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Abstract—Speech decoding-based brain-computer interfaces
(BCIs) are the next-generation neuroprostheses that have the
potential for real-time communication assistance to patients with
locked-in syndrome (fully paralyzed but aware). Recent invasive
speech decoding studies have demonstrated the possibility of
speech kinematics decoding, where articulatory movements were
decoded from the brain activity signals for speech synthesis, as
an alternative solution to direct brain-to-speech mapping. As
a starting point toward a non-invasive speech-neuroprosthesis,
in this study, we investigated the decoding of continuous jaw
kinematic trajectories directly from non-invasive neuromagnetic
signals during speech production. The compensatory jaw behav-
ior exhibited by patients with amyotrophic lateral sclerosis (ALS)
is prevalent, hence, accurate decoding of the jaw kinematics
could be a path for developing efficient communicative BClIs
for these patients. Using magnetoencephalography (MEG), we
recorded brain signals and jaw motions simultaneously from four
subjects as they spoke short phrases. We trained a long short-
term memory (LSTM) regression model to successfully map the
brain activity to jaw motion with about 0.80 average correlation
score across all four subjects. In addition, we also examined
the decoding performance of specific frequency bands within the
neural signals and found that the Delta (0.3 — 4 Hz) and high-
gamma (62— 125 Hz and 125—250 Hz) frequencies independently
can account for the major contributions in jaw motion decoding.
Experimental results indicated that the jaw kinematics can be
successfully decoded from non-invasive neural (MEG) signals.

Index Terms—BCI, LSTM, MEG, Brainwaves, Wavelets

I. INTRODUCTION

Speech production is one of the most exquisite dynamically
coordinated physiological phenomena in the human behavioral
repertoire. It involves synergistic control between cortical
brain regions and motor units and of overlapping, multi-
articulatory vocal tract movements for transcribing thoughts
into meaningful sounds. The brain orchestrates more than
a hundred muscles and is continuously shaping and reshap-
ing the articulators (lips, tongue, jaw, larynx, etc.) across
time to produce unique vocal tract patterns, contextualizing
communication [1] in form of a repertoire of overt speech
sounds with simultaneous auditory feedback. Brain damage or
neurodegenerative diseases (e.g., amyotrophic lateral sclerosis,
ALS) may cause locked-in syndrome (completely paralyzed
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but aware) [2]. A brain-computer interface (BCI), that uses
brain activity to control a computer without involving muscles,
is currently a more preferred and reliable option [3], [4]. Yet,
current commercially available BCIs use attention correlates
from the users’ brain to spell out words, letter by letter,
which results in a very slow communication rate of under
10 words per minute, far slower than the normal speaking
rate, which is about 200 words per minute. A major challenge
but necessary requirement today is to move beyond these
slow, error-prone, and laborious spelling based constrained
technologies toward more efficient speech-BCls with possibly
normal communication rates.

Speech-BCI is a next-generation communication rehabili-
tative technology, which attempts to translate neural signals
to speech in real-time. This transformative speech neuro-
prosthesis has the potential to offer an improved quality of
life to neurologically impaired patients, potentially enabling
independence, social interactions, and community involvement
to some level by restoring lost communication [5]. Multiple
research studies have proposed to decode both overt and covert
speech directly from neural signals (neural speech recognition)
either invasively with electrocorticography (ECoG, [6]-[9])
or non-invasively with electroencephalography (EEG, [10]-
[13]) and magnetoencephalography (MEG, [14]-[18]). The
majority of these decoding studies, however, have focused on
classifying isolated speech units (phonemes/syllables) directly
from the neural signal, which falls short of the ultimate goal
of neural speech synthesis. Recently, a few ECoG studies
have shown promise for neural speech synthesis [19]-[21]. In
the ECoG study [21], discrete representations of articulatory
movements were decoded from neural signals and then were
used to synthesize speech (brain to articulation to speech).

Majority of articulation decoding studies have focused either
on the classification of discrete articulatory features (e.g.,
opening vs closing) [22]-[24] or on decoding articulatory mo-
tions that were inversely mapped from acoustic data [21], [25].
An ECoG study for implantable BCIs [22] showed successful
decoding of four different tongue movement directions (up,
down, left, and right) with 85% classification accuracy by
taking data from just 1cm? area of the sensory-motor cortex
from four subjects. Another study [23] produced a higher
decoding performance for articulatory gesture classification



than phonemes with electrocorticographic signals recorded
from the pre-motor and motor cortex of two subjects, further
strengthening the importance of articulatory kinematics decod-
ing for a brain-machine interface. Decoding lip movements
during speech production has also been investigated in a
recent study [24] showing a 65% accuracy for open vs closed-
lip position classification with ECoG signals. In the ECoG
studies [21] and [25], the used articulatory kinematics were
inversely mapped from acoustic signals that were trained from
other speakers, because simultaneous acquisition of ECoG
recordings and articulatory kinematics was not available. To
our knowledge, there is no prior report on the successful
decoding of real-continuous articulatory motion based on data
recorded synchronously with brain activities.

In this study, we were able to collect simultaneous record-
ings of neural and jaw motion signals, which might provide a
better and more reliable ground truth for the brain to kinemat-
ics mapping compared to the statistically estimated kinematics.
Also, in contrast to the discrete classification-based articulation
decoding as in most of the previous studies (except [21]), here,
we performed continuous mapping of neural signal to articula-
tory (jaw) kinematics for each millisecond (sample). Moreover,
instead of the conventional paradigm of collecting data during
short speech unit production (phonemes/syllables/words), we
collected the neuromagnetic signals corresponding to complete
sentences, which is necessary to leverage coarticulation (de-
pendency of articulatory gestures for current speech segment
on previous and future speech segments) [26]. Furthermore,
previous studies have only considered the high-gamma neural
oscillations to perform the decoding tasks, which is justified,
considering the large correlation of high-gamma ECoG ac-
tivity with multi-unit firing rates [27]. However, articulatory
movements have also been shown to correlate with frequencies
under 40 Hz [28], [29]. Thus, we also explored the contribution
of multiple oscillatory frequencies for jaw motion decoding.

We used magnetoencephalography (MEG) to record the
neural signals during speech production, synchronously with
jaw motion and acoustic speech. MEG is a non-invasive func-
tional neuroimaging modality that records the post-synaptic
neuronal current-induced magnetic fields with a very high
spatial (3 — 10 mm) and temporal (1 ms) resolution. Although
current MEG is not-portable, recent studies on next-generation
movable MEG devices based on optically pumped magne-
tometers [30] have the potential to be used for BCI appli-
cations in the near future. Moreover, our previous works on
both overt and imagined speech decoding have resulted in
high classification accuracy [16]-[18] on closed-set classifi-
cation tasks with MEG signals. Here, we used a sequential
deep learning regression model with long short-term memory
(LSTM)-recurrent neural networks as the decoder considering
their efficacy in analyzing sequential time series data.

In summary, the major contributions of this study are:

o Decoding of continuous articulatory kinematics (jaw mo-
tion) was attempted from non-invasive neural (MEG)
signals, in contrast to the previous works with invasive
ECoG signals [21]-[25].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Elekta Neuromag* TRIUX

Fig. 1. The MEG unit with a subject

o Simultaneously acquired neural signals (via MEG) and
jaw motion (via a customized pressure sensor) were used
contra prior studies that obtained articulatory data with
inverse mapping model [21], [25], or videos [24].

« A continuous regression model was developed to synthe-
size the neural jaw motion in real-time instead of the prior
works of classifying discrete movement events [22]-[24].

« Investigations on the role of each neural oscillations for
jaw kinematics decoding was performed to find signifi-
cant contributions by Delta (0.3 —4 Hz) and high-gamma
(62 — 125 Hz and 125 — 250 Hz) frequencies.

II. DATA COLLECTION AND SIGNAL PROCESSING
A. Data Acquisition

Four healthy subjects (age: 48 + 14; 1 female) participated
in the study with informed consent in compliance with the
institutional ethics review boards. We used a 306 channel (204
gradiometers + 102 magnetometers) MEG device (MEGIN,
LCC) to collect the neuromagnetic signals from the subjects
(Figure 1). The MEG unit is housed inside a magnetically
shielded room (MSR) for discarding unwanted magnetic in-
terference. We designed a time-locked protocol consisting of
a 0.5ms of pre-stimuli stage, followed by a 1s of perception
stage, where a sample stimulus (phrase) was presented to the
subjects written in English via a projector display situated at
about 90 cm from the subject. This stage was followed by a
preparation (imagination) stage of 1s where a fixation cross
(+) appeared on the screen, after which the subjects overtly
produced the previously shown phrase. The overt production
stage was designed to be of 2.5s (except for the very first
subject it was 1.5s). This 4-stage procedure constituted a
trial, and for each subject, we collected data for 100 trials per
phrase. We kept a non-movement baseline of 1 — 1.5s within
successive trials. The subjects spoke 5 different phrases: /.
Do you understand me; 2. That’s perfect; 3. How are you;
4. Good-bye; 5. I need help; which were displayed on the



screen one at a time in a pseudo-randomized order to avoid
response suppression due to repeated exposure [31]. Acoustic
output during the speech production stage was recorded via a
standard built-in microphone connected to a transducer placed
outside the MSR. Jaw movement was recorded through a
custom-made air bladder connected to an air pressure sensor.
The depression in that bladder provided the trajectory for jaw
motion. Both speech and jaw movement analog signals were
then digitized by feeding into the MEG ADC in real-time
as separate channels. All sensors were checked for noise and
tuned prior to data collection. The whole experiment lasted
for about 45 minutes per subject, excluding the break time (if
any) and the preparation time. All default safety practices for
MEG were followed [32].

B. Preprocessing

The signals were epoched into trials from —0.5 to 5s
(subject1: —0.5 to 45s) centered on stimulus onset. Data,
only from gradiometer sensors, were used considering their
effectiveness in noise suppression over magnetometers. Out
of 204 gradiometers, data from 8 sensors were discarded
due to high channel noise. Through Visual inspection, trials
containing high artifacts or irregularities were discarded. On
average, 75 trials per phrase per subject were retained. The
signals were recorded with 4 kHz sampling frequency with an
online filter of 0.3 — 1000 Hz, low-passed to 250 Hz with a 4th
order Butterworth filter, and resampled to 1kHz. Line noise
(60Hz) and their harmonics were removed with notch filters.

C. Wavelet Decomposition

The preprocessed signals were decomposed with discrete
wavelet transform (DWT) using a Daubechies wavelet (db-
4) with 7 levels and reconstructed back to each level for
generating distinct neural oscillations. The use of db4 to gen-
erate distinct neural oscillations has been employed previously
in numerous MEG studies [33]-[35]. After decomposition,
the reconstructed signal from the low-pass approximation
coefficient at 7¢" level was the Delta (D) frequency band
(0.3 — 4 Hz), and the reconstructed signals from the high-pass
coefficients from each level starting from level 7 to level 2
corresponded to Theta (T) (4 — 8Hz), Alpha (A) (8 — 16 Hz),
Beta (B) (16 — 30 Hz), Gamma (G) (31 — 58 Hz), lower high-
gamma (L-HG) (62— 125 Hz), and upper high-gamma (U-HG)
(125 — 250 Hz) brainwaves respectively. The frequency ranges
for brainwaves vary across studies, particularly with ECoG,
high-gamma frequency has been considered to be in the range
of 70 — 200 Hz. However, we considered the above-mentioned
frequency ranges and divided the high gamma frequency range
into 2 parts as L-HG (62— 125 Hz), and U-HG (125—250 Hz).

III. METHOD

We developed an LSTM regression model to map the
gradiometer sensor signals to the corresponding jaw motion
irrespective of the phrases. Considering the cognitive variance
across subjects [16], [36], in this study, we only focused on
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Fig. 2. Architecture of the LSTM regression model.

subject-dependent jaw kinematics decoding. Previous articula-
tory kinematics decoding studies have [21], [25] used recurrent
models (with Bidirectional-LSTM, BLSTM). Since both MEG
and the corresponding jaw motion signals are sequential in na-
ture, we used the LSTM recurrent neural network, eying to the
future work on real-time decoding. However, for comparison,
BLSTM regression was also performed.

A. Model Architecture

We developed a 4-layered stacked LSTM architecture with
initial 2 layers containing recurrent LSTM units feeding to
a fully connected (FC) layer on the top followed by an
output regression layer (Figure 2). The individual memory
blocks of LSTM contained the default architecture of cell-gate
structure and activations. Hidden layers contained the learnable
parameters (input and recurrent weights), designed as a vertical
concatenation of the input/recurrent weight matrices for the
components (gates) of the LSTM layer namely, input gate,
forget gate, cell candidate, and output gate in the respective
order. A hard-sigmoid activation function was used to update
the gate state and tanh for the cell and hidden states. The input
data to the model was the z-score normalized 196-dimensional
gradiometer signals trained to regress to 1-dimensional jaw
signal at each sample. The ground truth for the regression
model was the jaw motion signal, smoothed with a 50 ms
window-based moving average filter and z-score normalized.
Out of 75 averagely retained trials per phrase, 50 trials per
phrase were used for training, and 12 trials per phrase for
testing. The remaining trials were used as development data
for hyperparameter tuning. A separate regression model was
developed for each subject. Hyperparameters, including the
number of LSTM units in each layer varied for subject to
subject based on least RMSE score on development data. For



TABLE I
MODEL ARCHITECTURE AND HYPERPARAMETERS
Components Details
Subl Sub2 Sub3 Sub4

Input MEG Signals
Input layer dimension 196
Sampling rate 1 kHz
Input time points 1500 2500 2500 2500
Num. of training samples 300 300 300 300
Number of dev samples 100 25 55 85
Output Jaw motion signal
Output layer dimension 1
Output time points 1500 2500 2500 2500
Number of test samples 60 60 60 60
Regression Model LSTM-RNN
Depth 4 layers
LSTM Units in Layer 1 512 640 576 640
LSTM Units in Layer 2 64 256 256 192
Number of FC nodes 50 50 50 50
Dropout 0.5 0.5 0.5 0.5
Batch size 32 32 32 32
Maximum epochs 100 40 40 50
Optimizer ADAM
Training method BPTT
Initial learning rate 0.005 0.005 0.008 0.007
Learning rate drop factor 0.5 0.5 0.5 0.5
Learning rate drop period 10 epochs
Gradient threshold method | L2 Norm
Gradient threshold value 1
betal 0.9
beta2 0.999
epsilon 1.00E-08
Loss function RMSE

unbiased splitting, the model was trained on 3 different splits
with the same number of trials in each set. A 5-fold cross-
validation on training data was also performed to check for
model overfitting on development data. For performance com-
parison with bidirectional recurrent models, LSTM units were
replaced with BLSTM units, with optimized hyperparameters.

B. Model Hyperparameters

Hyperparameters play a crucial role in optimizing model
performance. Since this is a subject-dependent study and
the neural data corresponding to each subject was different
from one another, model development and hyperparameter
tuning were performed separately for each subject. Table I
enlists the details of model architecture and hyperparameters
for each subject. The loss function was root mean square
error (RMSE), trained with an ADAM optimizer via back-
propagation through time (BPTT) with fixed 81, 52, and €
values of 0.9, 0.999, and 1E-8 respectively. The initial learning
rate was tuned with a coarse to fine setting within the range of
values of 0.1, 0.01, 0.001, 0.0001. The learning rate was set
to be halved with 10 epochs. Batch size was tuned for values
of 16, 32, 64, 128, and 256. The number of LSTM units in the
recurrent layers were tuned with a grid search within ranges
between 64 to 1024 with increments of 64. The number of FC
nodes was tuned for values from 10 to 100 with increments
of 10. A 50% dropout probability was also used on the FC
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layer for regularization, which was tuned from 10% to 60%
with 10% steps. The maximum number of epochs was tuned
for values from 40 to 150 with increments of 10 up to loss
convergence. Lo-Norm based gradient threshold was used with
a threshold value of 0.1. The final hyperparameter values were
chosen based on the least RMSE score on development data.

IV. RESULTS

Figure 3 shows the best-predicted jaw kinematics plotted
on top of originally recorded signal in a z-score normalized
space for all 4 subjects. The corresponding Pearson correlation
score and RMSE values in z-score space are given as the
titles. For a more intuitive understanding of the prediction
performance, correlation score (r) was taken as the objective
measure, similar to previous studies [21], [24]. All results
reported are the average of 3 different data splits, each with
3 runs. The mean correlations across all test trials for each
subject (1 — 4) were 0.90 £ 0.089, 0.72 + 0.17, 0.74 £ 0.20,
0.82 £ 0.15, leading to an average of about 80% correlation
score across 4 subjects (also shown as the diagonal elements
of Table III). This result and visualizing the best predictions (r
> 0.95) (Figure 3) show that it’s possible to directly map the
neural signals onto the jaw kinematics space. However, there
were a few trials for which the predictions were extremely
bad, even negative. There were about 4 trials on an average
per subject for which the correlation scores were below 0.5,
which brought down the mean scores.

The best prediction from each subject was for the trial when
subjects spoke ‘Good-bye’. Compared to the 5 phrases used
in this study this phrase was the shortest and probably LSTM
was better able to predict the jaw kinematics of short lengths
compared to the long ones. This led us to investigate the phrase
level correlation score for each subject which is shown in
Table II. We found that there was no significant difference
between predicting ‘Good-bye’, the shortest phrase, and ‘Do
you understand me’, the longest phrase (2-tail t-test, p > 0.05).
Also, the average prediction score per phrase varied across
subjects. For instance, the best prediction for subject 1 was
for the phrase ‘How are you’ (r = 0.9613) but for subject 2
it was ‘I need help’ (r = 0.7967). These results (Figure 3;
Table II) are when MEG signals with all neural oscillations
(0.3 — 250 Hz) were trained.

We also examined the contribution of each neural oscilla-
tions: Delta (D) (0.3 —4 HZ), Theta (T) (4 —8 Hz), Alpha (A)
(8 — 16 Hz), Beta (B) (16 — 30 Hz), Gamma (G) (31 — 58 Hz),
lower high-gamma (L-HG) (62 — 125 Hz), and upper high-
gamma (U-HG) (125—250 Hz), for jaw motion regression. The
results are shown in Figure 4 which represents the distribution
of correlation scores across trials obtained with each neural
oscillations individually and combined (All) as box-plots. The
mean and median correlation score was always the highest
when all the frequencies were combined to train the model,
compared to when trained with individual brainwaves. Across
4 subjects, the mean correlations were 0.80+0.15, 0.51£0.25,
0.494+0.22, 0.414+0.29, 0.26 +0.27, 0.23 +0.30, 0.274+0.32,
and 0.7710.16 for all, upper high-gamma, lower high-gamma,



Sub 1 Best: Corr=0.99, RMSE=0.23

Sub 2 Best: Corr=0.95, RMSE=0.37

Sub 3 Best: Corr=0.95, RMSE=0.35

Sub 4 Be:

st: Corr=0.97, RMSE=0.28

Normalized Magnitude

———True
—Predicted

200 400 600

1.5
800 1000 1200 1400 1600 O

500 1000 1500

2000

1.5
2500 0

500 1000 1500 2000

1.5
2500 O

Fig. 3. Trials with the best regression performance for the four subjects

500

1000 1500 2000

2500

TABLE II
PHRASE LEVEL MEAN CORRELATION SCORES FOR ALL FOUR SUBJECTS
Do you understand me That’s perfect How are you Good-bye I need help
Subject 1 0.8715 0.7797 0.9613 0.9570 0.9194
Subject 2 0.7348 0.6574 0.7491 0.6405 0.7967
Subject 3 0.7967 0.8070 0.7693 0.7964 0.5346
Subject 4 0.6528 0.9225 0.8533 0.8221 0.8692
Average 0.7640 0.7917 0.8333 0.8040 0.7800
STD 0.0928 0.1088 0.0966 0.1298 0.1712
Subject 1 Subject 2 Subject 3 Subject 4
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Fig. 4. Distribution of correlation values between true and predicted jaw motion signals across all test trials when trained with MEG signals containing all
neural oscillations (All) (group 1), and individual neural oscillations (group 2 — 8): upper-high gamma (U-HG), lower-high gamma (L-HG), Gamma (G), Beta
(B), Alpha (A), Theta (T), and Delta (D), are shown for subject 1 to 4 in the left 4 figures. Right most figure represents the statistical differences between 8

groups across 4 subjects computed with 1-way ANOVA

Gamma, Beta, Alpha, Theta, and Delta frequency respectively.
Interestingly, Delta frequency performed equally good as all
brainwaves combined. The results with gamma frequency
bands (U-HG, L-HG, and G) were satisfactory but with the
rest, the predictions were not as good.

Statistically, a 1-way ANOVA with the 8 groups (All, U-HG,
L-HG, G, B, A, T, D) across 4 subjects (Figure 4 rightmost)
showed a significant difference between the decoding perfor-
mances obtained with Delta and other oscillations (p < 0.05).
Also, a statistical difference was found between ‘All’ and the
rest of the oscillations (p < 0.05) except when ‘All’ was
compared to Delta (p = 0.9974). U-HG and L-HG were not
significantly different (p = 0.9997) but were different than the
rest (p < 0.05). The performances of Theta, Alpha, and Beta
were the lowest, significantly different than the rest (p < 0.05).
The mean correlation score was better for subject 1 compared
to the rest 3 subjects, probably due to the task of predicting a
shorter period (subject 1: 1.55s, subject 2 — 4: 2.55)
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V. DISCUSSION
A. Efficacy of Recurrent LSTM Regression

The unique arrangement of memory blocks in the LSTM
recurrent neural network model helps in performing additive
interactions to improve gradient flow over long sequences of
time series. Thus, for modeling sequential time series data
LSTM has been a popular approach, and has been applied
for modeling EEG [37]-[39] or MEG [40]-[42] based neural
signals. However, using LSTM-RNN as a regression model for
MEG signals has not been explored before. A BLSTM decoder
was used in [21] for ECoG to articulation mapping. BLSTM
considers both future and past samples to predict the outcome
of the present whereas LSTM only considers the past samples
and thus can be modeled for a real-time decoder. However,
since our ultimate goal is to synthesize speech in real-time,
we focused on an LSTM model. For comparison, we also
trained a BLSTM model with optimized hyperparameters for
jaw kinematics decoding.
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Fig. 5. Decoding Performance of LSTM v. BLSTM. Error bars indicate
standard errors across 4 subjects.

Figure 5 shows the comparison of correlation scores av-
eraged across 4 subjects with LSTM and BLSTM decoders
trained at specific neural oscillations. Although there was no
statistically significant difference between the two decoders,
BLSTM provided better correlation scores than LSTM, except
for the high gamma oscillations. Comparing our LSTM-RNN
results with the EcoG study in [21], we observed that the
results obtained in this study were equally good (perhaps
better) which further strengthens the possibility of using non-
invasive neuromagnetic signals for speech neuroprostheses.
However, the decoder architectures are different in these two
studies, and also, we utilized non-invasive neural signals across
the whole brain in contrast to the selective invasive sampling of
the ECoG study where only a part of the brain was analyzed.

B. Importance of Decoding Jaw Kinematics

Aiming for articulatory-speech neuroprostheses as the next-
generation speech-BCIs [21] is the key to restoring commu-
nication for ALS patients. In contrast to the difficulty of
collecting simultaneous articulatory data along with neural
signals via ECoG, a MEG setup has the potential to collect
both articulatory kinematics and non-invasive neuromagnetic
signals in parallel with a MASK (Magnetoarticulography for
the Assessment of Speech Kinematics) [43]. Similarly, in
this study, we used the traditional MEG set up and used a
custom air bladder connected to an air pressure sensor to
simultaneously record the jaw movement and brain activity
during continuous speech production. Although only jaw
motion data were investigated in this study, it is important
for ALS patients. Jaw kinematics have been studied in ALS
patients which show specific compensatory changes during
disease progression [44]-[47]. Both transient and non-vowel
specific changes in jaw kinematics have been shown to be
more prevalent than the other articulators [45] in ALS patients.
Thus, accurate decoding of jaw kinematics will be extremely
valuable for developing speech-BCIs for these patients. The
mean performance obtained with this study (r = 0.80) is
significant enough to motivate additional research using non-
invasive methods of articulatory speech decoding. More data

TABLE III
PERFORMANCE OF EACH SUBJECT WITH DIFFERENT SUBJECT MODEL

Model Hyperparameter Choice

Evaluation Data | Subject 1  Subject 2  Subject 3  Subject 4
Subject 1 0.8978 0.8799 0.8898 0.8821
Subject 2 0.6284 0.7157 0.5826 0.6516
Subject 3 0.6831 0.6974 0.7402 0.7275
Subject 4 0.7823 0.8183 0.8237 0.8240

with better models (e.g. Sequence-to-Sequence translation)
or deep neural network features [48] could provide better
performance. With MEG, both jaw and lips data can be
collected simultaneously either with MASK [49] or with the
current MEG set up (MEG+ Jaw pressure sensor) along with
a video camera (equivalent to [24]), after which continuous
real-time speech synthesis can be possible.

C. Role of Neural Oscillations in Jaw Kinematics Decoding

As shown in Figure 4, combining all the neural oscillations
resulted in the best performance. This result was expected as
the contribution of Gamma and high gamma frequencies for
speech-motor movement [27] as well as the effectiveness of
low-frequencies in speech decoding [13], has been previously
shown in the literature. The interesting observation was the
high performance obtained with the upper high-gamma and
Delta frequency bands. Although it can be argued that the
high-frequency muscle artifacts and the low-frequency move-
ment artifacts might have influenced this behavior with upper
high-gamma and Delta frequency respectively, the consistency
of high performance across trials and subjects for these two
brainwaves were significant. Including these signals in the
analysis would thus still be beneficial. Also, it should be
noted that most of the decoding results (correlation scores)
were positively skewed (median > mean) and the outliers
were negative. This begs for a better automatic trial rejection
strategy, which may improve the performance significantly.

D. Efficacy of Hyperparameter Tuning

The hyperparameters are a crucial factor in getting optimal
performance. We tuned all the hyperparameters separately for
each subject based on the performance with the development
data. The learning rate and the number of nodes in LSTM
layer 1, were found to be the most important hyperparameters
for jaw motion regression. Based on the coarse-to-fine tuning
strategy of learning rates, an increase in mean correlation score
(and decrease in RMSE) was observed when the learning
rate was decreased from 0.1 to 0.005 — 0.008 and below
that the performance started to decrease. An average of 0.08
increase in correlation score was observed from standard to
the optimized setting. In regards to the LSTM units, layer 1
units were found to be more contributing than layer 2. On
average, an increase of (.12 correlation score was observed
when the number of LSTM units was increased from 64 to
512 — 640 in the first layer. The results were better when the
number of nodes for the second layer was less compared to the
first. Additional LSTM layers did not increase performance,
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Fig. 6. Subject-dependent (SD) v. mixed v. subject-independent (SI) jaw
decoding performance

probably due to the small number of data samples. Adding
dropouts to LSTM layers did not contribute to better perfor-
mance, however, adding dropouts after the FC layer increased
the correlation score by 0.03. A dropout probability of 0.5
was found to be the best. The rest of the hyperparameters
were insignificant in tuning. It was necessary to tune hyper-
parameters for each subject separately as evident from Table
IIT which shows the average correlation score of the predicted
and recorded jaw motion signal, obtained by training the MEG
signals with all oscillations (0.3 — 250 Hz) of each subject
with the tuned model of other subjects. Taking subject 2 as an
example, the average decoding performance was 0.72 with its
own model (learning rate=0.005, layer 1 nodes=640, and layer
2 nodes=256), which decreased to 0.58 when trained with the
hyperparameters tuned for subject 3 (learning rate=0.008, layer
1 nodes=576, and layer 2 nodes=256). This also shows the
significance of the learning rate and the number of nodes in
layer 1 in the used LSTM regression model.

E. Subject Independent Jaw Kinematics decoding

Cognitive-behavioral variance across subjects makes it dif-
ficult to generalize a subject-independent neural data-based
model [16], [36]. Thus, most of the BCI works in the field are
done by developing decoders for each subject. To highlight
this issue in our data, we developed a subject-independent (ST)
model with the same architecture and evaluated with 3 fold
cross-validation (train with 2 subjects and test with 1, repeated
for 3 unique shuffles). Only 3 subjects (subject 2—4) were used
in this SI experiment since for subject 1, the number of time
samples was different (subject 1: 1.5s, rest 3 subjects: 2.55s).
We also developed a mixed model where we combined the data
from all 3 subjects and held-out 20% data for testing (similar
to subject dependent testing: 60/300). A comparison of the
performances of these 3 models (SD, mixed, and SI) is shown
in Figure 6. Clearly, for SI model, the average correlation
score was not as good (r = —0.06). The mean correlation

score of the mixed model was satisfactory (r = 0.69) but
still less than the SD model (r = 0.80). All of these results
were with MEG signals including all the neural oscillations.
More data and better adaptation strategy might improve the SI
model performance, nonetheless, the motivation for a subject-
dependent model is clear, and appropriate when considering
the variance that is inherent in patient-specific disease progres-
sion for which these models can be tailored by online learning.

VI. SUMMARY

In this study, we investigated the possibility of synthesizing
jaw kinematics from non-invasive neural (MEG) signals as
a crucial first step toward developing speech neuroprostheses
for ALS patients. We acquired the jaw motion and neural
signals simultaneously with an MEG setup and developed an
LSTM regression model to efficiently predict jaw kinematics
from the MEG signals with an average correlation score of
0.80 across four subjects. Our analysis of the contribution of
specific neural oscillations indicated high efficacy when using
high-gamma and Delta frequencies in jaw motion decoding.
This study only included healthy subjects, and the approaches
used here are needed to be tested with data from ALS subjects.
Future work will focus on decoding articulatory kinematics
including lips and tongue (in addition to the jaw) from the
MEG signals of patients with ALS.
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