR-Decay perform better together as compared to each
individually.

V. CONCLUSION AND FUTURE WORK

We show that spiking CNNs necessitate supporting mecha-
nisms to adaptive threshold to ensure that all activation maps
play a contributing role in the classification process. The decay
mechanisms formulated in this work complement adaptive
threshold, together achieving enhanced homeostatic behavior
during training with unsupervised STDP. We show that the
enhanced training translates to features that are transferable

to the classes of the dataset that were not used to train
the features. In order to scale to more complex datasets
and deeper architectures, our future work entails the use of
metrics such as Canonical Correlation Analysis (CCA) to
better understand the effect of homeostasis on the feature
representations [17]. Large number of parameters in the final
layer trained using backpropagation obfuscate insights on the
changes in the feature representation. CCA acts directly on the
feature representations and proves useful in the above scenario.
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