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Abstract—In this paper, a multi-layer neural network (MNN)
based online optimal adaptive regulation of a class of nonlinear
discrete-time systems in affine form with uncertain internal
dynamics is introduced. The multi-layer neural networks (MNN)-
based actor-critic framework is utilized to estimate the optimal
control input and cost function. The temporal difference (TD)
error is derived from the difference between actual and estimated
cost function. The MNN weights of both critic and actor are tuned
at every sampling instant as a function of the instantaneous
temporal difference and control policy errors. The proposed
approach does not require the selection of any basis function
and its derivatives. The boundedness of the system state vector
and actor and critic NN weights are shown through Lyapunov
theory. Extension of the proposed approach to MNNs with more
hidden layers is discussed. Simulation results are provided to
illustrate the effectiveness of the proposed approach.

Index Terms—Optimal adaptive control, Multi-layer neural
network, Discrete-time systems.

I. INTRODUCTION

Optimal control of linear and nonlinear discrete-time sys-
tems using neural networks has been a most sought out area in
control for the past several decades [1], [2] given the system
dynamics. However, in many practical applications, the system
dynamics are normally uncertain and it is difficult to obtain
accurate knowledge of the dynamics.

To overcome the need for system dynamics, value and or
policy iteration and optimal adaptive-based approaches using
neural networks (NNs) are introduced in the literature [3]—
[10]. The value-iteration technique using adaptive dynamic
programming (ADP) has been proven successful in the case
of general nonlinear systems [3], [4]. Optimal adaptive control
using ADP has been extensively studied for both discrete and
continuous-time systems [5], [6], [7], [8] using actor-critic
networks. The actor-critic framework uses two NNs, one for
approximating the value function and the other for the control
action. The value and action NN in the actor-critic framework
are tuned in an iterative manner. For convergence, a large
number of iterations within a sampling interval is needed
which is a bottleneck for real-time control.

The author would like to thank Fulbright Association for the Fellowship
and Anna University for the support.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

In contrast, the authors in [9] introduced an optimal adaptive
approach in finding the optimal regulator for a class of
nonlinear discrete-time systems in affine form with unknown
internal dynamics. The state vector and its history is used
to derive the NN weight update laws for the critic network
and the weights are tuned at the sampling interval without
any iterations. The proposed approach employed a single-layer
actor-critic NN with proper selection of basis function. As an
extension to [9], the authors in [4] employed an additional
NN identifier to learn the unknown dynamics of the nonlinear
system by using a time-based ADP method using temporal
difference (TD) error on an actor—critic structure with two
single layer NNs. To overcome the challenges associated with
selection of proper basis function for single layer NNs [4],
[9] and to relax the need for computing their derivatives, two-
layer NNs using backpropagation weight tuning are utilized
in [10]. However, convergence and stability analysis are not
reported.

The gradient descent-based weight tuning schemes are also
reported in [11] for deep NNs, but suffers from the vanishing
gradient problem [12] due to chain rule. Though this issue
is typically overcome using rectified linear units (RELU)
activation functions, it has been shown in [13] that vanishing
gradients can still occur. The deep NN has been widely used in
the applications of data clustering [14] and image processing
[15]. Most of the reported works [4], [9], [16] have employed
a single-layer critic and actor NNs, and multi-layer NN based
optimal adaptive control technique using instantaneous TD
error and control policy error has not been investigated yet.
In addition, the stability analysis and the effect of additional
hidden layers for control applications is not studied.

Therefore, this paper aims at the MNN online adaptive
optimal regulation of a class of uncertain nonlinear discrete-
time systems in affine form. The proposed scheme uses the
state vector to obtain optimal control without the knowledge
of the internal dynamics. One MNN is used to approximate the
cost function and another for approximating the control policy.
The weight update laws for hidden and output layers in the
critic and actor NN are proposed as a function of TD error
instead of considering the time history of system state vector.



Since the hidden layer weight tuning utilizes the TD error
directly, the proposed learning scheme appears to mitigate the
vanishing gradient problem that is commonly found in the
literature with gradient-based weight tuning.

The major contributions of the paper include the: 1) deriva-
tion of novel weight update laws for critic and actor NNs using
TD and control input errors, 2) development of an optimal
adaptive regulator using multilayer NNs, and 3) simulation
results to confirm the effectiveness of the proposed approach.
The major benefit observed due to this effort is the extension
of deep NNs for control applications by relaxing the need for
the selection of basis functions, and overcoming the vanishing
gradient problem that is commonly observed with deep NNs.

II. BACKGROUND

In this section, the optimal control of a nonlinear discrete-
time system is formulated. Consider the nonlinear discrete-
time system in affine form described by

w(k+1) = f(z(k) + g(z(k))u(z(k)) , (D

where z(k) € R", f(x(k)) € R" and the nonlinear input
function g(z(k)) € R™*™ satisfies ||g(z(k))||p < g with
u(z(k)) € R™ being the control input. The internal dynamics
of the system f(z(k) is assumed to be unknown and the
nonlinear control coefficient matrix g(x(k)) is considered
known. The objective is to generate the control policy in order

to minimize the infinite horizon cost function defined as [1]
J@k) =S r((k+ i ulwk+9), @

i=0
where 7(z(k), u(z(k))) = 2(k)TQz(k) + u(z(k))T Ru(x(k))
with Q € R™*™ denotes a positive semi-definite matrix and
R € R™*™ is a positive definite matrix. The cost function (2)
can be written as J(z(k)) = r(x(k), u(z(k)))+J(x(k+1)) =
r(z(k), uw(z(k))) + J(f(x(k)) + g(x(k))u(z(k))). The initial
control policy is required to be admissible in order to guarantee
that the cost function (2) is finite while it stabilizes the system.
Using the Bellman’s principle of optimality, it can be shown
that the infinite horizon optimal cost function, J*(x(k)) is
time invariant and satisfies the discrete-time Hamiltonian-
Jacobi-Bellman (HJB) equation. Then, for the optimal cost
function one has J*(z(k)) = 1(m(1£ (r(z(k), u(z(k)))) +
xT

J*(f(x(k))+g(x(k))u(z(k))). Tﬁé optimal control u*(x(k))
that minimizes J*(x(k)) is found by applying the sta-
tionarity condition 9J*(z(k))/0u(xz(k)) = 2Ru(z(k)) +
g(x(k)ToJ*(z(k +1))/0(x(k + 1)) = 0, which yields [9]

70T (z(k + 1))
a(x(k + 1))

The future state vector x(k + 1) is required to compute
the optimal control (3), which is generally not available. To
overcome this problem, online single layer NN-based optimal
control is proposed in [9]. In contrast, a multi-layer NN-based
optimal control is introduced in this paper. To proceed, the
following fact is needed.

w*(a(k) = 5 R g (k) ®
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Fact. The closed-loop system is bounded above when
the optimal control is asserted [9] such that, i.e.,
Il f(x(k)) + g(z(k))u*(z(k))|| < k for a known constant k.
An upper bound for the optimal closed-loop system can be
established using the Lyapunov theory.

Next, the optimal regulation control of nonlinear discrete-
time systems using a MNN is presented.

III. OPTIMAL REGULATION OF NONLINEAR
DISCRETE-TIME SYSTEMS

In this section, the optimal control for nonlinear discrete-
time systems is solved using a MNN. To this end, MNN-
based actor and critic networks are used for approximating the
cost function and optimal control policy. Due to the additional
layer, estimation errors for generating the optimal control pol-
icy at every sampling instant is encountered, which needs to be
considered in the design and analysis. The boundedness of the
cost function and the closed-loop stability with optimal control
is ensured by Lyapunov methods with proof of convergence.

The cost function as stated by (2) is approximated using a
two layer NN called critic and represented as

J(@(k)) = wi oc(vg z(k)) + ejn S

where v., w. are the first and second layer weights of the
critic NN, €, is the bounded approximation error, and o is
the nonlinear activation function of the critic NN.

The optimal policy (3) is approximated using a two layer
NN, called the actor, as

u(z(k)) = wlog(vlz(k)) + cur (5)

where vy, w, are the first and second layer weights of the
actor NN, ¢, is the bounded approximation error, and o, is
the nonlinear activation function of the actor NN. Next, the
following assumption is stated.

Assumption 1. The NN weights and approximation errors are
assumed to be bounded [2] such that ||w.| < wenr, ||ve] <
Vs ||Wall € Wants ||[Vall < vanr, |€ji| < €5, |eur] < Eumr
where Wenr, Verr, Wadr> VaMs €50 > Eul Are positive constants.
In addition, the gradient of the approximation error is assumed
to be b/ounded from above as [Oe;r/O0x(k+1)|lp <ejpy,
where €, is also a positive constant [9].

A. Cost Function Approximation

In this subsection, the cost function is approximated by a
two layer NN. The weights update laws are derived using
TD error and, finally, the boundedness of the cost function
is proven.

To proceed, let the cost function be estimated using a two
layer critic NN as

Te(@(k)) = &f oe(07 (k)z(k)) (6)

where w1 and 0] are the estimated NN target weights. Using
the delayed values of system state vector and current values of
the weights, the cost function (2) can be written as jk(x(k; —
1)) = r(z(k — 1),u(z(k — 1))) + Jp(x(k)). Further using



(6), one has Jk T

(k) = Ju(z(k = 1)) + r(z(k — 1), u(z(k —
1)) = . Uc(@T(k)

(k) =l oe(0f (k)a(k — 1)) +r(z(k -

1), u(z(k — 1)) = ejx which leads to
ejr = r(z(k — 1), u(z(k — 1)) + 0L (k)Ao.(z(k — 1)) (7)
with Ao.(xz(k—1)) = UC(vT(k)x(k)) - ac(f)CT(k:) (k—1)).
Adding and  subtracting  wXo.(0F(k)(z(k)) and

wlo (T (k)(z(k — 1)) and,
(7) becomes

eak = —w; (k)oe(o] (k)a(k))

after some simplification,

. ®)

we [Ge(k) + Ge(k —1)] = Acji
where 5.(k) = o.(0T (k)(z(k)) — oc(v] (x(k)). Substituting
Ac.(x(k—1)), and II(k) = 6.(k) + 6.(k — 1), equation (8)

reduces to

ejr = —0. (k)AG.(k —1) +wl (k) — Aejr,  (9)
Remark 1. The temporal difference (TD) error e;; in (9)
depends on NN weight estimation errors, the activation func-
tion outputs from past sampling instants and their accumulated
values. It does not depend on the future state of the system,
ie., z(k+1).

In the following theorem, the boundedness of the approxi-
mated cost function is demonstrated.

Theorem 1: (Boundedness of the cost function) Let ug(xy)
be the admissible control policy for the controllable system
(1) with the cost function (2). Let the critic NN second layer
weight update law be given by

ayjAo (0T (k)x(k))ex

@elk 1) = 0elk) = KT (k) A (6T (W2 (k) + 1
(10)

with the first layer weights tuned by
V(b + 1) = 0o(k) + (k) (07 (k)x(k) + Bikpejr)”  (11)

with B; being a known design matrix of appropriate di-
mension. There exists a positive constant «; such that the
critic NN weights estimation error is uniformly ultimately
bounded (UUB), with ultimate bound given by |[|w.|| < b,
and ||o.| < b, for a small positive constant b}, and b, ,
respectively. 4 ‘
Proof: Consider the Lyapunov candidate function as

Vi (e, Uc) = tr{w} (k)we(k)} + tr{0} (k)o.(k)}

The proof of boundedness can be done by taking the
first difference of (12) and showing that under some bound
conditions AV < 0. The detailed proof is omitted due to the
space limitation. [

12)

B. Estimated Optimal Control Policy

In this subsection, a NN-based adaptive optimal control is
presented using the temporal difference error e;; and control
input error. The optimal control input is generated by an actor
NN that minimizes the cost function. A Two layer NN is
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considered for the actor to generate optimal control based on
the cost function approximated by the critic NN.

To this end, let the optimal control input be approximated
by a two layer NN as

a(z(k)) = wg 0a(0g (k)a(k)) (13)

where ¥, and w, are the estimated values of actor NN
weights of the first and second layer, respectively, and o, is
the nonlinear activation function chosen for the hidden layer
neurons. Using the optimal control policy (3) the control input
error is defined as

a(k) = wl (k)o, (f;T(k)z(k))

do(0F (14)
(’“)x(k: 1)

We

,Rfl
+2

Adding and subtracting w” 0, (67 (k)z(k)) and, after
some simplifications (14), one has

(k) = —w} (k)oa(k) — wy (k)& (k)
Uy p o B0 (8T (R)a (k)
5879 (2(k) 9xlk 1 1) we(k)  (15)
- % “g" (an) %(;C((:_:_ll)) c(k) — Euk
where  0,(k) = oo (0L (k) (k)),  Ga(k) =

oo (vVE(k)z(k)) — o4 (0L (k)x(k)) and
eur + 2RgT (2(k)) (Oejii1/Ox(k +1)).
The NN weight update law for the action network by

employing the control input error (15) is defined as

Oy Oq ( Vg (k z(k )) ﬁ(k)T
(00T (07 (k)z(k)) o0 (87

Wa(k+1) = g (k) — .
)+ 8)

where 0 < o, < 1 is a positive design parameter. The welght
update law for the first layer of control policy is given by

Oa(k+1) = 94(k) + (k) (67 (k)x (k) + Bokyu(k)T , (17)

where Bs is a design matrix of appropriate dimension and £,
is a scaling factor.
The weight estimation error dynamics is given by

o, (07 (k)a(k)) a(k)”
og (05 (F)z(k)) oa (87 (K)z(k)) + 1
(18)
The closed-loop nonlinear system dynamics can be written in
terms of u*(k) and the w, and 0, as

Wa(k + 1) = e (k) +

w(k+1) = f(z(k)) + g(z(k))a(z(k))

= f(a(k) + g(x(k))ivg (k)oq (0 (k)z(k))
= f(@(k) + g(x(k))ivg (k)oa (04 (k)z(k))
—g(@(k)wg (k)oa (vg (k)a(k)) + cur]

+g(2 (k) [wg (k)oa (va (k)z (k) + eu]

= f(a(k) + g(z(k))u * (x(k))

—g(x (k)i (K)o (g (k)x(k)) — g(x(k))eur



In the following theorem, the boundedness of the overall
closed-loop system states and parameters are provided.

Theorem 2: (Boundedness of the the optimal control) Let
uo(zx) be the initial admissible control policy for the control-
lable system (1) with cost function (2). The cost and control
NN weights update laws for the two layers are given by (10),
(11), (16) and (17).There exist a positive constant oy, ay
and positive constants such that the system states x(k), cost
and action network NN weight estimation errors we,0.,Wq,
and v, are all UUB for all k with ultimate bounds given by
el < Yy Jcll < B [[all < b, |l5all < b, for small
positive constants b/, , b, , b, and b;, .

Proof: Consider the Lyapunov candidate function as

V = Vp(x(k)) + Vu (wa(k)) + Vi (0a(k))
+Vi(e(k)) + Vi (0e(k))

where Vp(2) = 2(k)T (k). Vo (da(k)) = tr (&7 (k)ia (k).
Vi (3a(k)) = tr{vg (k)0a(k)}V(we(k)) = triwg (k)we(k)}
and V;(9.(k)) = tr{oT (k)v.(k)}. Taking the first derivative
of (19), one can show that under certain conditions AV <
0 which shows the boundedness of the overall closed-loop
system states and parameters. The rest of the proof is omitted.

|

19)

After demonstrating that the closed-loop system will be
bounded in the presence of proposed optimal control policy
using a MNN, next we show that the proposed learning
approach, if extended to more number of hidden layers, does
not result in the vanishing gradient problem [17] that is
found with standard backpropagation-based gradient learning
scheme.

Theorem 3: Consider the nonlinear discrete-time system (1)
along with the infinite horizon cost function (2). Let the control
policy (13) be utilized with the weight update law (10), (11),
(16) and (17). Then, as the number of layers increases, the
vanishing gradient does not happen.

Proof: In the proposed scheme, the TD error for critic
network and control input error for actor network are employed
directly at each layer in the the weight update law, instead
of propagating the errors through the hidden layers in the
case of Backpropagation. Consequently, the vanishing gradient
problem does not occur in the proposed approach. ]

In the next section, simulation results of the proposed
approach are presented.

IV. SIMULATION RESULTS

In this section, two examples are provided for both linear
and nonlinear discrete-time systems to show the effectiveness
of the proposed optimal control approach.

A. Linear system
Consider the linear system stated in [9] whose dynamics are

given by

T1k+1 o 0 —0.8 0
Tok41 ] a { 0.8 1.8 }mk—’_ { —1 u(@r)

Tp+1 = [
(20)
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(b) State Trajectory (z1 vs x2) and cost function J

Fig. 1: Performance of the proposed MNN based optimal
control for the linear discrete-time system given by (20) from

[9].

The initial stabilizing policy was selected as u(zg) =
[ 0.5 1.4 ]z and the initial values of states are considered

asxo=105 05]"

The architecture of the critic MNN chosen in this work for
the linear system has 2 neurons in the input layer, 5 neurons
in the hidden layer and 1 neuron in the output layer. The actor
MNN has 2 neurons in the input layer, 9 neurons in the hidden
layer and 1 neuron in the output layer with a; = 1075 and
a,, = 0.1. The nonlinear hyperbolic tangent activation function
is used for the hidden layer neurons, and linear activation
function is used for the output layer. The initial weights of
the two layer critic NN are set to zero and the initial weights
of first layer of actor NN are set at random in the range of
[—1,1]. The initial weights of second layer of the actor NN
are set to [—0.1, 0.1]. The design matrices () and R of the cost
function are chosen as identity matrix and 1, respectively.

Fig. 1 shows that the control input generated by the pro-
posed MNN converges within a couple of iterations from
different initial conditions on the state vector, further demon-
strating the effectiveness of the new MNN weight update
laws. To illustrate the improved performance of the pro-
posed MNN based optimal regulator, the single layer NN
based optimal regulator reported in [9] is simulated. The
basis functions for the single layer NN based critic net-
work are constructed using the fourth-order polynomial given
by [a:l, T1To, T3, TF, xiTe, TiX1, 202, x%] and the
single layer NN based action network basis functions are
constructed using the gradient of the fourth order polynomial.
The basis functions are constructed using the expansion of the
polynomial from [18]. Hence, the critic network is a single
layer NN with 8 neurons in the input layer that receives the 8
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Fig. 2: Actor and critic weight variations for the linear discrete-
time system (20).
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Fig. 3: Performance of the single layer NN based optimal
control for the linear discrete-time system given by (20) .

polynomial functions and one neuron in the output layer. The
actor network is also a single layer NN with 16 inputs which
are the derivations of the polynomial functions. The initial
weights of critic are chosen as zero and actor are set at random
in the range of [—1, 1]. The design parameters of the critic and
actor are a; = 1075 and @, = 0.1. The simulation is run for
60 time steps and reported in Fig. 3. It is observed that the
performance depends on the proper selection of polynomial
function which will be challenging for complex system.

It is observed from Figs. 1, 2, 3 and 4 that the MNN-based
optimal adaptive control converges within a few iterations and
generates an optimal control input when compared with single
layer NN based optimal control. However, the performance
depends on the selection of initial weights of the neural
network for admissible control. Since this is a linear system
example, a few neurons in the critic and actor NNs appear to
be sufficient. The convergence of the functional approximation
error also appears to be faster.
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Fig. 4: Performance comparison of the proposed MNN with
single layer NN based optimal control for (20)

B. Nonlinear system

Consider the nonlinear example reported in [4] given by

{ z1(k+1) ] _ { —sin(0.5z2(k))
zo(k + 1) — cos(1.4x2(k)) sin(0.921 (k)) 1)

The initial state is taken as zg = [ 0.5 0.6 ]T. The
architecture of actor and critic MNN chosen for the nonlinear
system has 2 neurons in the input layer, 8 neurons in the
hidden layer and 1 neuron in the output layer with a; = 0.8
and o, = 0.3. The nonlinear hyperbolic tangent activation
functions are used for the hidden layer neurons and linear
activation function are used for the output layer. The initial
weights of the two layers of critic NN are set to zero and the
initial weights of first layer of actor NN are randomly set to
values in the range of [—1,1].

It is observed from Fig. 5 and 6 that the adaptive NN
approach with the proposed weight update law generates the
optimal control which leads to the convergence of state vector
and NN weights within few iterations. The simulations are
run with different initial conditions. The MNN based critic
and actor networks learn the nonlinearity associated with the
cost function and control action online without issues related
to basis function selection.

V. CONCLUSION

In this paper, the problem of infinite horizon optimal regula-
tion of nonlinear discrete-time systems with uncertain internal
dynamics is addressed using two layer NNs. It has been
demonstrated that additional layers enhance approximation
error and result in better regulation provided with the weight
tuning laws developed. For the case of optimal regulation, TD
error is utilized for tuning the weights and it appears to result
in acceptable performance. Future work can be focused on
the design of the controller with both uncertain input matrix
and internal dynamics with implementation to some practical
applications. Moreover, efficient tracking control of complex
systems can also be aimed at using appropriate augmented
systems.
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