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Abstract—Obstructive sleep apnea is a breathing disorder
affecting 2-4% of the adult population. It is characterized by
periods of reduced breathing (hypopnea) or no breathing (apnea).
Several machine learning algorithms have been proposed to
automatically classify sleep apnea events, but little work has been
done on predicting such events in advance, which is important for
the treatment of sleep apnea, and especially for the development
of auto-adjusting airway pressure devices to maintain continuous
airflow during sleep.

In this paper, we propose three methods for predicting sleep
apnea events, based on convolution neural networks and Markov
chains. Specifically, we use data from respiratory signals (nasal
flow, abdominal and thoracic) to predict apnea and hypopnea
events in a 30-second period using the prior 60 seconds’ data.

We evaluate the performance of the proposed methods for
automatically learning the required features and predicting the
sleep apnea events on a large dataset containing 48,000 examples
from 1,507 subjects. The results show the effectiveness of the
proposed convolutional neural network method, which achieved
accuracy of 80.78% and F1 score of 80.63%. We also analyse the
Markov chain rules and provide an overview of the transitions
between apnea and normal events.

Index Terms—Convolution neural networks, Markov chains,
Sleep apnea event prediction

I. INTRODUCTION

Obstructive sleep apnea (OSA) is one of the most common
types of sleep-related breathing disorders, affecting 2–4% of
the adult population [1]. It affects a person’s ability to sleep
well due to obstructions in the airway, causing loud snoring,
choking and gasping for breath during sleep, and also daytime
sleepiness and headaches. If left untreated, it can lead to
serious problems such as heart attack, diabetes, depression,
and early death [2].

The breathing problems are exhibited as abnormal events,
most importantly apnea and hypopnea. An apnea event is
defined as a complete or almost complete cessation of airflow
for more than 10 seconds, while a hypopnea event is a
reduction of the airflow of at least 30% of amplitude baseline
for more than 10 seconds [2]. Fig. 1 shows examples of the
nasal airflow signal during 30-second segments classed as
normal and apnea.

The golden standard to diagnose OSA is through
polysomnography (PSG) [3], where patients are monitored
overnight, with multiple sensors attached to their bodies. These
sensors measure signals from various channels, e.g. nasal

airflow, abdominal and thoracic effort, brain activity (EEG),
heart rhythm (ECG) and eye movement. Sleep experts analyse
the PSG recordings and manually mark the occurrence of
apnea and hypopnea events. The severity of sleep apnea is
determined by the number of these abnormal events during
the night. However, manual inspection of long PSG recordings
is very time consuming, expensive and subjective [4]. This
motivates the application of machine learning approaches for
automated analysis of PSG data.

Although many machine learning approaches have been
developed to automatically classify and detect apnea and hy-
popnea events [5]–[8], few studies have focused on predicting
in advance the occurrence of abnormal events. Predicting such
events is important for the treatment of OSA, and especially
for the development of auto-adjusting airway pressure de-
vices to maintain continuous airflow during sleep [9]. Such
machines can monitor the patient overnight, detect the onset
of abnormal breathing events and automatically adjust the air
pressure accordingly, e.g., by increasing the air pressure before
anticipated events in order to prevent them. This requires
the development of methods for accurate prediction of these
events.

Hypothetically, an apnea or hypopnea event may be pre-
dictable because these events are in some way temporally
proximate, such that the occurrence of an event increases the
likelihood of more following soon after. Alternatively, there
may be predictive features in the respiratory data that indicate
that an apnea or hypopnea event is to follow. In the first case, a
Markov chain model may be suitable to model the events, and
predict future ones. In the latter, a supervised neural network
model could learn the predictive features. In this work we have
explored both approaches.

In our previous work [4], we proposed the use of convo-
lutional neural network (CNN) models to classify 30-second
data segments as apnea, hypopnea and normal, where the first
two classification identified that they contained at least of one
instance of the respective events. The CNN model was able
to achieve high accuracy of up to 83.5% when using data
from the nasal flow, thoracic and abdominal signals. By using
only the raw data of the three signals, without any manual
feature engineering, the CNN was able to learn the informative
features for classifying OSA events. Therefore, in this work
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Fig. 1. Example of a 30-second segment from nasal airflow signal during
Normal (N) and Apnea (A) events

we also consider CNN models but explore their efficacy in
the task of learning to predict the occurrence of OSA events
within a 30-second segment, using raw respiratory data from
the previous 60 seconds.

We also investigate the transitions between normal and
apnea events during sleep and construct Markov chain rules
[10] to summarize them. The Markov chain rules are used
alone and in conjunction with a CNN classifier to help in the
prediction of apnea events.

The main contributions of this work are as follows:
1) We propose three novel methods built upon CNNs and

Markov chains to predict OSA events. These methods use
only data from respiratory channels that can be easily
and non-intrusively recorded (nasal flow, abdominal and
thoracic). They also operate directly on the raw data,
without manual feature engineering, in contrast to the
previous approaches for sleep apnea prediction. We also
provide a Markov chain method based only on the true
class labels for each 30-second segment of data.

2) We conduct a comprehensive evaluation using a large
dataset of about 48,000 examples from 1,507 subjects.
For comparison, previous work uses small datasets of
up to 64 subjects. Our results show that the CNN-only
method was the most accurate method achieving accuracy
of 80.7% and F1 score of 80.6%, which is a promising
result for practical applications.

3) We analyse the constructed Markov chain rules and
provide an overview of the transitions between apnea and
normal events.

II. RELATED WORK

Many approaches have been proposed to automatically
detect and classify apnea and hypopnea events, using a va-
riety of biosignals such as electrocardiogram (ECG) [5], [8],
abdominal and thoracic bands [6], and instantaneous Heart
Rate (IHR) and blood oxygen saturation (SpO2) [7]. Recently
there have been many deep learning approaches that have
been investigated for this application [11], showing excellent
classification results and ability to automatically learn features
from biosignals. These techniques can be applied to raw
signals, or output in some processed form such as wavelet
spectrograms [12]. However, only a few studies have focused
on predicting apnea events in advance.

In [9], a LAMSTAR neural network was used to predict
apnea and hypopnea events 30 to 120 seconds in advance.
The input signals included HRV, nasal pressure, oronasal

temperature, submental EMG and electrooculography. Data
segments of 30, 60, 90, and 120 seconds, labeled as apnea
or hypopnea, were extracted with their preceding segments of
equal duration. For each preceding segment, statistical features
were calculated from the discrete wavelet transform of the
signals. A separate prediction model was built for each target
duration and the best results were achieved using 30 and 60
seconds leading time to predict the 30-second segment ahead.
The evaluation was done using data from 64 subjects.

In [13], three different neural networks (Elman, radial basis
function, and feed-forward backpropagation) were used to
predict apnea events from 30 to 120 seconds ahead, based
on nasal flow, abdominal and thoracic signals. However, the
dataset was very small — it contained recordings from only 5
subjects. Feature engineering was performed by extracting the
coefficients of the wavelet packet transformation of the leading
time segment and generating a set of statistical features. The
best result was obtained by the feed-forward neural network,
with average AUC=0.8662 over the different leading times.

A rule-based approach for predicting sleep apnea events
based on statistical features extracted from ECG recordings
was proposed in [14], using differential evolution to construct
the rules. It uses data from the last three minutes and predicts
the occurrence of apnea event in the next minute. The approach
was evaluated on data from 35 subjects, achieving accuracy
of 86.2%.

There is a potential to apply existing OSA event detec-
tion techniques to instead predict future events, especially
in combination with Markov models which are useful for
understanding the behaviour of sleep apnea. Markov models
have been used to model sleep dynamics in patients with
sleep apnea. In [15] Markov chains were applied to study
the occurrence of sleep apnea events. An evaluation was
conducted using 30-second segments from 14 subjects. It was
found that the order of the best Markov chain model depends
on the sleep stage and sleep period but overall a third order
Markov chain was most appropriate. In [16], a Markov process
was used to understand the transitions between sleep and wake
in patients with OSA. The hypnograms of 113 patients were
used to build a Markov transition matrix and analyse the
duration of all sleep stages.

In summary, most of the previous work on predicting apnea
events do not take into consideration the transitions between
apnea and normal events. In addition, the proposed models
require extracting features from the leading time segments,
that are then used as input to machine learning algorithms.
The evaluation is also conducted on small datasets with 5–
64 patients. In this work, we propose new approaches which
use deep learning CNN models and Markov chains for auto-
matically learning the required features to predict sleep apnea
events in advance. In addition, we analyse the learned Markov
chain rules and provide an overview of the transitions between
apnea and normal events. Finally, in contrast to previous
studies, our evaluation is conducted using a large dataset
containing 48,000 examples from 1,507 patients.
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Fig. 2. Proposed approach

III. PROPOSED APPROACH

In this paper we propose and compare three approaches
for predicting the presence of OSA events in a 30-second
segment using data from the preceding 60 seconds. We use the
three signals commonly collected in PSG systems for moni-
toring respiration: nasal flow, abdominal and thoracic effort.
We simplify the classification task to determining whether a
segment demonstrates normal breathing (N), or contains apnea
or hypopnea events (A). These methods are illustrated in Fig. 2
and described below.

A. Second order Markov Chain: This method uses only a
Markov chain prediction model. Given the type of event
of the 60-second leading time segment, it predicts the type
of event of the next 30-second segment. It uses the true
class labels of the two 30-second leading time segments
and transitional probabilities estimated from the training
data (see Fig. 6). This method serves as a baseline for
the following two methods. Since it requires the true
class labels for the preceding data, it is unsuitable as an
automated prediction tool.

B. Markov Chain-augmented CNN: This method uses a
CNN classification model, a Markov chain and a prob-
abilistic rule. The CNN model takes as input the raw
signal data from the 60-second leading time segment to
predict the probability of the type of event for this period.
An aggregated version of the above Markov chain1 of
the transition probabilities for the subsequent segment’s
class are estimated from the training data. The rule of
total probability is then used to combine the CNN and
Markov chain probabilities and predict the type of event
for the next 30-second segment. This approach therefore
automates the classification of events in the observed data,
but still relies upon statistical transition probabilities to
predict the class of the next segment.

C. Predictive CNN: Similar to the previous method, a CNN
takes as input the raw data from the 60-second leading
time segment, but is trained to predict the type of event
(N or A) for the next 30-second segment. It therefore

1As shown later, the support for some events was too low to allow a full
2nd order Markov Chain to be used in conjunction with a multi-class CNN.

avoids relying upon the statistical transition probabilities
entirely.

These methods are each described in turn below.

A. Second Order Markov Chain

Markov chains [10] are probabilistic models that describe
the possible transitions from one event to another, where the
probability of a certain event depends only on the outcome of
the previous event. A second-order Markov chain uses the state
of the previous two instances to predict the probability of the
next instance. In this particular application we take the known
true class labels (A for the occurrence of an apnea or hypopnea
event, N for normal breathing) for each 30 second segment of
data in a sequence of 90 seconds’ respiration, and calculate
the probability of transitioning from each possible pair (AA,
AN, NA, NN) to either of the possible final outcomes (A or
N). Fig. 5 shows the Markov chain diagram and transitional
probabilities for our data. More details about it are presented
in the Section V. Using this model, a prediction can be made
for new data by picking the outcome class with the highest
probability, given the labels for the prior two segments.

B. Markov Chain-Augmented CNN

CNNs are one of the main types of deep neural networks.
They are mostly used in computer vision and image ap-
plications showing impressive results. In the last few years
they have also been applied to other types of data, e.g. for
weather forecasting [17], demonstrating excellent results. The
main advantage of CNNs is their ability to learn informative
features from high dimensional data without manual feature
engineering.

CNNs include two main types of layers: convolutional and
max pooling. Convolutional layers consist of a set of filters
which slide through the input height and width and convolve
with the weight matrix of the filter to compute the feature
maps. Convolutional nodes in same filter share the same set
of weights. Each convolutional layer has a pre-specified size
of kernels and strides which controls how the filters move
through the input and between the layers. Max pooling layers
are usually placed after the convolutional layers, their main
objective is to down-sample the input features by computing
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Fig. 3. Architecture of the predictive CNN model described in Section V-C. It uses data from three signals (flow, thoracic, abdominal) for the 60-second
leading time segment as input and outputs the probabilities for Normal (N) and Apnea (A) events for the next 30-second segment

the maximum value of the set of adjacent convolutional nodes
that are connected to them. A max pooling layer operates on
each feature map independently to form a new set of the same
number of pooled feature maps.

In previous work [4], [18], we showed that CNNs can
successfully learn the features required to detect apnea events
from PSG data. We used flow, abdominal and thoracic sig-
nals with CNNs to classify 30-second segments into normal
and apnea, achieving accuracy of 83.7% and outperforming
existing methods.

In this proposed method we use a CNN to estimate the
probability of each class (Pt(A) and Pt(N)) for the preceding
60 seconds, and use these as input to the equations (1) and
(2) with Markov chain probabilities to estimate the probability
of the next 30-second segment (Pt+1(A) and and Pt+1(N)),
again choosing the highest probability class.

For consistency with our third method (Section III-C), we
first build a CNN prediction model that classifies the 60-
second leading time segment. Due to the low support of apnea
events, we aggregated the true class labels of both 30-second
segments, classing any combination involving an apnea event
(NA, AN, AA) as a single class A, and all other instances as
N. The CNN therefore produced as output the probabilities for
each class, P (A) and P (N). This dispenses with the need for
the true class labels used in the previous method, and provides
a probabilistic estimate rather than a binary classification.

We then built a Markov chain and estimated the conditional
probabilities P (A|A), P (A|N), P (N |A) and P (N |N) from
the training data, where the prior state is for the previous 60
seconds and the posterior class is for the next 30 seconds.
Fig. 6 shows the Markov chain diagram and transitional
probabilities for our data.

The probabilities from the CNN and Markov chain were
combined using the rule of total probability:

Pt+1(A) = Pt(A)× P (A|A) + Pt(A)× P (A|N) (1)

Pt+1(N) = Pt(N)× P (N |N) + Pt(N)× P (N |A) (2)

where Pt(A) and Pt(N) are the probabilities produced by
the CNN classifier at time t for the 60-second leading time
segment; P (A|A), P (A|N), P (N |N) and P (N |N) are the
conditional probabilities extracted from the Markov chain, and
Pt+1(A) and Pt+1(N) are the probabilities of the two events
at time t+ 1 for the target 30-second segment.

The class corresponding to the higher probability, Pt+1(A)
or Pt+1(N), is the predicted class for the next 30-second
segment.

C. Predictive CNN

As with the above method (Section III-B), a CNN is
constructed to use the raw flow, abdominal and thoracic signals
from the previous 60-second segment. However, this method
makes no use of the class labels of the preceding data during
training, and instead is trained to predict the type of event for
the next 30-second segment directly, using the posterior class
true label as the training data for its output.

IV. DATA

We used the Multi-Ethnic Study of Atherosclerosis (MESA)
dataset which was collected by the National Sleep Research
Resource (NSRR) [19]. It includes a PSG recordings for
2,056 participants, collected through a sleep study between
2010 and 2011. Each patient has a full night recording of
at least 7 hours including the following signals: nasal airflow,
abdominal, thoracic, EEG, and ECG. To label the apnea events,
each recording (32 Hz) was divided into 30-second segments
and manually marked by sleep experts as normal, obstructive
apnea, hypopnea.

Our analysis included only subjects for whom there were
occurrences of obstructive apnea or hypopnea events; subjects
without these events were excluded. This left us with 1,507
out of the initial 2,056 subjects.

For our experiments, we selected a balanced dataset of
47,959 segments, consisting of 23,080 normal and 23,078
apnea segments. A segment was classified as apnea if it
included apnea or hypopnea events occurring for more than 10
seconds. In the 23,078 apnea segments, half contained apnea
events and the other half contained hypopnea events.

For each of the 47,959 selected segments, we also extracted
the previous two 30-second segments as shown in Fig. 4.
Therefore, the final dataset consists of raw data from flow,
abdominal and thoracic signals for a set of 90-second samples,
together with the true class labels for each 30-second segment.
The dataset was divided into 75% training dataset and 25%
hold-out test dataset. The training dataset consists of 36,421
samples, 17,311 ending in segments classed normal and 17,310
ending in segments classed as apnea. The test dataset consists
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Fig. 4. Example of a 30-second segment of respiratory signal data containing an apnea event, along with the preceding 60 seconds.

of 11,538 samples (5,770 ending in normal and 5,768 ending
in apnea segments).

V. EXPERIMENTS

To compare the three methods proposed in Section III,
models for each were constructed using the 75% training
dataset, and then evaluated using the 25% test set. In this
section, we discuss the construction of each model.

A. Second Order Markov Chain

This method is considered as the baseline method, so instead
of building a classifier to classify the 60-second segments
into Normal or Apnea events, we used the true label of the
60-second segments to predict the next 30-second segment.
Fig. 5 shows the transition probabilities learned from the
75% training dataset (Table I) that are then aggregated in
Fig. 6 to construct the Markov chain; more details about the
aggregation and Markov chain construction are provided in
Section V-B1. It should be noted that situations where an apnea
event was followed by a 30-second period without further
events (AN) were very likely to result in another apnea event.
This demonstrates the value of a 2nd order Markov Chain,
since these situations would not be captured by an ordinary
(1st order) model.

Based on Fig. 6, most of the normal prior segments have
the highest probability to stay as normal in the next 30-second
segment (67.52%) and the same applies for apnea events
(81.01%). This baseline method therefore establishes the rule
that a 60-second period of no apnea or hypopnea events is
predicted to be followed by another 30 seconds without events,
while any other situation (in which an apnea or hypopnea event
has occurred in the past 60 seconds) is predicted to be followed
by another apnea/hypopnea event.

B. Markov Chain-Augmented CNN

This method consists of two components, the CNN clas-
sifier and the Markov model, both of which were trained
individually on the 75% training dataset. The models were then
combined using the probabilistic rules (1) and (2) to obtain the

Fig. 5. Probability distribution showing the transitions between the 60-second
leading time segments Normal Normal (NN), Normal Apnea (NA), Apnea
Apnea (AA), Apnea Normal (AN), to the next 30-second segment (Apnea,
Normal)

predictions for each sample in the 25% holdout test dataset.
The probabilities Pt(A) and Pt(N) used from the CNN in
these equations were taken as the values of the last softmax
layer of the CNN model.

Details for the two components are described separately
below.

1) Constructing the Markov model: The Markov chain used
in this method shows the probability for an apnea and normal
event in the next 30-second segment, given the sequence of
events in the leading 60-second segment.

The Markov chain is constructed using the class labels of the
60-second leading segment and the 30-second target segment,
estimating the probabilities from the training dataset. Since
the original dataset consists of 30-second labeled segments,
we re-labelled the 60-second segment by aggregating the two
30-second segments. This was done as follows:

• Label the 60-second segment as Apnea (A), if the se-
quence of events is Apnea then Apnea (AA), or Normal
then Apnea (NA), or Apnea then Normal (AN).

• Label the 60-second segment as Normal (N), if the
sequence of events is Normal then Normal (NN).

In other words, a 60-second leading segment is labeled as

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 6. Aggregated Markov chain showing the transitions between 60-second
leading time segments to the next 30-second segment. Both lead and following
segments are classed Apnea (A) if an apnea or hypopnea event occurs,
otherwise Normal (N).

Apnea if any of its two 30-second segments includes an apnea
event; otherwise it is labelled as Normal.

After labeling, the 75% training dataset consists of 60-
second segments (22,124 normal and 12,497 apnea) while
the 25% test dataset consists of 7,400 normal and 4,138
apnea events. Table I shows the sequence events for the
training dataset which we used to build the Markov model,
where P (A|A) = 10124/12497 = 81.01%, P (N |N) =
14938/22124 = 67.52%, P (N |A) = 2373/12497 = 18.99%,
P (A|N) = 7186/22124 = 32.48%. The resulting model is
shown in Fig. 6.

TABLE I
TRAINING DATASET EVENTS SEQUENCE TRANSITIONS BETWEEN
60-SECOND LEADING TIME SEGMENT AND THE NEXT 30-SECOND

SEGMENT

Leading 60 seconds Next 30 seconds
Normal Apnea Total

Apnea
AN 1490 4553 6043
NA 699 3746 4445
AA 184 1825 2009

Normal NN 14938 7186 22124
Total 17311 17310 34621

2) CNN classifier parameter selection: The classifier input
for the CNN is the raw data of the three biosignals (flow,
abdominal, thoracic) of the 60-second leading time segments
where the input includes 5,760 features (3 signals × 60
seconds × 32 Hz). The classifier has two output nodes,
corresponding to the two classes (Normal or Apnea) of the
60-second segment, where the softmax function gives that
probabilities of each class.

CNNs include several hyperparameters that need to be
selected and optimized, e.g., number of convolutional and
max pooling layers, number of filters, kernel size, number of
strides for each convolutional layer, pool size for each max
pooling layer; type of activation function, optimizer and loss
function. In our previous work [4], we have built a CNN model
to classify apnea events as normal, obstructive apnea and

hypopnea, for 30-second segments of flow, abdominal, thoracic
signals, which has shown good performance. We therefore
modified this CNN structure by first doubling the input size,
and reducing the number of output classes from three to two.

The hyperparameters were then manually tweaked, varying
each parameter in around its initial value, to find the the param-
eter set with with the best average classification accuracy when
evaluated using 10-fold cross-validation. The final structure of
the CNN model is shown in Table II.

During training, a dropout [20] of 0.5 was used to avoid
overfitting. The Adam optimizer [21] was used to minimize
the categorical cross entropy function. The number of training
epochs was set to 100 with a batch size of 100. All convolution
layers used the Relu activation function.

C. Predictive CNN

As with the model in Section V-B2 the CNN prediction
model takes as input the raw data of the flow, abdominal and
thoracic signals from the preceding 60 seconds. However, the
output of the CNN model is the probability for the two classes,
Normal and Apnea, for the next 30-second segment.

To select the best architecture for the predictive CNN, 10-
fold cross-validation was evaluated with different parameter
combinations using the 75% training dataset. The model with
best average accuracy was selected and evaluated on the
holdout test dataset. The final selected architecture is shown in
Fig. 3. It consists of three convolutional layers, three max pool-
ing layers, and one softmax layer with two nodes, outputting
the probability for class Normal and Apnea respectively for the
next 30-second segment. The final predicted class is the one
corresponding to the node with highest probability. Each of the
convolutional layers is followed by a max pooling layer with a
pool size of 2. The number of filters for the three convolutional
layers was set to 32 with ReLu activation function. The kernel
size for each of the three layers is as follows: Conv1 (3× 10)
with strides=10, Conv2 (1 × 6) with stride=6, Conv3 (1 × 4)
with stride=4. The first layer kernel height was set to 3 so the
filter moves through the three signals at the same time and
combines the features.

During training, a dropout of 0.5 was used to avoid over-
fitting. The Adam optimizer was used to minimize the cate-
gorical cross entropy function. The number of training epochs
was set to 300 with a batch size of 100.

TABLE II
CNN STRUCTURE FOR MARKOV CHAIN-AUGMENTED CNN METHOD

Classifier structure

Conv (32@3× 3), Conv (32@1× 2)
Max-pool (pool size = 2)

Conv (32@3× 3), Conv (32@1× 2)
Max-pool (2)

Conv (32@3× 3), Conv (32@1× 2)
Max-pool (pool size = 2)

Flatten()
Softmax hidden layer (number of neurons = 2)
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TABLE III
RECALL, PRECISION AND F1 SCORE, ACCURACY (%) ON THE HOLD-OUT

TEST DATASET FOR THE THREE PROPOSED METHODS

Method Event Recall Precision F1 score Accuracy

2nd order
Markov
Chain

Normal 86.76 67.65 76.02
Apnea 58.50 81.54 68.21
Average 72.63 74.59 72.07 72.62

Markov
Chain-
augmented
CNN

Normal 86.03 70.53 77.51
Apnea 64.04 82.08 71.95
Average 75.037 76.31 74.73 75.04

Predictive
CNN

Normal 89.46 76.23 82.32
Apnea 87.24 72.09 78.94
Average 81.73 80.78 80.63 80.78

VI. RESULTS AND DISCUSSION

From the Markov chain transitions in Fig. 5 and Fig. 6, we
can see that if the 60-second leading time segment includes an
apnea or hypopnea event, there is a high (81.01%) probability
that the next 30-second segment will also include an apnea or
hypopnea event. This suggests that apnea and hypopnea events
tend to occur in episodes that take time to abate, confirming
the expectation that they are temporally proximate. Moreover,
based on Fig. 5 and Table I we can see that even when an apnea
segment is followed by a normal segment (AN), there is a
75.34% chance that another apnea segment will follow. Table I
also shows that the total number of 30-second apnea segments
is 17,310 where 26.3% had AN in their 60-second leading
time, 21.64% had NA, 10.54% had AA and 41.51% had NN.
This suggests that the least probable sequence of events is
AA in the leading time, then A in the next 30 seconds. This
is understandable as having 3 apnea events within 90 seconds
is considered a rare case and usually happens in patients with
severe sleep apnea.

After applying the three methods on the 25% hold-out test
dataset, the efficiency of each method was evaluated based
on how many apnea or normal 30-second segments were
predicted correctly using the information from the prior 60
seconds. We calculated precision, recall, F1 score and accuracy
to evaluate and compare the performance of each method. The
results are shown in Table III.

The best results were obtained by the predictive CNN,
achieving accuracy of 80.78%, followed by the Markov chain-
augmented CNN with accuracy of 75.04% and then the true-
label based Markov chain with accuracy of 72.62%. The
predictive CNN also outperformed the other methods in terms
of all recall and F1 scores. Interestingly the Markov chain-
augmented CNN performed best for precision in predicting ap-
nea segments. This may be relevant for systems where falsely
predicting such events could have important repercussions.
However, it is more likely that missing a coming event has
more consequence, so the much higher apnea recall of the
predictive CNN is the more important measure.

The high accuracy of all the methods, considerable above
the baseline of 50% for our class-balanced dataset, indicates

that the occurrence of apnea events can be predicted in ad-
vance. Since both CNN models are fast to execute and require
no manual input, they can be used in real time applications in
conjunction with preventative techniques (such as an adaptive
CPAP system) to help reduce the number of apnea events
occurring during sleep.

From an application perspective, a perfect system would
predict and prevent all apnea and hypopnea events. It is
therefore worth comparing how the methods perform when
only considering sequences where no such events occur in the
preceding 60 seconds. Our test dataset contained 7,400 such
instances, with 32% leading to an apnea segment. Naturally
the Markov chain method predicted no apnea segments in any
cases. The predictive CNN detected the apnea segments with
67.5% recall and 80.0% precision, which the Markov chain-
augmented CNN achieved 55.4% recall and 71.1% precision.

The key difference between the two CNN models was the
target variable on which each model was trained. Since the
predictive CNN was trained with the next segment’s true
class, it would learn features likely to be indicative of a
coming apnea or hyponea event. By contrast, the Markov
chain-augmented CNN depends upon the temporal proximity
of such events to make successful predictions. The fact that
the former method gave such superior performance suggests
that the respiratory channels contain information that can be
used to predict apnea and hypopnea events before they occur.

The strong performance of the predictive CNN is also
very promising given that it did not involve any manual
feature engineering. The predictive CNN model was able to
automatically extract and combine 5,760 input features, and
these features are likely to be less prone to bias between
subjects — by comparison, the transition probabilities used
in the Markov chain methods are known to vary significantly
between individuals depending upon the severity of a person’s
OSA condition [15].

VII. CONCLUSION

In this work, we proposed three new methods for predicting
the occurrence of apnea events in advance, based on CNNs and
Markov chains. Specifically, using a 60-second leading time,
the task was to predict the type of event (normal or apnea)
in the next 30-second segment. The proposed methods use
data from three respiratory channels that are easily and non-
intrusively recorded (nasal flow, thoracic and abdominal) and
do not require any feature engineering.

The performance was evaluated on a large dataset containing
48,000 examples from 1,507 subjects. We also provided an
overview of the transitions between apnea and normal events
by analysing the constructed Markov chain rules. The best
result was obtained by predictive CNN method, giving an
accuracy of 80.78% and F1 score of 80.63%. This is a very
promising result showing the potential of CNN for use in
practical applications for patient monitoring and reducing the
number of apnea events. Although some previous approaches
have reported higher accuracies, our results are achieved with
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a smaller set of input signals and tested on a much larger
number of subjects’ data.

The success of our methods suggests that apnea events can
be predicted in advance of their occurrence using features from
respiratory data, and that they are not predictable simply due
to temporal correlation.

VIII. FUTURE WORK

A challenge for any deep learning approach for use in a
medical application is the black-box nature of such models.
We wish to investigate the features learned by the predictive
CNN, to better understand what characteristics of the leading
signals are predictive of an apnea event.

We intend to explore prediction of apnea and hypopnea
events with longer leading times, and with an interval of time
between the monitored and predicted segments, to increase the
opportunity for a medical device to preemptively intervene.
We also hope to develop models that use other promising
biosignals, such as heart activity, which may be easier to
monitor in a home environment.

While our Markov-chain augmented CNN approach was
less effective than the predictive CNN, it may be possible to
combine these approaches to make a model more tailored to
an individual. This could be done by constructing a Markov
chain model of the respiratory events exhibited by the patient,
and using these to weight the predictions from the CNN.
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