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Abstract—Deep neural networks (DNNs) have delivered state-
of-the-art performance in many challenging tasks, such as in
computer vision, but they are vulnerable to adversarial attacks.
Adversarial training is a technique for augmenting training
data with adversarial examples and has empirically proven to
be the most effective method of defense against adversarial
attacks. Motivated by the fact that intermediate layers play
a highly important role in maintaining a robust model, we
propose to extend conventional adversarial training, which is
designed to only manipulate input, such that it becomes layer-
wise training. Distinct from previous studies in which robust
DNN models were trained in a layer-wise manner, the layer
perturbation introduced by our method theoretically proves to
be equivalent to the adversarial manipulation of network inputs.
This approach guarantees an improvement in the adversarial
robustness of DNN models to which the method is applied. We
empirically evaluated both shallow and deep CNN models, such
as VGG16 and WideResNet28-10, by using MNIST, CIFAR-10,
and CIFAR-100 datasets. The results consistently showed that the
proposed layer-wise adversarial training approach significantly
outperforms conventional adversarial training and that it offers
defense against all mainstream attacks including FGSM, IFGSM,
PGD, EoT, and C&W. Combining the layer-wise training regime
with conventional adversarial training would make it possible to
achieve excellent defense performance.

Index Terms—Adversarial training, Adversarial robustness,
Adversarial defense, Layer-wise perturbation

I. INTRODUCTION

Despite their popularity and unprecedented performance
on many prediction tasks, deep neural networks (DNNs) are
known to be insufficiently robust and vulnerable to adversarial
attacks [1]. A well-known adversarial example [2] was used
to demonstrate that, by adding carefully crafted perturbation,
DNN models over-confidently make incorrect predictions even
though the added noise is imperceptible to humans.

Many adversarial attack methods [2]–[5] exist, among which
some are sufficiently powerful to deceive multiple classifiers
even without knowing the architecture of the target model [6].
Kurakin et al. [4] demonstrated that adversarial examples can
also be effective in the physical world. This has raised serious
concerns when DNNs are employed in safety-critical domains
such as for medical diagnosis and in self-driving vehicles.

Research on methods to defend against various adversarial
attacks has been attracting considerable interest [1], [7]–[10].
The most effective defense approach is “adversarial training,”

which generates adversarial samples during the training pro-
cess and uses them as augmented training data to enhance the
robustness of the model [1], [3], [8], [11].

In this paper, we propose a new layer-wise approach
for adversarial training to improve the defense performance.
Different from conventional adversarial training, which only
manipulates the network inputs, we introduce adversarial per-
turbation in the intermediate layers of neural networks during
training. Distinct from previous related work [12], [13], which
proposed to train robust DNN models in a layer-wise manner,
the layer perturbation introduced by our method theoretically
proves to be equivalent to the adversarial manipulation of
network inputs, and it guarantees the improvement of the
adversarial robustness of DNN models to which our method is
applied. We compared our proposed layer-wise method with
conventional adversarial training methods on both shallow and
deep models, such as VGG16 and WideResNet28-10, and used
MNIST, CIFAR-10, and CIFAR-100 datasets to empirically
show that the adversarial robustness against all mainstream
attacks, including FGSM, IFGSM, PGD, EoT and C&W, is
considerably improved. The empirical evaluation also revealed
that
• applying our layer-wise adversarial training to all layers

(including the input layer) achieves the best adversarial
robustness;

• the more the layers that receive adversarial training, the
more robust the defense performance.

• the closer the adversarially trained layers are to the
network output layer, the more robust the defense per-
formance.

• the addition of increased randomness ε to the adversarial
perturbation improves the defense performance of both
the proposed layer-wise adversarial training method and
conventional adversarial training against adversarial at-
tacks.

II. PRELIMINARIES AND RELATED WORK

This section briefly reviews mainstream adversarial attack
methods and adversarial training that augments training data
with adversarial examples to defend against these attacks. A
few related studies that leverage layer-wise noise to improve
the regularization performance of DNNs are also discussed.
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A. Adversarial Attacks

The objective of adversarial attacks is to deceive models
by adding perturbations to inputs. Two attacking scenarios
exist: a white-box attack setting where the architecture and
weights of targeted models are known, and a black-box attack
setting where intrinsic information about the target models and
their parameters are unknown. Most of the white-box attack
methods depend on gradient information to craft adversarial
examples, whereas in the black-box setting, queries are used
to estimate the decision boundary [14] or approximate gradi-
ents [15]. In practice, the black-box adversarial attacks can
be simulated by generating adversarial samples targeting a
specific model and then relying on the transferability of those
adversarial examples to blindly attack other models. Existing
approaches to generate adversarial examples for a specifically
targeted model can be categorized into three types.

1) One-step gradient-based methods: The fast gradient
sign method (FGSM) is a representative method [3]. The
adversarial perturbation is crafted by maximizing the loss
function J (x∗, y), where J is typically the cross-entropy loss.
The FGSM can generate adversarial examples constrained by
L∞ norm ‖x∗ − x‖∞ ≤ ε as:

x∗ = x + ε · sign (∇xJ(x, y)) (1)

where ∇xJ(x, y) is the gradient of the loss function, and
sign(·) denotes the signum function.

The latest gradient-based method was proposed to attack ob-
fuscated gradients [16]. The method computes the gradients of
randomized defense by applying expectation over transforma-
tion (EoT) [17]. This gradient-based attack is then computed
as an expectation of gradients of randomized outputs.

2) Iterative methods: Iterative methods employ the fast
gradient multiple times with a considerably smaller step size,
α. The iterative version of FGSM (IFGSM), also known as
BIM, can be expressed as follows:

x∗0 = x, x∗t+1 = x∗t + α · sign (∇xJ (x∗t , y)) . (2)

To ensure that the generated adversarial perturbation satis-
fies the L∞ limitation, it suffices to simply set α = ε/T, where
ε is the maximum value of perturbation and T the number of
iterative steps.

Another iterative method is the projected gradient descent
(PGD) method, which crafts adversarial examples in a γ-ball,
as

x∗t+1 = Πγ {x∗t + α · sign (∇xJ (x∗t , y))} , (3)

where Πγ is the projection onto the set
{x| ‖x− x0‖∞ ≤ γ}. Because the number of iterations
in a PGD attack is not constrained, it can generate stronger
adversarial attacks than IFGSM in the white-box attack
setting.

3) Optimization-based methods: These methods directly
optimize the distance between real and adversarial examples,
subject to the misclassification of adversarial examples. Such
a method was first introduced as an L-BFGS attack [1] and
improved to form the Carlini-Wagner attack (C&W) [5]. The

goal of a C&W attack is to determine the value of minimal
perturbation δ such that D(x + δ) = t′, where D is the target
model; x is an input; t′ represents either the target class in
targeted attacks or a class different from the ground truth class
in non-targeted attacks. The total loss function is expressed as
follows:

arg minδ ‖δ‖p + c · J(x+ δ, y)
s.t. x+ δ ∈ [0, 1]n

(4)

The C&W attack was shown to be extremely strong in the
white-box attack setting [5], achieving a misclassification error
of over 99.8% on CIFAR-10 dataset, but it is computationally
expensive.

B. Adversarial and Robust Training

Adversarial training augments training data with adversarial
examples. It acts as a min-max optimization problem in
which adversarial samples are generated to maximize the
classification loss (e.g., cross entropy) while the classifier at-
tempts to minimize this loss. Adversarial training is iteratively
conducted, and it involves two steps in each iteration. The first
step entails generating adversarial examples, and in the second
step, a model is trained on these adversarial examples. The
generation of adversarial samples is based on obtaining infor-
mation about the gradient between classification loss and input
samples. In other words, in conventional adversarial training
[1], [3], [8], [10], adversarial manipulation is conducted only
on network inputs.

Although adversarial training aims to improve the robust-
ness of a model against adversarial inputs, in previous studies
[1], [3], it was also observed that the use of adversarial exam-
ples to train DNN models serves to regularize and marginally
improve the performance of the base network on the test
data. A recent study by Sankaranarayanan et al. [12] extended
adversarial training to a layer-wise regularization mechanism
to prevent over-fitting. These researchers showed that their
layer-wise approach provides much more effective adversarial
perturbation and thus stronger regularization, compared to
methods that perturb only the input layer. Liu et al. [13]
extended the aforementioned concept to render the injected
perturbation in each layer learnable during the training of
DNNs. Unlike the aforementioned method [12] that generates
noise for the current mini-batch from the previous mini-batch,
adversarial noise propagation(ANP) [13] computes adversarial
noise by using the same mini-batch and by utilizing correla-
tions within the mini-batch data.

Herein, we propose to improve the adversarial robustness by
introducing adversarial perturbation in the intermediate layers
of a DNN. Our aim is to improve the adversarial robustness
of conventional adversarial training, which only manipulates
network inputs. Distinct from the previous work [12], [13]
in which robust DNN models have been proposed to be
trained in a layer-wise manner, the adversarial perturbation
introduced in intermediate layers by our method theoretically
proves to be equivalent to adversarial manipulation on network
inputs, which guarantees the improvement of the adversarial
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robustness of the DNN models to which our method is applied.
Unlike the existing method [12], we focus on improving the
adversarial robustness instead of the regularization perfor-
mance on test data to prevent over-fitting. Similar to the work
of Liu et al. [13], the layer-wise adversarial perturbation in
our proposed method is adaptively based on neural networks
during training. To the best of our knowledge, existing studies
on layer-wise training for adversarial robustness are limited.

III. OUR APPROACH – LAYER-WISE ADVERSARIAL
TRAINING

We propose to introduce adversarial perturbations in the in-
termediate layers of neural networks during training. Our goal
is to attempt to establish an equivalence between conventional
adversarial training and our proposed layer-wise adversarial
training. In this section, we provide a detailed derivation of
the adversarial perturbations introduced in fully connected
and convolutional layers, respectively and present the training
procedure of our layer-wise adversarial training method.

A. Adversarial Perturbation for Fully Connected Layers

We first derive adversarial perturbations for fully connected
layers. For simplicity, we assume that the network input is
x, and the adversarial perturbation is r (with r and x having
the same dimension). For one fully connected layer with layer
weight w1 and bias b1, its layer output (y) becomes yadv when
adding adversarial noise r to input x:

y = w1 · x+ b1

yadv = w1 · (x+ r) + b1

as a result, yadv = y + w1 · r,
(5)

where · denotes the matrix multiplication operation, and r is
computed by any of the adversarial attack methods. With the
above equality, training on x + r is equivalent to having a
perturbation (w1 ·r) on the layer output. In a latter part of this
subsection, we prove that w1 ·r on layer output can serve as a
regularization term, which improves the adversarial robustness.

When multiple fully connected layers are stacked with layer
weight wi and bias bi, the difference between the regular layer
output and adversarially trained output is (

∏
i=1,...,n wi) · r.

Further, if we generate adversarial noise r by r = ε ·
sign (dL

dx ), the perturbation added to the layer output of a fully
connected layer is

w1 · r = w1 · (ε sign(
dL
dx

))

= ε w1 · sign(
dL
dy

dy

dx
)

= ε w1 · sign(
dL
dy
w1)

= ε w1

⊙
sign(w1) · sign(

dL
dy

)

= ε |w1| · sign(
dL
dy

)

= coeff |w1| with coeff = ε · sign(
dL
dy

),

(6)

where
⊙

represents the Hadamard product; · is the matrix
multiplication operation; sign(·) denotes the signum function;
ε can either be a fixed value or follow a distribution, e.g.,
ε ∼ N (0, 0.1). Eq.6 shows that the adversarial perturbation
in the fully connected layer is equivalent to l0 regularization.
Stacking multiple fully connected layers, the proposed layer-
wise adversarial perturbation (Rfc) in the last fully connected
layer is derived as follows:

Rfc = (
∏

i=1,...,n

wi) · r

= (
∏

i=1,...,n

wi) · (ε sign(
dL
dx

))

= ε (
∏

i=1,...,n

wi)
⊙

(
∏

i=1,...,n

sign(wi)) · sign(
dL
dy

)

= ε (
∏

i=1,...,n

|wi|) · sign(
dL
dy

)

(7)

B. Adversarial Perturbation for Convolutional Layers

Similar to the fully connected layer, when adversarial noise
r is added to input x, the layer output of a single convolutional
layer becomes yadv = y + w1 ∗ r, where ∗ denotes the
convolution operation. If we generate adversarial noise r by
r = ε · sign (dL

dx ), the perturbation added to the layer output
of one convolutional layer is

w1 ∗ r = w1 ∗ sign(ε
dy1

dx
)
⊙

sign(
dL
dy1

), (8)

where
⊙

represents the Hadamard product, and w1 ∗
sign(dy1

dx ) is defined as the new adversarial regularization term.
When stacking multiple convolutional layers with layer

weight wi, the difference between the regular layer output
and the adversarially trained output is (

∏conv
i=1,...,n wi) ∗ r,

where
∏conv
i=1,...,n represents successive convolution operations.

The proposed layer-wise adversarial perturbation in the last
convolutional layer (Rconv) is derived as follows:

Rconv =wn ∗ (...(w1 ∗ sign(ε
dy

x
))
⊙

sign(
dy2

dy1
)

...
⊙

sign(
dyn

dyn−1
))
⊙

sign(
dL
dyn

),

(9)

where n represents the number of convolutional layers.
Note that the aforementioned derivations of layer per-

turbation use gradient-based adversarial attacks as ex-
amples. For optimization-based attack methods such as
C&W, the layer-wise perturbation is calculated similarly by
(
∏op
i=1,...,n |wi|) op δ, once δ is obtained. Likewise,

∏op
i=1,...,n

represents successive op operations.

C. Adversarial Perturbation after Nonlinear Activation Func-
tion

Nonlinear activation functions are often used in DNN/CNN
layers. This section explains why our proposed layer-wise
adversarial perturbation still holds after nonlinear activation.
Here, we take a fully connected layer with a ReLU activation
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function as an example. The derivation for a convolutional
layer with a ReLU function is similar. ReLU is the most
commonly used nonlinear activation function, and we used
it in all our experiments.

When ReLU is used after the layer-wise perturbation opera-
tion, we have y and yadv as the original output and adversarial
output of the next layer, respectively.

y = w2 · ReLU(w1 · x+ b1) + b2

yadv = w2 · ReLU(w1 · x+ w1 · r + b1) + b2,
(10)

where w2 and b2 represent the weight and bias of the next fully
connected layer, respectively. Similar to eq. 5, the difference
between yadv and y can be regarded as a regularization term
to achieve adversarially robust training.

In eq.10, we can reposition w2 inside the ReLU function as
|w2| is positive.

w2 · ReLU(w1 · x+ b1)

=sign(w2) · |w2| · ReLU(w1 · x+ b1)

=sign(w2) · ReLU(|w2| · (w1 · x+ b1))

(11)

As a result, the difference between yadv and y is derived as
follows:

diff =yadv − y
=sign(w2) · [ReLU(|w2| · w1 · x+ |w2| · b1 + |w2| · w1 · r)︸ ︷︷ ︸

Reluadv

− ReLU(|w2| · w1 · x+ |w2| · b1)︸ ︷︷ ︸
Reluori

]

(12)
Fig.1 presents Reluori and Reluadv in a coordinate system,

supposing that x has one dimension 1. The figure shows that
the two ReLU functions are always in parallel in the positive
region, whereas both are zero in the negative region. The slope
of the positive section of the line is determined by |w2| · w1,
while sign(w1) determines the direction of the slope as |w2| is
always positive. The relative positions of Reluadv and Reluori
are determined by r, while sign(r) determines their relative
translation directions. Fig.1 indeed represents the case where
|w2| · w1 > 0 and r > 0.

Considering all possible cases (determined by sign(w1) and
sign(r)), eq.12 can be generalized as follows:

when x > − b1
w1

+ |r|,

diff = sign(w2)
⊙

sign(w1)
⊙

sign(r)
⊙
|w2| · |w1| · |r|

when x < − b1
w1
− |r|,

diff = 0,
(13)

where
⊙

represents the Hadamard product, and · rep-
resents the matrix multiplication operation; − b1

w1
represents

the intersection point of Reluori with the horizontal axis.
Considering that adversarial perturbation (r) has a significantly

1for multi-dimensional x, the deduction is similar.

Fig. 1. Simple example of Reluadv (red line) and Reluori (blue line). Their
difference is shown as a black line.

smaller value compared to the original image pixel value(x),
we assume − b1

w1
± |r| ≈ − b1

w1
. As a result, eq. 13 can be

further expressed as follows:

diff ==ReLU(sign(w1 · x+ b1))
⊙

sign(w2)
⊙

sign(w1)⊙
sign(r)

⊙
|w2| · |w1| · |r|

=ReLU(sign(w1 · x+ b1))
⊙

w2 · w1 · r
(14)

In the ReLU function, because only the positive part is
activated, ReLU(sign(w1 · x+ b1)) = 1 in successive layers;
therefore, diff = w2·w1·r. In this way, we demonstrate that the
proposed layer-wise adversarial perturbation still holds after
nonlinear activation functions by using, for example,ReLU.

D. Training Procedure of Layer-wise Adversarial Training

During the training procedure, we use the gradients from
the previous batch to generate adversarial perturbations to
activate the current batch. According to the empirical analysis
in [12], it is possible to use random shuffling in a mini-batch
setting to ensure that the scheme that generates perturbation for
the current mini-batch from the previous mini-batch is a fair
approximation to compute adversarial perturbations by using
the same mini-batch. In deep CNNs that are composed of both
convolutional and fully connected layers, the layer-wise adver-
sarial perturbation in our proposal is added to any intermediate
layers based on eq.7 and eq.9, respectively. Assuming that
the convolutional layers are stacked over the fully connected
layers, the layer perturbation in the last convolutional layer
can be passed as an initial value to calculate the perturbation
of successive fully connected layers. During testing, Rtfc and
Rtconv are not applied. The trained neural networks behave
as a standard feed-forward DNN. This training procedure is
summarized in algorithm 1.

IV. EXPERIMENTS AND EVALUATION

To understand the effect of the proposed layer-wise per-
turbation described in the previous section, we compared our
method with conventional adversarial training, which manipu-
lates adversarial perturbations only on inputs. The evaluation
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Algorithm 1 Layer-wise adversarial training procedure
Input: Bt: batch sampled at iteration t; {Xt, Y t}: input-output pairs;
Output: adversarially robust DNN model;
1: Initial t = 0;
2: Sample a batch {Xt, Y t} of size k images from the training data;
3: Perform regular forward pass while the layer-wise adversarial training is not active for t = 0;
4: Perform backward pass using the classification loss function, and calculate Rtfc (eq.7 ) for fully connected layers and
Rtconv (eq.9) for convolutional layers;

5: for t in 1 : |B| − 1 : do
6: Sample a batch {Xt, Y t} of size k from the training data;
7: Perform a forward pass with perturbation: add Rtfc to the layer output of the fully connected layers, and add Rtconv to

the layer output of the convolutional layers;
8: Perform a backward pass and update Rtfc and Rtconv to Rt+1

fc and Rt+1
conv;

9: end for
10: Test time usage: During testing, remove Rtfc and Rtconv . The trained neural network behaves as a standard feed-forward

DNN.

was conducted by performing image classification tasks using
MNIST, CIFAR-10, and CIFAR-100 datasets. All images were
normalized to contain pixels in the range [0,1] during training
and testing. Both shallow models (4FC and 3Conv2FC) and
deep CNNs, such as VGG16 and WideResNet28-10, were
employed. For a fair comparison, we do not fine-tuned the
models. Training parameters were shared: optimizer=SGD
(initial lr=0.1, momentum=0.9), weight decay=0.0001, and
epoch=200 with no early stop.

We applied the diverse set of adversarial attack methods that
we introduced in Section II, namely FGSM, IFGSM, PGD,
EoT, and C&W. All the attacks were conducted in the white-
box attack setting, and a value of 0.1 was assigned to ε for
all the attacks. White-box attacks are typically more difficult
to defend against than black-box attacks, in that adversaries
know all details of the target models and can therefore generate
adversarial examples. The evaluation criterion for adversarial
robustness is top-1 worst-case accuracy.

A. Shallow DNNs using MNIST dataset

To study the effect of the proposed layer-wise perturbation
in detail, we constructed two shallow DNNs: a fully connected
network with two hidden layers (4FC) and a CNN with three
convolutional layers stacked over two fully connected layers
(3Conv2FC).

1) Experiments on 4FC: We first studied the choice of ε
(in eq.7 and eq.9) using the 4FC model and MNIST dataset.
In conventional adversarial training, ε is assigned a small
value, which is kept constant, whereas in our experiment,
we compared the use of a constant ε (0.1) with a random ε
setting, i.e., ε ∼ N (0, 0.1). The results are presented in Table
I and indicate that a random ε yields superior results in terms
of both the classification accuracy on clean data and adver-
sarial defense performance than a constant ε. We conducted
additional experiments using MNIST on the constructed 4FC
and 3Conv2FC models. The results consistently showed the
superiority of using a random ε; as a result, ε was assigned a
random value in all the following experiments.

TABLE I
PERFORMANCE COMPARISON: USING A CONSTANT ε (-F) VS. A RANDOM ε

(-R).

Clean FGSM IFGSM PGD EoT C&W
one layer-f 0.9247 0.1922 0.1649 0.1334 0.0709 0.0532
one layer-r 0.9256 0.3056 0.2761 0.2411 0.1369 0.12
two layers-f 0.9016 0.2995 0.2601 0.2208 0.1729 0.1297
two layers-r 0.9297 0.4078 0.3722 0.3236 0.2066 0.1736

TABLE II
DEFENSE PERFORMANCE ON THE 4FC MODEL USING MNIST WITH A

SINGLE ADVERSARIAL PERTURBATION LAYER

Clean FGSM IFGSM PGD EoT C&W
DNN 0.9429 0.1415 0.1106 0.0819 0.0375 0.0256

Adv-input 0.9505 0.2151 0.1749 0.1313 0.0787 0.0513
FC Layer-2 0.9256 0.3056 0.2761 0.2411 0.1369 0.12
FC Layer-3 0.9263 0.3552 0.323 0.2748 0.1729 0.1426
FC Layer-4 0.9693 0.5215 0.4678 0.4055 0.3359 0.267

We studied the effect of applying layer perturbation to
only one layer by using the 4FC model on MNIST. Table
II compares the results of placing our adversarial perturbation
in one of the intermediate layers of a standard DNN without
adversarial training (DNN) with those obtained using con-
ventional adversarial training on the input layer (Adv-input).
The results show that our proposed layer-wise adversarial
training is effective and that it considerably outperforms
the conventional adversarial training in terms of the defense
performance. An improvement in the adversarial robustness
is observed across all the attacks. The results also appear to
indicate that the closer the adversarially trained layer is to the
network output layer (i.e., FC Layer-4), the more effective the
adversarial defense performance.

The results in Table III were obtained by stacking two or
more layers and applying layer adversarial perturbation. The
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TABLE III
DEFENSE PERFORMANCE ON THE 4FC MODEL USING MNIST WITH

MULTIPLE ADVERSARIAL PERTURBATION LAYERS

Clean FGSM IFGSM PGD EoT C&W
FC-2&3 0.9297 0.4078 0.3722 0.3236 0.2066 0.1736
FC-3&4 0.927 0.6415 0.6161 0.5709 0.6243 0.5835

TABLE IV
DEFENSE PERFORMANCE ON THE 4FC MODEL USING MNIST: OUR

LAYER-WISE WITH (MLPW) AND WITHOUT (MLPO) ADVERSARIAL INPUT

Clean FGSM IFGSM PGD EoT C&W
MLPw 0.9055 0.6492 0.6416 0.5435 0.6255 0.5609
MLPo 0.9125 0.6297 0.6003 0.5237 0.5987 0.5443

results indicate that the defense performance is superior to
that when layer perturbation is only applied to one layer,
as indicated by Table II. In Table III, FC-2&3 represents
the situation in which layer-wise adversarial perturbation was
applied to two hidden layers, whereas FC-3&4 represents that
in which the perturbation was applied to the output layer
and the penultimate hidden layer. Furthermore, as in the
aforementioned experiment with a single perturbation layer,
the closer the adversarially trained layer is to the network
output layer (i.e., FC-3&4), the more effective the adversarial
defense performance.

Table IV presents the results we obtained when applying
layer-wise perturbation to all layers (incl. the input layer).
These results show that the fully connected network 4FC
achieves the best adversarial robustness on MNIST dataset.

2) Experiments on 3Conv2FC: This subsection details our
study on the effect of applying adversarial perturbation to con-
volutional layers using the constructed 3Conv2FC model on
MNIST dataset. Similar to the experiments on the 4FC model,
we first investigated the application of layer perturbation to one
convolutional layer. This was followed by stacking two and
more convolutional layers to which adversarial perturbations
were then applied. Next, a combination of convolutional and
fully connected layers was subjected to layer-wise adver-
sarial training. Finally, we present the adversarial defense
performance resulting from the combination of conventional
adversarial training with our layer-wise approach.

Table V compares the results of placing our adversarial
perturbations in one of the intermediate convolutional layers
with a standard DNN without adversarial training (DNN) and
by applying conventional adversarial training to the input layer
(Adv-input). Again, it shows that our proposed layer-wise
adversarial training is effective and considerably outperforms
the conventional adversarial training in terms of the defense
performance. Also, in the 3Conv2FC model in which three
convolutional layers are stacked over two fully connected
layers, the adversarial defense performance does not appear to
become more effective when the adversarially trained layers
are closer to the network output layer.

Table VI indicates that, when layer adversarial perturbations

TABLE V
DEFENSE PERFORMANCE ON THE 3CONV2FC MODEL USING MNIST

WITH A SINGLE ADVERSARIAL PERTURBATION LAYER

Clean FGSM IFGSM PGD EoT C&W
DNN 0.9794 0.3177 0.2652 0.2192 0.1854 0.1156

Adv-input 0.9792 0.4961 0.3179 0.2492 0.2296 0.1399
Conv-2 0.9775 0.4758 0.4178 0.354 0.2594 0.1908
Conv-3 0.9808 0.4367 0.3891 0.3349 0.2808 0.1782

TABLE VI
DEFENSE PERFORMANCE ON THE 3CONV2FC MODEL USING MNIST

WITH ADVERSARIAL PERTURBATION OF MULTIPLE LAYERS

Clean FGSM IFGSM PGD EoT C&W
Conv-2&3 0.98 0.5583 0.5013 0.4277 0.3864 0.2452
Conv-2&3

+FC-1 0.9828 0.6866 0.6398 0.5806 0.481 0.3766

Conv-2&3
+FC-1&2 0.9833 0.8096 0.7477 0.658 0.6718 0.5097

were applied to two or more convolutional layers, the defense
performance was superior to that when layer perturbation was
applied only to one convolutional layer (Table V). Table VI
also compares the situations in which layer-wise adversarial
perturbation was applied to the second and third convolu-
tional layers (Conv-2&3), two convolutional layers and the
penultimate fully connected layer (Conv-2&3+FC-1), and two
convolutional layers and two fully connected layers (Conv-
2&3+FC-1&2). These results show that applying adversarial
perturbations to both convolutional and fully connected layers
significantly improved the adversarial defense performance.
With the adversarial perturbations applied on more fully con-
nected layers, the best adversarial robustness can be achieved.

We additionally studied the effect of combining conven-
tional adversarial training with our layer-wise approach on
the performance improvement of the 3Conv2FC model. Table
VII presents the results of combining conventional adversarial
training with our layer-wise perturbation on convolutional lay-
ers only (Conv-w) and with all layers (All-w). It also compares
these results with those obtained without this combination
(Conv-o and All-o). The results are clearly improved when
conventional adversarial training was applied to convolutional
layers in combination with layer-wise adversarial training.
Note that the best defense performance on the 3Conv2FC
model was achieved when layer-wise perturbations were ap-
plied to all layers except for the input layer, i.e., not in
combination with conventional adversarial training.

B. Deep CNNs using CIFAR-10 and CIFAR-100 datasets

To confirm the observations resulting from the empirical
analysis of shallow DNNs, we repeated the experiments on
deep CNN models, i.e., VGG16 and WideResNet28-10, using
CIFAR-10 and CIFAR-100 datasets, respectively. Table VIII
compares different placements of our layer-wise adversarial
training on VGG16, with standard VGG16 without adversarial
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TABLE VII
DEFENSE PERFORMANCE ON THE 3CONV2FC MODEL USING MNIST:

ADVERSARIAL INPUT WITH(-W) AND WITHOUT(-O) LAYER PERTURBATION

Clean FGSM IFGSM PGD EoT C&W
Conv-o 0.98 0.5583 0.5013 0.4277 0.3864 0.2452
Conv-w 0.9799 0.7568 0.6325 0.4892 0.5436 0.3237

All-o 0.9833 0.8096 0.7477 0.658 0.6718 0.5097
All-w 0.9823 0.7283 0.6873 0.6297 0.5706 0.4637

TABLE VIII
DEFENSE PERFORMANCE ON VGG16 USING CIFAR-10

Clean FGSM IFGSM PGD EoT C&W
VGG16 0.8655 0.213 0.175 0.097 0.113 0.083

Adv-input 0.6127 0.2503 0.2092 0.118 0.149 0.1013
Conv-all 0.8515 0.3847 0.253 0.1381 0.203 0.1221

All-o 0.8236 0.403 0.2811 0.202 0.268 0.1934
All-w 0.8476 0.4339 0.332 0.309 0.251 0.218

training (VGG16) and conventional adversarial training on the
input layer (Adv-input). Three variations of the application of
our layer adversarial perturbations to VGG16 were compared:
application to all convolutional layers (Conv-all), to all layers
except for the input layer (All-o), and to all layers including
the input layer (All-w). As mentioned in Section III, the ad-
versarial perturbation introduced to each intermediate layer by
our method theoretically proves to be equivalent to adversarial
manipulation on the network inputs. As a result, applying
adversarial perturbations to all layers, including the input
layer (i.e., All-w), is equivalent to combining the application
of our layer-wise perturbation to all layers except the input
layer (i.e., All-o) with conventional adversarial training (i.e.,
Adv-input). The results in Table VIII show that our proposed
layer-wise adversarial training significantly outperforms con-
ventional adversarial training in terms of all the attacks. The
best defense performance on the VGG16 model is achieved
when applying layer-wise perturbation to all layers including
the input layer (All-w), i.e., in combination with conventional
adversarial training. In addition, it is noteworthy that the
classification accuracy achieved with our proposed layer-wise
adversarial training is comparable to that of standard VGG16,
whereas conventional adversarial training severely degrades
the classification performance. Similar results are presented in
Table IX for the WRN28-10 model using CIFAR-100.

TABLE IX
DEFENSE PERFORMANCE ON WIDE-RESNET28-10 USING CIFAR-100

Clean FGSM IFGSM PGD EoT C&W
WRN28-10 0.7615 0.1984 0.151 0.082 0.1043 0.067
Adv-input 0.5236 0.2006 0.1809 0.093 0.1223 0.0732
Conv-all 0.7115 0.3049 0.2301 0.1107 0.1469 0.9075

All-o 0.7235 0.3886 0.2803 0.1901 0.2076 0.1301
All-w 0.7523 0.4039 0.3201 0.2343 0.2081 0.1678

V. CONCLUSION

In this paper, we proposed a layer-wise approach for ad-
versarial training and derived layer adversarial perturbation
for both fully connected and convolutional layers. We theo-
retically proved that the adversarial perturbations introduced
in intermediate layers by using our method are equivalent to
adversarial manipulation on network inputs, thereby guaran-
teeing an improvement of the adversarial robustness of DNN
models to which the adversarial manipulation is applied. Our
proposed method was validated by conducting an empirical
evaluation on both shallow and deep CNN models, such as
VGG16 and WideResNet28-10, using MNIST, CIFAR-10, and
CIFAR-100 datasets. The results consistently showed that our
proposed layer-wise adversarial training approach significantly
outperforms conventional adversarial training in terms of all
mainstream attacks including FGSM, IFGSM, PGD, EoT,
and C&W. The best defense performance could be achieved
by combining the layer-wise approach with conventional ad-
versarial training. In the future, it would be interesting to
investigate the ability of the proposed methods to improve the
robustness of a model against generalized corruption noise, in
addition to improving the adversarial robustness.
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