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Abstract—Effective analysis of EEG signals remains a challeng-
ing task. So far, the analysis and conditioning of EEG have largely
remained gender-neutral. This paper explores the evidence of
gender effects on EEG signals and confirms the generality of
these effects by achieving successful gender prediction through
EEG signals. Specifically, we propose a novel statistical feature
representation that captures the gender discrepancy, and design
a customized classification ensemble framework to overcome the
non-stationary characteristics in EEG signals, utilizing findings
obtained through several machine learning techniques including
clustering, visualization, and metric learning. Apart from gender
differentiation, the age effect on EEG gender patterns is also
revealed.

Index Terms—EEG, gender, age, clustering, classification, en-
semble

I. INTRODUCTION

Electroencephalography (EEG) is a measurement of multi-
channel potentials that reflects the electrical activity of the
human brain. The study of the brain’s electrical activities
through the EEG records is one of the most important tools
for the diagnosis of neurological diseases, such as epilepsy,
brain tumors, head injury, sleep disorders and dementia [1].
Compared with other non-stationary time series data, EEG
signals demonstrate a high noise-to-information ratio. The
signals can be hugely affected by a series of artifacts, i.e., EEG
characteristics that differ from signals generated by activities
in the brain [2]. Common artifacts include eye movements,
jaw tension, and muscle contractions. Also, EEG signals are
highly individual-specific. The EEG associated with seizure
onset in one patient may closely resemble a benign pattern
within the EEG of another patient [3]. This brings challenges
to effective cross-subject pattern identification.

Research into gender influences is imperative to fully un-
derstand a host of brain disorders with gender differences in
their incidence and/or nature [4]. Brains of men and women
are different, both genetically determined and epigenetically
adjusting to environmental factors [5]. This is partly medi-
ated via a gender-specific release of hormones as well as
differential involvement of the immune system, with microglia
masculinizing and T cells feminizing brains. This, in turn,
leads to a gender-specific difference in the prevalence of
brain disorders: males are more prone to brain disorders
arising during development such as autism (5x), conduct

disorder (3x), ADHD (3x), schizophrenia (1.5x), dyslexia
(3x), stuttering (2.3x) and Tourette’s syndrome (4x), whereas
females have more adult-onset brain disorders such as major
depression (x2), anxiety (2x), panic disorders (2.5x), OCD
(1.5x), PTSD (2x), bulimia (4x), migraine (3x), MS (2x),
myasthenia gravis (4x) and Alzheimer’s disease (2x) [5]. To
unravel the underlying brain mechanisms behind these clinical
differences it may be of relevance to understand the under-
lying differences in electrical brain activity between men and
women. Detection of EEG gender patterns may enable a better
understanding of the gender differences in the development
of certain neuropsychiatric diseases, responses to treatments
[6], and the bio-psycho-social-behavioral roles; which will,
in turn, enable the development of novel targeted gender-
specific interventions. We, therefore, embarked on a study
using machine learning to extract differences between the two
sexes using electroencephalographic data from a database of
normal healthy people.

This study focuses on using machine learning techniques to
explore evidence of gender effects on EEG signals and attempt
a novel classification model to predict the gender of a subject
through their EEG signals.

This paper is organized as follows. In Section II, we
review related work and discuss some common approaches
to represent EEG signals. Section III introduces the data
preprocessing procedures and presents the EEG analysis
outcome, justifying our modeling approach. Then in
Section IV, we introduce our four-layer customized gender
classification model and present the results on gender
classification. We conclude the paper in Section V.

II. RELATED WORK

Previous studies have found some evidence of the gender
effects on EEG. In [7], the EEG signals of 80 individuals
between the ages of 8 and 12 years were analyzed. Differences
between genders were found in this study group, with males
having less theta but more alpha signals than females. Females
were also found to have a developmental lag in the EEG
compared to males. Another study [8] also reported sex differ-
ences in EEG asymmetry during self-generated cognitive and
affective tasks. The study in [9] investigated the effects of age
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and gender on sleep EEG power spectral density of individuals
of age ranged from 20–60 years. The average power density
within the 4-second epochs was calculated. It was found that
females show significantly higher spectral power density in
some power bands than males. Though significant effects of
age on sleep EEG spectral power density were found, the study
did not find any interaction between age and gender. However,
the above studies did not validate the findings on external test
individuals, therefore, the generality of the findings may be
limited.

Although EEG signal classification has been widely
explored for different purposes, such as disease diagnosis,
only till recently, have a few studies [10] [11] attempted
EEG-based gender classification. For classification purposes
in general, the EEG signals are typically preprocessed by
applying both band-pass filters and spatial filters before
feature extraction. The most common types of features to
present EEG signals are frequency band power features and
time point features. Band power features represent the average
energy level of EEG signals within a certain frequency range
over a given time window called an epoch. Band power
features need to be extracted respectively in each channel.
Timepoint features are a concatenation of EEG signals from
all channels, and they are typically used for event-related
potentials classifications [12]. Due to the non-stationarity of
EEG signals, band power features should be extracted from a
reasonably small epoch. For example, in [3], the band power
features are extracted within a sliding window with a length of
2 seconds. Spatial filters were also applied in other studies for
EEG feature extraction. These can be obtained in a supervised
manner, such as Common Spatial Patterns (CSP). CSP projects
the signals into another matrix space that maximizes the
distance between 2 classes. Reference [13] discusses the
effectiveness of this approach and has proven it to be useful.
Spatial filters can also be obtained through an unsupervised
way such as Independent Component Analysis (ICA). In
addition to the above, other EEG representing methods
are also studied, these include sparse representation and
deep learning. The sparse representation-based classification
(SRC) method has shown a robust classification performance
[14]. Deep learning, in which the features and the classifier
are jointly learned directly from the EEG signals. The
convolutional neural networks and restricted Boltzmann
machines are the two most popular deep learning methods
for EEG-based Brain-Computer Interfaces (BCIs) studies [12].

III. EEG DATA ANALYSIS

In this section, we will introduce the EEG dataset used
for this study, and present the analysis of the overall dataset.
Preliminary evidence of gender and age effects on EEG
signals will be presented. Our analysis also suggests that
individual-wise gender classification is more plausible than
gender classification based on single epochs.

A. Dataset description

The dataset used for this study consists of a cleaned resting-
state EEG streams set of 130 healthy individuals with a
sampling rate of 128 Hz. The raw EEG signal was collected
through a standard Mitsar amplifier with 19 channels (Fp1,
Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz,
P4, P8, O1, O2). A high-pass filter of 0.15 Hz and a low-pass
filter of 200 Hz were applied, followed by a careful inspection
that manually removes the artifacts signal Sections include
eye movements, jaw tension, teeth clenching, etc. The studied
population consists of 85 females and 45 males age between
25 to 55 years. The distribution regarding the age and gender
of the population can be found in Table I.

TABLE I
AGE AND GENDER OF THE SAMPLE SET

Age (years) Females Males
25-35 17 11
36-45 34 14
46-55 34 20
Sum 85 45

Due to the imbalanced sample numbers of male and female
groups, data points from the minority group in training sets
will be over-sampled for any classification.

B. Band power features

For feature extraction, we employ the band power fea-
tures. These are promoted as the “gold standard” for many
BCI applications involving the detection of mental states
or emotions [12]. Our previous experiments showed that it
outperforms CSP in visualization or classification tasks.

Since EEG signals cannot be segmented into physiologically
relevant units, the conventional approach of segmenting the
EEG streams into epochs according to time interval is adopted
in this study. For each channel, the energy level falling
within certain passbands was measured over each epoch. There
are five major brain waves distinguished by their different
frequency ranges. These frequency bands from low to high
frequencies, respectively, are typically categorized in specific
bands as 0.5–4 Hz (delta), 4–8 Hz (theta), 8–13 Hz (alpha),
13–30 Hz (beta) and >30 Hz (gamma) [1].

The length of the epochs determines the frequency range it
covers. Longer epochs can capture a lower frequency range.
As we are not clear in which frequency would the gender
motif (if it exists) appears, a longer epoch is preferred in this
aspect. However, EEG signals are highly non-stationary, if the
epochs are too long, it may fail to capture the brain actively.
To balance between the ability to capture the lower frequency
range and the non-stationary nature of EEG signals, the epoch
length of 4 seconds (frequency resolution of 0.25Hz) and 8
seconds (frequency resolution of 0.125Hz) are considered.

A preliminary epoch-wise gender classification through a
multi-layer perceptron neural network model was performed
to compare the effects of different epochs and band power
features. As represented in Table II, different segmentation
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Fig. 1. Visualization of epoch features (normalized band power) from either a Male (blue dot) or Female (red triangle) subject. Darker shades indicate the
corresponding subjects are older.

Fig. 2. Visualization of epoch features using clustering information. Darker shades indicate the corresponding subjects are older.

TABLE II
COMPARISON OF DIFFERENT EPOCH SEGMENTATION SCHEMES.

test score mean(std)
Epoch details trained with

4 band power
featuresa

trained with
5 band power
featuresb

4 second epochs with 2
second sliding intervals

0.61(0.05) 0.63(0.05)

8-second epochs with 2
second sliding intervals

0.63(0.05) 0.63(0.06)

8-second epochs with 4-
second sliding intervals

0.64(0.05) 0.63(0.06)

a4 band power include: delta, theta, alpha and beta
b5 band power include: delta, theta, alpha, beta and gamma

schemes of EEG signals with different band power range (4
band power: delta, theta, alpha, and beta; 5 band power: delta,
theta, alpha, beta, and gamma) result in very similar test
scores. Hence for computational considerations, the scheme

using half-overlapping 8-sec epochs (with 4-sec sliding
intervals) is adopted. This gives us 76 band power features
(4 band power each channel, and there are 19 channels) for
each epoch data point. The following analysis will be based
on this epoch segmentation strategy.

C. Visualization of epoch data
The poor performance of the brute-force epoch-wise classi-

fication motivates us to visualize the epoch feature data and see
if there exist any gender “motifs” for these EEG epochs. Fig. 1
presents the epoch-wise t-SNE visualization of epoch data
represented by the normalized band power features. The t-SNE
algorithm visualizes high-dimensional data by embedding the
data points to a low-dimensional space, using gradient descent
to reduce the Kullback-Leibler divergence between the original
data and the projected data [17]. Each data point in Fig. 1
represents one epoch in the 76-D feature space. A red triangle
represents this epoch is from a female, a blue circle represents
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Fig. 3. Individual-wise visualization using the histogram vector of matched cluster centres.

the epoch is from a male, and a darker shade symbol represents
the epoch is from an older individual. The bottom edge of the
plot is mainly female epochs. A slight age difference among
females is shown, as the epochs of older females (dark red
symbols) tend to group around the edges. However, no clear
discrepancy between genders is presented in this plot. This
suggests that classification on epochs directly would be rather
ineffective.

An intuition to circumvent this issue is to introduce a
clustering procedure for the input EEG band power features.
With clustering, each epoch is assigned to a certain cluster
in an unsupervised manner based on mutual similarities. Each
cluster represents a specific EEG prototype. It is then expected
that the EEG epochs from a subject may demonstrate some
patterns for one gender and others for another. If so, the gender
of an individual may be determined by the distribution of these
prototypes over all epochs. Hence by introducing the clustering
procedure, we can avoid putting a gender label on each epoch,
but still be able to label the individuals.

Before clustering, we resort to metric learning to customize
the similarity measurement between epoch features. Suppose
there are two epoch feature vectors xi and xj . If both of them
are of the same gender, we denote the 2-tuple (xi,xj) ∈ S;
otherwise (xi,xj) ∈ D. The distance metric between xi and
xj is defined as a generalized Mahalanobis distance:

dM(xi,xj) =
√

(xi − xj)TA(xi − xj), (1)

where matrix A is to be optimized by

minM∈Sd+
∑

(xi,xj)∈S dM(xi,xj)

s.t.
∑

(xi,xj)∈D d2M(xi,xj) ≥ 1
(2)

The metric-learn package1 is used to handle the metric learning

1URL http://contrib.scikit-learn.org/metric-learn/index.html

task for clustering.
For clustering, the feature vector x is first transformed to

y = A1/2x, and then the K-means algorithm is applied to
generate the cluster prototypes from the transformed features.
Suppose we have K clusters formed, with K cluster centers
ci, i = 1, 2, · · · , k. We can now produce another visualiza-
tion of the epoch data. Specifically, a clustering-based epoch
representation is generated by the epoch feature’s Euclidean
distance to the cluster centers.

Fig. 2 presents the epoch-wise t-SNE plot using clustering
information. A red triangle represents this epoch is from a
female, a blue circle represents the epoch is from a male,
and a darker shade symbol represents the epoch is from an
older individual. Each epoch is represented by its distance to
the cluster centers. Compared with the plot using band power
features directly (Fig. 1), the new plot demonstrates a much-
improved discrepancy between males and females. Details
on extracting clustered features and selecting the number of
clusters will be discussed in Section IV.

D. Visualization of individuals

While epoch-wise gender motifs cannot be found, we sus-
pect that gender information may be hidden in the statistical
distribution of the motifs generated by clustering. Hence for
each subject, we construct a motif attribute vector, in the form
of the histogram of winning clusters across all epochs.

Suppose all the epoch features of subject i form a set Si =
{yij , j = 1, · · · , N} (N is the number of epochs). The motif
attribute vector is defined as

mi = h(argmink‖ck − yij‖, ∀yij ∈ Si), (3)

where h(.) stands for the histogram operation.
Therefore, for subject-wise visualization, each individual-

wise data point can be represented by the histogram vector
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Fig. 4. Heat map of individual’s epochs distribution

mi. Fig. 3 illustrates the t-SNE plot of individual-wise data
points after clustering. Individual-wise gender discrepancy is
clearly observed in this plot. This suggests the feasibility of
individual-wise classification.

We now present more visualization evidence to support
our motif attribute design. Depending on how frequent an
individual’s epochs hit the clusters, we can generate a heat
map for male and female subjects, as shown in Fig. 4,
which demonstrates the epoch distribution of the individuals
when all the epochs are categorized into 9 clusters. Each
row in the map represents the epochs distribution of one
individual. Darker shades represent a higher percentage in
this cluster. The individual is sorted by age. On the map,
the age of individuals is increasing from top to bottom.
For female individuals in general, a considerably high
proportion of their EEG epochs are in cluster 4, followed by
a relatively high proportion in clusters 1 and 8. Except for a
few outliers, females rarely have a high percentage of their
epochs distributed in clusters 2 and 7. Compared to female
individuals, less consistency among male individuals is shown
on the heat map, except they all have a small proportion of
EEG epochs in cluster 8. Not all males manifest a strong
proportion of their EEG epochs in clusters 2 or 7. These
patterns tend to be the least female orientated. A significant
number of younger male individuals (upper part of the second
heat map) show a high proportion of their EEG epochs in

cluster 1, which is a pattern generally possessed by females.

IV. GENDER CLASSIFICATION

Now that the motif attribute vectors can be effectively visu-
alized and display good separability between genders, we pro-
ceed to construct a multi-stage Motif Attributes Classification
Ensemble (MACE) framework, as presented in Algorithm 1.

Algorithm 1 MACE
1: Segment EEG time series data into 8-sec epochs with

4-sec sliding intervals. And Extract band power features
from each epoch.

2: Apply weakly supervised metric learning on the epochs;
vid. Eq.(2).

3: Apply K-means clustering and assign cluster labels to each
epoch.

4: Construct motif attribute vectors for each individual; vid.
Eq.(3).

5: Train multiple classifiers on the motif attribute vectors.
6: Hard vote ensemble of the classifiers and output final

classification.

A. Framework

The computational framework consists of four procedures.
First is feature extraction, in which epochs are extracted

from the time series EEG signal. The data of each individual
contains 19 time series data from 19 channels. Artifacts were
manually removed from the EEG streams. The time series
data from each channel are segmented into 8-second epochs
with 4-second sliding intervals. Then the energy levels from
4 band range, i.e. delta, theta, alpha, and beta, were extracted
by computing the absolute power through approximating the
area under the curve. The epochs are then scaled to have
unit norm. After extraction, each epoch is represented by 76
features (4 band power each channel times 19 channels). The
130 individuals in the dataset have an average of 44 epochs.

The second stage is clustering. This is introduced to address
the issue of gender motifs possibly not existing in every epoch.
It also transforms epoch-wise data points into attribute vectors
for subject-wise classification. This allows for individuals to
have gender-neutral epochs.

Weakly supervised metric learning [16] is first applied to the
training set to enhance the performance of K-means clustering.
Random pairs of epochs with their similarity information
(same gender or not) are generated to learn a distance metric
that respects these relationships. Both training and testing sets
are then transformed over this learned metric. The transformed
epoch points are then assigned to a certain cluster through
K-means. We then construct the individual-wise features by
calculating the percentage of one’s epochs in each cluster. For
example, if there are 3 clusters in total, and an individual has
10 epochs in cluster 1, 30 epochs in cluster 2 and no epochs in
cluster 3, this individual would have a data point with the value
vector of [0.25, 0.75, 0]. The number of clusters decides the
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Fig. 5. Test scores of different number of clusters

number of different EEG patterns we attempt to extract from
the dataset.

To determine the optimal number of clusters, we considered
the average test scores. We examined the test scores with three
different classifiers. The algorithms are multi-layer perceptron
neural network (MLP), support vector machine (SVM) and
random forest (RF). Fig. 5 demonstrate the average test score
of a 10-trial test for a random stratum, the size of which is
10% of the full data set, and it shares the same distribution
of age and gender with the full set. The performance of the
classifiers varies. When the number of clusters is 9, all three
classifiers generate high average test scores. When there are 24
clusters, though the performance of one classifier is relatively
poor, the average test scores of the other two both reached
their highest points.

Our experiment shows that the performance of the classi-
fiers is largely improved with the introduction of clustering-
based motif attributes. Detailed comparison of subject-wise
accuracy when with and without the clustering stage will be
demonstrated in Section IV-B.

The next stage of the framework is to train classifiers
on individual-wise data points. Three classifiers are trained
separately: MLP, SVM, and RF. In each trial, the minority
class in the training set is oversampled to avoid the influence
of the imbalanced dataset. Random forest reaches the best
performance when the maximum depth of the individual trees
is set to 8 and 22 as shown in Fig. 6.

Due to the performance variance of the three classifiers,
a simple ensemble layer is introduced aiming to improve
the performance and stability of classification. Specifically, a
hard vote among the three classifiers is taken, and the final
prediction is decided by majority voting.

B. Classification results

In this section, we will present the experiment results of
the proposed MACE framework. The model performance
will be evaluated by two metrics: the prediction accuracy
and the area under the ROC curve (AUC). The effects of
the clustering-based motif attributes and the ensemble on

Fig. 6. Test scores of random forest with different maximum depth
Note: The test score is the average of a 3-trial test for a random
stratum, the size of which is 10% of the full data set, and it shares
the same distribution of age and gender with the full set.

classification performance will also be presented.

• Internal accuracy
Table III demonstrate the internal test score. All the data

were used for training and testing. In the table, ’F’ represents
Females, ’M’ represents Males, and the numerical value is the
range of age in this group

TABLE III
TEST SCORES BY GROUP

Accuracy by gender/age groups
Classifiers M25 M36 M46 F25 F36 F46 Overall

-35 -45 -55 -35 -45 -55 accuracy
MLP 0.73 0.86 0.95 0.94 0.94 0.91 0.91
SVM 0.73 0.79 0.85 0.94 0.76 0.74 0.79
RF8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ensemble 0.82 0.86 0.95 1.00 0.94 0.91 0.92

• Overall test accuracy
The analysis in Section IV-A suggests that the best number of
clusters is likely to be 9 or 24. Therefore, we experimented
with our customized framework with a cluster number of 9
and 24 respectively.

TABLE IV
10-FOLD INDIVIDUAL-WISE CROSS VALIDATION SCORES

Overall accuracy Female Male
Cluster number mean median std accuracy accuracy

9 clusters 0.73 0.73 0.12 0.74 0.71
24 clusters 0.72 0.73 0.10 0.75 0.65

Note: the results are the 10-fold CV score of the voted prediction

The overall subject-wise classification accuracy is
calculated by taking the average test score of 10 trials.
In each trial, a 10% test sample was randomly selected,
and the other 90% is used as a training set. As shown in
Table IV, when the number of clusters is 9, both the mean
and median test scores are 0.73, and the standard deviation
is 0.12. The average accuracy of the female group (0.74)
is higher than that of the male group (0.71). In the model
with a cluster number of 24, the median is 0.73, and the
mean score is 0.72 with a standard deviation of 0.1. The
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Fig. 7. Test scores of different gender/age groups

discrepancy between the accuracy of females and males is
more prominent with 24 clusters. The average accuracy of
the female group is 0.75, whereas it is 0.65 of the male group.

• Test accuracy by gender/age groups
To investigate the possible age effects on gender classification,
We divide the tested individuals into 6 subgroups and calculate
the accuracy within each group. These groups are females of
an age between 25 to 35 years (F25-35), females of an age
between 36 to 45 years (F36-45), females of an age between 46
to 55 years (F46-55), males of an age between 25 to 35 years
(F25-35), males of an age between 36 to 45 years (F36-45)
and males of an age between 46 to 55 years (F46-55). Table IX
demonstrates the results of the voted prediction accuracy by
subgroup.

TABLE V
TEST SCORES BY GROUP

Modela Accuracy by gender/age groupsb
with M25-35 M36-45 M46-55 F25-35 F36-45 F46-55

9 cluster 0.50 0.71 0.88 0.78 0.73 0.72
24 clusters 0.50 0.63 0.75 1.00 0.78 0.63
athe results are of the MACE framework with two different clustering procedure
bF=Females, M=Males, numerical value is the range of age in this group

The results by group suggest that the prediction accuracy
rates for females are generally higher than that for males. Both
of the models with a cluster number of 9 and 24 have an
accuracy of only 0.5 for group M25-35. Within male groups,
the accuracy rate of the models increases with individuals’ age
increasing. Compared to younger males. the EEG signals of
older males are easier to differentiate from the EEG signals of
females. This finding suggests that the EEG signals from older
males have more male gender identity than those from younger
males. On the contrary, within female groups, the accuracy rate
of the models decreases with individuals’ age increasing. The
trend is more prominent in the model with 24 clusters than
that in the model with 9 clusters. The interaction between age
and the accuracy of gender classification is demonstrated in
Fig 7.

Opposite to some previous studies [9], our study
demonstrates some interesting interactions between age

and gender.

• Ablation on clustering and motif attribute formation
To show the effect of the clustering and motif attribute
formation on classification results, we conduct an ablation
study where classification models are fed directly with features
(without going through clustering and motif attribute forma-
tion). We trained the same classifiers (i.e. MLP, SVM, and RF)
directly on the standardized epoch band power features. The
10-fold epoch-wise cross-validation scores are in Table VI.

TABLE VI
10-FOLD EPOCH-WISE CROSS VALIDATION SCORES

Overall accuracy
Classifiers mean median std
MLP 0.62 0.61 0.05
SVM 0.60 0.61 0.06
RF8a 0.63 0.65 0.08
aRF8: random forest with maximum depth of 8 for each tree

To transform the epoch-wise prediction into individual-wise
prediction, we use the percentage of the epoch-wise predic-
tions for each individual as their individual-wise probability
prediction. For example, if an individual has 40 epochs, 10 of
which are categorized as male and 30 of which are categorized
as females, then the chance of this individual being a male is
25%, and being a female is 75%. To evaluate the individual-
wise classification performance, we calculated the AUC for
10 trials. Each trial uses 10% randomly generated samples as
the test set and the other 90% as the training set. As shown
in Table VII, for the neural network classifier, the mean AUC
value of the 10 trials is 0.72 with a standard deviation of
0.2. For support vector machine classifier, the mean AUC is
0.66 and the standard deviation is 0.17. And the random forest
classifier has a mean AUC of 0.72 with a standard deviation
of 0.2.

TABLE VII
AUC OF 10 TRIALS (WITHOUT CLUSTERING)

AUC
Classifiers mean median std
MLP 0.72 0.71 0.20
SVM 0.66 0.64 0.17
RF8a 0.72 0.73 0.20
aRF8: random forest with maximum depth of 8 for each tree

TABLE VIII
AUC OF 10 TRIALS (AFTER CLUSTERING)

AUC
Classifiers mean median std
MLP 0.81 0.80 0.09
RF8 0.78 0.80 0.15
aRF8: random forest with maximum depth of 8 for each tree

Since the classifiers of our framework are trained directly
on individual-wise clustered features, and support vector
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machine does not directly provide probability estimates.
Multi-layer perceptron and random forest classifiers are used
for the AUC estimation after clustering because these two
classifiers can estimate the probability more straightforwardly.
Table VIII demonstrates the AUC of the classifiers after
clustering. The 10 trials are run in the same way as in the
test before clustering. For the neural network classifier, the
mean AUC is increased from 0.72 to 0.81 after applying the
clustering procedure, and the standard deviation dropped from
0.2 to 0.09. For the random forest classifier, the mean AUC
is increased from 0.72 to 0.78, and the standard deviation
decreased from 0.2 to 0.15. In comparison, the classifiers
trained on clustered individual-wise features show better and
more stable performance.

• The effect of the classifier ensemble procedure
We compared the 10-fold cross-validation scores of neural

network, support vector machine, random forest, and the
classifier ensemble. As shown in Table IX, the ensemble
model keeps the same mean and variance with the best
performed individually trained classifier. Also, the median
of the classifier ensemble is better than all the other three
classifiers individually. This demonstrates the effectiveness of
the ensemble layer.

TABLE IX
10-FOLD CROSS VALIDATION SCORES(9 CLUSTERS)

Overall accuracy Female Male
Classifiers mean median std accuracy accuracy

MLP 0.73 0.69 0.12 0.76 0.69
SVM 0.69 0.69 0.11 0.67 0.73
RF8a 0.72 0.69 0.12 0.76 0.67

Ensemble 0.73 0.73 0.12 0.74 0.71
aRF8: random forest with maximum depth of 8 for each tree

V. CONCLUSIONS

In this paper, we investigate the potential gender differences
in resting state EEG signals. Gender differences have been
found with females showing stronger gender effect: the classi-
fication accuracy is generally higher in the female groups than
that in the male groups. Our study also found an interaction
between gender and age. The EEG signal of older males shows
a stronger gender effect than that of younger males, and the
EEG signal of older females shows a weaker gender effect
than that of younger females.

It is also found that epoch-wise gender discrimination is
implausible and there are no clear gender “motifs” as revealed
by clustering analysis. Nevertheless, by utilizing histogram
information of a subject’s epoch data, the motif attribute
vectors manage to capture potential gender differences, and the
MACE framework manages to perform subject-wise gender
classification with the help of a classifier ensemble. However,
a less satisfactory test accuracy resides in the younger male
group. If we were allowed to explore further, we would like
to look into this issue.

For future work, we would like to investigate the
applicability of our algorithm in a wider age range and
experiment with EEG signals obtained under different clinical
stimuli.
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