
Multi-Domain Dialogue State Tracking with
Hierarchical Task Graph

Tianhao Shen, Xiaojie Wang�
School of Computer Science

Beijing University of Posts and Telecommunications
Beijing, China

{shentianhao, xjwang}@bupt.edu.cn

Abstract—Multi-domain dialogue state tracking (DST), which
tracks user goals and intentions across multiple domains, is a
core task for multi-domain task-oriented dialogue system. Pre-
vious works in multi-domain DST focus on the open-vocabulary
setting to alleviate the over-dependence on pre-defined ontology.
However, they come up short of modeling the relationships
among domains and slots in an explicit and efficient way. In this
paper, we propose a multi-domain dialogue state tracker with
hierarchical task graph (DST-HTG) to address the above issues.
DST-HTG uses a copy mechanism to perform DST under the
open-vocabulary setting, which makes our model eliminate the
dependence on pre-defined full ontology. Moreover, we extend
our DST model with a hierarchical task graph which has
simple structure and rich semantic information to incorporate the
relationships among domains and slots into DST process explicitly
and efficiently. Empirical results show that DST-HTG achieves
the state-of-the-art joint goal accuracy and slot accuracy in
MultiWOZ 2.0, a recently proposed multi-domain task-oriented
dialogue dataset, which indicates the effectiveness of our proposed
model.

Index Terms—natural language processing, task-oriented dia-
logue systems, multi-domain dialogue state tracking, task graph

I. INTRODUCTION

Multi-domain task-oriented dialogue systems handle user
requests from multiple domains in a single dialogue, such as
booking a hotel firstly and then finding a restaurant nearby.
Multi-domain dialogue state tracking (DST) is a key task
in multi-domain task-oriented dialogue systems. It aims at
tracking user goals and intentions across multiple domains
in each turn of the dialogue and output the dialogue state,
i.e., a set of (domain, slot, value) triplets to summarize the
entire dialogue until the current turn. Because the subsequent
dialogue management and response generation rely on the dia-
logue state, maintaining an accurate dialogue state is important
for the whole dialogue system.

Traditional Neural DST methods [1]–[4] assume that the
ontology, i.e. all slots and their values, is defined and known
in advance, which can simplify DST into a classification
problem [5]. But in the multi-domain setting, there are some
issues when applying these approaches. 1) The ontology of
multi-domain task-oriented dialogue is usually quite large. For
example, in the recent proposed multi-domain task-oriented
dialogue dataset MultiWOZ [6], there are 30 (domain, slot)

� Corresponding Author

pairs and more than 4500 values, which makes it very difficult
for classification. 2) In practical perspective, some slots have
a dynamically changing or even infinite numbers of possible
values, which makes the ontology hard to be pre-defined or
enumerated. For example, the value set of a hotel name slot
may change over time, and a train departure time slot has an
infinite number of values. To address these issues, there are
some previous works that can directly copy value for every
mentioned slot from dialogue context [7], [8], making these
approaches support open-vocabulary setting, which assumes
that the value set of (domain, slot) pair is unavailable, instead
of the aforementioned pre-defined ontology setting.

However, there is another unique yet less studied issue in
multi-domain DST, which is also an important difference be-
tween multi-domain DST and single-domain DST. In practice,
a multi-domain dialogue is not the simple concatenation of
multiple single-domain dialogues. Specifically, two slots from
different domains may have relationship when they co-occur
in the same dialogue. In this case, the user may provide
slot value in an implicit approach. For example, as shown
in Fig. 1, the (hotel, area, centre) triplet can be inferred
from the aforementioned (restaurant, area, centre) triplet, even
though the user did not mention the explicit value of area
slot in the hotel domain. There are only few previous works
focus on this issue. TRADE [5] follows an encoder-decoder
architecture with soft-gated copy mechanism [9], [10], which
takes dialogue history as the encoder input and generate slot
value from the decoder output. But it models relationships
among domains and slots implicitly, instead of using an ex-
plicit approach. Recently proposed DSTQA [11] treats multi-
domain DST as a document-based question answering task
and explicitly construct the connection among (domain, slot)
pairs. But the number of (domain, slot) pairs will increase
rapidly with the number of domains and slots, which makes
it inefficient in representing relationships among domains and
slots when the dialogue dataset has a large number of domains
and slots. Moreover, in order to determine which domains and
slots are mentioned in current user turn, these models choose
to iterate over all (domain, slot) pairs in every turn, and then
use a three-way classifier to determine if the value of each
(domain, slot) pair is none, don’t care or mentioned in the
dialogue context. For example, in MultiWOZ dataset, there are
30 (domain, slot) pairs. So, TRADE will generate 30 different

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. An example of multi-domain dialogue state tracking (DST). The solid arrow and the bold text in dialogue state indicate the relationship between two
different (domain, slot) pairs: (restaurant, area) and (hotel, area).

slot values for every single turn, and DSTQA will generate 30
different questions instead, which leads to inefficient and time-
consuming DST process. We expect DST models can model
the relationships among domains and slots in an explicit and
efficient way.

In this paper, we propose a multi-domain dialogue state
tracker with hierarchical task graph (DST-HTG) for multi-
domain DST. Based on the open-vocabulary setting, our model
applies a copy mechanism to directly extract slot value from
dialogue context, so pre-defined ontology is not needed. Be-
sides, our model does not need to iterate over all (domain,
slot) pairs. Instead, it generates the distribution over domains
and slots using the dialogue representation, which makes our
model more efficient. Moreover, we propose a graph called
hierarchical task graph, in which flat (domain, slot) pairs
are separated into a hierarchical structure including domain
nodes and slot nodes, and add edges between these nodes
to represent the relationships among (domain, slot) pairs.
This graph structure has two advantages. 1) The domain
nodes and slot nodes can be effectively reused to reduce the
complexity of graph. For example, the area slot in hotel,
attraction, and restaurant domain can share the same “area”
slot node, which also means this graph naturally contains
the relationships among pairs like (hotel, area), (attraction,
area) and (restaurant, area). 2) the graph is still capable of
containing rich relationship information with less nodes and
edges. To model the relationships among domains and slots as
complete as possible, we construct three kinds of edges among
these nodes, which will be described in detail in the following
sections. As we will show later, incorporating hierarchical task
graph helps improve the final DST accuracy.

In summary, our contributions are as follows: 1) we propose
a novel multi-domain DST model that can improve DST accu-

racy in open-vocabulary scenarios. 2) we propose a mechanism
that can efficiently determine the domain and slot mentioned
in current user turn without iterating over all (domain, slot)
pairs. 3) we extend our DST model with a hierarchical task
graph which can not only reduce the graph complexity but
also retain rich relationship information among domains and
slots.

II. PROPOSED MODEL

In this section, we describe the details of the proposed
model, DST-HTG. The model structure is illustrated in Fig. 2,
which comprises seven components: dialogue history encoder
(DHE), current user utterance encoder (CUE), bi-directional
multi-head attention (BMA) module, domain-slot generator,
task graph, slot gate, and span prediction decoder (SPD).
Note that in this paper, dialogue history refers to the dialogue
utterances in previous turns, and current user utterance refers
to the user utterance in current turn.

1) DHE is a multi-layer transformer encoder [12] which
takes as input the dialogue history, and outputs a dialogue
history representation Hdhe which consists of a sequence of
fixed-length vectors. Similar to DHE, CUE is a single-layer
transformer encoder, which encodes the current user utterance
and outputs a user utterance representation Hcue.

2) BMA module computes and fuses context-to-query atten-
tion and query-to-context attention to provide complementary
information to each other. In the proposed model, there are two
BMA modules to fuse Hdhe and Hcue to obtain the dialogue
representation Hc, and then fuse Hc with the domain-slot
embeddings eds extracted from task graph.

3) The main task of domain-slot generator is using Hcue

to generate the domain pointer pd and slot pointer ps, which
indicates the (domain, slot) pairs mentioned in the current user

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2. The overall architecture of DST-HTG.

utterance. In order to better recognizing domains and slots, it
also takes Hc as input to make the model refer to the dialogue
context.

4) A task graph is utilized to model the relationships among
domains and slots, and then computes eds according to query,
i.e., predicted (domain, slot) pairs, with a graph attention
network [13] which performs self-attention over nodes. It
takes the word embeddings of generated (domain, slot) pairs
from the domain-slot generator as input, and outputs their
corresponding node embeddings, which will be fed into SPD.

5) SPD is a transformer decoder with linear and softmax
layer that takes as input eds and Hfuse, the output of last BMA
layer. It outputs begin position distribution pb and end position
distribution pe, which indicate the position of slot value in the
concatenation of dialogue history and current utterance. And
finally, a slot gate is used to decide whether the values of
predicted (domain, slot) pairs are none, don’t care, or the text
spans copied from dialogue.

The detail of each component will be described in the

following subsections.

A. Dialogue History Encoder (DHE) and Current User Utter-
ance Encoder (CUE)

As a multi-domain dialogue is usually longer than a
single-domain one, it is important for the model to capture
long-distance dependencies and catch relevant information,
which is a great advantage of transformer. So, as mentioned
above, we use a multi-layer transformer encoder [12] to
obtain the representation of the dialogue history. Unlike
[5], we use the entire dialogue history rather than a
fixed size of subset. This is because for a slot whose
value is implicitly mentioned, the actual slot value may
occur in any position in dialogue history. Specifically,
at turn t, the input to the DHE is the concatenation
of all words in utterances of dialogue history with
additional special token, which can be denoted as: Xdhe =
[〈usr〉, U1, 〈/usr〉, 〈sys〉, S1, 〈/sys〉, ..., 〈usr〉, Ut−1, 〈/usr〉,
〈sys〉, St−1, 〈/sys〉] ∈ R|Xdhe|×demb , where Ui and Si

denote the user and system utterance at turn i respectively.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

〈usr〉, 〈/usr〉, 〈sys〉, and 〈/sys〉 are four kinds of special
tokens to help the model identify user and system
utterances. demb is the size of word embeddings. The
output of the DHE is dialogue history representation
Hdhe = [h1dhe, ..., h

|Xdhe|
dhe] ∈ R|Xdhe|×dhid , where dhid is the

hidden size. Considering that the current user utterance is
much shorter than the dialogue history in most cases, we use
a single-layer transformer encoder as CUE. Similar to DHE,
the CUE take as input the current user utterance Xcue =
[〈usr〉, Ut, 〈/usr〉, 〈sys〉, St, 〈/sys〉] ∈ R(|Xcue|)×demb

and outputs the current user utterance representation
Hcue = [h1cue, ..., h

|Xcue|
cue] ∈ R|Xcue|×dhid .

B. Bi-directional Multi-head Attention (BMA) Module

Inspired by BiDAF [14], we propose BMA module to
compute and fuse the context-to-query and query-to-context
relevance information with multi-head attention function
MultiHead(Q,K, V) proposed in [12], which makes the
module extract rich relevant features and provide them to other
components. The structure of BMA module is shown in Fig.
3.

Fig. 3. The structure of BMA module.

There are two BMA modules in our proposed model.
Here we introduce the first BMA module, which use
Hdhe as context and Hcue as query to compute Hc =
BMA(Hdhe, Hcue) ∈ R(|Xdhe|+|Xcue|)×dhid as the repre-
sentation of the whole dialogue. Another BMA module has
exactly the same computation process and will be briefly intro-
duced later. Firstly, the context-to-query multi-head attention
is computed by

Hc−q =MultiHead(WcHdhe, Hcue, Hcue) (1)

And the query-to-context multi-head attention is computed by

Hq−c =MultiHead(WqHcue, Hdhe, Hdhe) (2)

Then we apply feed forward network (FFN) [12] on Hc−q and
Hq−c respectively, and concatenate them to obtain a single
matrix HFFN :

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

HFFN = [FFN(Hc−q);FFN(Hq−c)] (4)

Finally, to enhance robustness of BMA module, we add a
residual connection [15] and layer normalization [16] to the
module, and obtain the output dialogue representation Hc. This
process is described as follows:

Hc = LayerNorm(HFFN + [Hdhe;Hcue]) (5)

We denote the above equation (1)-(5) as HBMA =
BMA(context, query)

C. Domain-Slot Generator

Unlike previous works, we use a domain-slot generator to
extract (domain, slot) pairs mentioned in the current user utter-
ance, which makes the proposed model unnecessary to iterate
over all (domain, slot) pairs. However, it is not enough to only
take the current user utterance into consideration because the
mentioned (domain, slot) pairs need to be determined with the
extra information from dialogue history in some cases. So, we
take both Hcue and Hc as input. Specifically, a linear map
and a sigmoid layer are applied to the concatenation of Hcue

and Hc to compute the domain pointer, i.e., the probability of
mentioning each domain in the current user utterance:

Hd =Wd[Hcue;Hc] (6)

Pd = sigmoid(Hd) (7)

The slot pointer indicates slot names mentioned in the current
user utterance. However, it should be computed under the
constraint of domain pointer, because each domain contains
different set of slots. So, we should also take Hd along with
Hcue and Hc as input to put constraints of domains on the slot
pointer generation process. Similar to the domain pointer, these
three inputs are concatenated and fed into a linear map and a
sigmoid layer to compute the slot pointer, which is described
as follows:

Hs =Ws[Hd;Hcue;Hc] (8)

Ps = sigmoid(Hs) (9)

D. Task Graph

The (domain, slot) pairs has natural relationships among
each other, which appears in two aspects. On the one hand,
in a specific dialogue, the values of (domain, slot) pairs may
reuse or relate. For example, the user wants to book a hotel
near the restaurant. In this case, (hotel, area) and (restaurant,
area) share the same slot value, which makes user unnecessary
to indicate the slot value of (hotel area) explicitly. On the other
hand, among all the dialogues in a dataset, tracking strategies
may share across (domain, slot) pairs. For example, the value
set of (hotel, area) and (restaurant, area) are usually similar
because hotels and restaurants usually co-exist in most areas,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 4. The structure of hierarchical task graph.

which leads to similar state tracking strategies. So, if the DST
model can utilize the relationships among (domain, slot) pairs,
boosting in DST performance can be achieved.

In order to incorporate the relationships among domains and
slots, we propose a task graph, which is also a core component
of the proposed DST-HTG model. Fig. 4 gives an overview of
task graph structure, which contains two kinds of nodes and
three kinds of edges. Specifically, for a domain node d and
two slot nodes s1, s2, the combinations of nodes and edges
are listed and described as follows:

1) (d,Ed, s1): domain d has a slot s1. This edge is used
to construct (domain, slot) pairs using domain nodes and slot
nodes.

2) (s1, Es, s2): the value set of slot s1 and slot s2 are related
in semantics. For example, hotels with higher stars are usually
more expensive, and vice versa. Moreover, if a user wants to
book a low-star hotel and then book a restaurant, we may have
a prior guess that he wants to book a cheap restaurant before
he mentions the specific value of (restaurant, price range). So,
we can describe the relationship between slot node “star” and
“price range” using the Es edge.

3) (s1, Ev, s2): the value set of slot s1 is a subset of
the value set of slot s2. For example, the value set of
(hotel, name) and (restaurant, name) are subsets of (taxi,
departure) and (taxi, destination). So, we can use Ev edge
to describe the relationship between slot node “name” and
“departure/destination”.

This hierarchical structure also brings another two advan-
tages. Firstly, the proposed task graph naturally contains the
relationships among pairs like (hotel, area), (attraction, area)
and (restaurant, area) without additional modeling because
they reuse the same slot node “area”. Secondly, by refactoring
the flat structure of (domain, slot) pairs into the hierarchical
structure of domain and slot nodes, the complexity of graph,
i.e. the number of nodes and edges, reduces by reusing these
nodes and edges to represent (domain, slot) pairs. So, the
task graph can incorporate the relationships among domains
and slots into DST process explicitly and efficiently. To the

best of our knowledge, DST-HTG is the first DST model that
incorporates a graph describing relationships among domains
and slots with the hierarchical structure.

To model the task graph, we use a multi-layer graph atten-
tion network (GAT) [13] which applies attention mechanism
over nodes to combine the local graph structure and node-
level features. GAT can gather information from the one-hop
neighborhood, which is suitable for capture the relationships
among domain and slot nodes in the graph. Formally, let h(il)
represent the node embedding of node i in layer l, then the
node embedding of node i in layer l + 1 is computed by:

z
(l)
i =W (l)h

(l)
i (10)

e
(l)
ij = LeakyReLU(~a(l)

T

(z
(l)
i ||z(l)j)) (11)

α
(l)
ij =

exp(e
(l)
ij)∑

k∈N (i) exp(e
(l)
ik)

(12)

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij z

(l)
j

 (13)

N (i) is the set of node i’s one-hop neighborhood, which
comprises k neighbor nodes j1, j2, . . . , jk. The node em-
beddings in the bottom layer are initialized by the word
embeddings which are the same as the one used in the input of
DHE and CUE. And now we can obtain the embedding of each
node. As mentioned above, the domain-slot generator outputs
the domains and slots mentioned in the current user utterance,
which are used to construct (domain, slot) pairs. Then we
can iterate over these (domain, slot) pairs and concatenate the
corresponding domain embedding and slot embedding into the
domain-slot embedding eds1 , . . . , edsn , where n is the number
of predicted (domain, slot) pairs. Note that we iterate over the
predicted (domain, slot) pairs, which is a very small subset
of the entire (domain, slot) pairs. For example, there are 30
(domain, slot) pairs in MultiWOZ 2.0 dataset, but most of the
user utterances only contain less than 3 (domain, slot) pairs,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 5. A complex case in multi-domain DST, which is related to three domains: restaurant, attraction, and taxi.

which also leads to improvement in efficiency of the proposed
model.

E. Span Prediction Decoder (SPD) and Slot Gate

After obtaining the domain-slot embeddings from the task
graph, SPD is applied to generate the begin and end position
in dialogue for each predicted (domain, slot) pair, which
indicates the text spans in dialogue. Then a slot gate is
applied to determine whether the values of predicted (domain,
slot) pairs are none, don’t care, or the text spans copied
from dialogue. To incorporate the domain and slot features
into the dialogue representation Hc, we use another BMA
module to fuse Hc and the information of domains and slots.
Firstly, we concatenate and apply linear map on the domain-
slot representations from both domain-slot generator and task
graph:

Hds =Wds[Hd;Hs;W
′
ds

e
ds] (14)

Note that SPD is a transformer decoder, which needs two
inputs to start decoding: the information from encoder and the
decoder input. For the first input, we apply a BMA module to
fuse Hc and Hds, where Hc is served as context and Hds is
served as query, and outputs the representation Hfuse as the
information from encoder, which is described as:

Hfuse =WfuseBMA(Hc, Hds) (15)

For the second input, we apply a linear map on domain-
slot embedding eds, and use the transformed embedding as
the decoder input y0:

y0 =W0eds (16)

Then, for each predicted (domain, slot) pair, SPD takes y0
and Hfuse as input, and decodes for a fixed number of two
time steps and get two outputs O1 and O2, which are fed into

linear map and softmax layer to obtain the distribution over
the begin and end position in dialogue Pb and Perespectively:

Pb = softmax(WbO1) (17)

Pe = softmax(WeO2) (18)

The slot gate is a three-way classifier to help rectify the
prediction of domain-slot generator, which can improve ro-
bustness of the proposed model. The slot gate Psg is computed
by applying a linear map and softmax layer on Hfuse:

Psg = softmax(WsgHfuse) (19)

III. EXPERIMENTS AND RESULTS

A. Experimental Settings

Recently proposed MultiWOZ 2.0 dataset [6], which is used
in this study, is the largest existing multi-domain task-oriented
dialogue dataset. The basic statistics of MultiWOZ 2.0 dataset
are shown in TABLE I. Following [5], we exclude the di-
alogues in police and hospital domain since these domains
only occur in training set and take up a very small proportion
in the dataset. The remaining five domains (restaurant, hotel,
attraction, taxi, train) are used in our experiment.

For hyperparameters in the implementation, the hidden size
of DHE, CUE, and SPD are all set to 512. We use pre-trained
ElMo [17] embeddings to initialize the word embeddings, and
the embedding size is set to 512, which is same as the hidden
size. We set the number of layers in graph attention network to
2. The number of heads in BMA is set to 8, which is following
the original setting in [12]. The learning rate is set to 0.005,
and batch size is set to 64.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE I
THE BASIC STATISTICS OF MULTIWOZ 2.0 DATASET (TRAINING SET ONLY)

Dialogues Total # turns Total # tokens Avg. turns per dialogue # Total unique tokens
8438 115,424 1,520,970 13.68 24071

TABLE II
THE EXPERIMENTAL RESULTS OF DST-HTG ON MULTIWOZ 2.0 DATASET

Model Joint Accuracy Slot Accuracy
TRADE 48.62 96.92
DSTQA 51.44 97.24

DST-HTG 51.68 98.02

TABLE III
THE EXPERIMENTAL RESULTS OF ABLATION STUDY

Model Joint Accuracy Slot Accuracy
DST-HTG 51.68 98.02
- context-to-query attention 50.91 97.15
- query-to-context attention 50.97 97.17
- task graph 49.25 96.44
- Ed 50.59 97.06
- Es 51.05 97.18
- Ev 51.08 97.20

B. DST-HTG Model Results

We use two evaluation metrics, joint accuracy and slot
accuracy, to evaluate our proposed model. Joint accuracy
is designed to check whether all predicted slot values in a
dialogue state exactly match the ground truth dialogue state.
And the slot accuracy checks whether the individual (domain,
slot, value) triplet matches its ground truth label. Table II
shows the performance of our DST-HTG model comparing
with two previous works: TRADE [5] and DSTQA [11], the
state-of-the-art model on MultiWOZ 2.0. As shown in the
table, DST-HTG surpasses DSTQA with 0.78% absolute gains
on slot accuracy and 0.24% on joint accuracy. Therefore, DST-
HTG achieves both state-of-the-art joint accuracy and slot
accuracy on MultiWOZ 2.0 dataset.

C. Ablation Study

We perform three ablation experiments to prove the effec-
tiveness of different components of DST-HTG. The results are
shown in Table III. The first ablation experiment is to explore
the effectiveness of the context-to-query and query-to-context
multi-head attention, which are both the key parts of the BMA
module. As shown in Table III, the removal of context-to-
query or query-to-context attention all leads to a drop in DST
performance, this is because the context-to-query and query-
to-context attention are complementary information from two
different directions, which helps our model to better capture
the features of dialogues. This result demonstrates that the
BMA module is important in DST-HTG model.

The second ablation experiment is to observe the perfor-
mance of the proposed model without the task graph. We
observe 2% absolute drop on both joint accuracy and slot

accuracy without the task graph. This is because the task
graph contains rich relationship information among domains
and slots which is important for a multi-domain DST model to
track the implicitly mentioned slot values. Moreover, we do a
case study to check the effect on dialogue state without the task
graph. The Fig. 5 shows a complex case for DST model and
the corresponding dialogue states in each turn generated by
DST-HTG with and without task graph. We can observe from
the generated dialogue states of two models that the DST-HTG
with task graph is significantly better in capture the implicitly
mentioned slot value such as (attraction, area, centre) and (taxi,
departure, all saints church). This is because the task graph
naturally models relationship between (attraction, area) and
(taxi, departure), and the task graph has edges between node
“name” and node “departure/destination”, which is utilized
by model to track implicit slot values. Although it tracks a
wrong value of (taxi, destination), it still tracks a name value
rather than random text spans from dialogue. Moreover, as
shown in Fig. 5, without the guidance of task graph, the copy
mechanism cannot accurately copy meaningful text spans,
which further proves the effectiveness of task graph.

To deeply explore the contribution of different edges, we
conduct the third ablation experiment, in which we choose
to remove some specific kinds of edges each time. Table III
shows the experimental results. As shown in the table, the
removal of edge Ed makes the biggest drop. This is because
there are more Ed edges than another two kinds of edges.
Besides, removing any one kind of edges leads to a drop in
DST performance, which indicates that all three kinds of edges
are necessary to construct the task graph.

IV. RELATED WORK AND DISCUSSION

In traditional modular task-oriented dialogue systems [18],
DST modules receive input from natural language understand-
ing (NLU) modules to update the current dialogue state [19]–
[21]. However, they heavily rely on the manually constructed
features and semantic dictionaries to perform delexicalization,
which rephrase the alternative mentions of ontology items to
standard (slot, value) pairs in ontology. This drawback makes
these models difficult to extend to the multi-domain setting.

In order to solve the issue of over-dependence on hand-
crafted works, some neural DST models are proposed, which
use neural network to learn semantic information directly
from word embeddings instead of the pre-build semantic
dictionaries. NBT [2] leverages semantically specialized pre-
trained word embeddings to generate the distributional repre-
sentation of user utterance, and then pass the representation to
context modeling and semantic decoding module to generate
a distribution over pre-defined ontology. However, it uses the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

semantically specialized word embeddings rather than normal
one trained from language model, which is more difficult
to obtain and thus limits the generalization ability of the
model. Besides, it is difficult to scale to the multi-domain
setting because it generates the distribution over ontology from
scratch for only one slot each time. GLAD [3] leverages a
global module to share parameters among slots, and a local
module to learn the feature representation inside each slot,
which can use normal word embeddings and handle some rare
slots due to the shared parameters. However, it still needs a
slot-specific encoder for each slot, which makes it hard to scale
to multi-domain settings.

Therefore, in order to address the issue of over-dependence
on full ontology and make scalable multi-domain DST models
available, recent works on multi-domain DST choose to apply
the copy mechanism to directly extract slot values from dia-
logue context, such as TRADE which we introduce above. The
other attempt to address this issue is considering multi-domain
DST as other tasks. For example, recently proposed DSTQA
considers multi-domain DST as a document-based question
answering problem which treat dialogues as documents, and
construct different questions for all (domain, slot) pairs to ask
for the slot values according to dialogue contexts. However,
as mentioned in the introduction, these models still fall short
in modeling the relationships among domains and slots in an
explicit and efficient approach, which comprises our major
difference from previous works. In order to address this issue,
we propose a task graph with hierarchical structure, which
contains two levels of nodes and three kinds of relationships,
to reduce the complexity of graph and enhance the efficiency
in modeling relationships by reusing nodes in representing
(domain, slot) pairs, and then utilize the hierarchical task graph
as a guidance to help the model track the implicit slot values.

V. CONCLUSION

In this paper, we propose DST-HTG, a novel open vo-
cabulary based multi-domain dialogue state tracking model,
which leverages a simple yet effective hierarchical task graph
to incorporate relationships among domains and slots in an
explicit and efficient way. Moreover, it is unnecessary for
the model to iterate over all (domain, slot) pair in DST
process, which leads to improvement in efficiency. Our model
achieves state-of-the-art results on MultiWOZ 2.0 dataset, and
the experimental results indicate the effectiveness of our model
and the hierarchical task graph inside.

REFERENCES

[1] M. Henderson, B. Thomson, and S. Young, “Word-based dialog state
tracking with recurrent neural networks,” in Proceedings of the 15th
Annual Meeting of the Special Interest Group on Discourse and Dia-
logue (SIGDIAL), 2014, pp. 292–299.

[2] N. Mrkšić, D. Ó. Séaghdha, T.-H. Wen, B. Thomson, and S. Young,
“Neural belief tracker: Data-driven dialogue state tracking,” in Proceed-
ings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2017, pp. 1777–1788.

[3] V. Zhong, C. Xiong, and R. Socher, “Global-locally self-attentive
encoder for dialogue state tracking,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2018, pp. 1458–1467.

[4] E. Nouri and E. Hosseini-Asl, “Toward scalable neural dialogue state
tracking model,” arXiv preprint arXiv:1812.00899, 2018.

[5] C.-S. Wu, A. Madotto, E. Hosseini-Asl, C. Xiong, R. Socher, and
P. Fung, “Transferable multi-domain state generator for task-oriented
dialogue systems,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019, pp. 808–819.

[6] P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ra-
madan, and M. Gasic, “Multiwoz-a large-scale multi-domain wizard-
of-oz dataset for task-oriented dialogue modelling,” in Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 5016–5026.

[7] S. Gao, A. Sethi, S. Agarwal, T. Chung, and D. Hakkani-Tur, “Dialog
state tracking: A neural reading comprehension approach,” in Proceed-
ings of the 20th Annual SIGdial Meeting on Discourse and Dialogue,
2019, pp. 264–273.

[8] L. Ren, J. Ni, and J. McAuley, “Scalable and accurate dialogue state
tracking via hierarchical sequence generation,” in Proceedings of the
2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019, pp. 1876–1885.

[9] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2017, pp. 1073–1083.

[10] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural
language decathlon: Multitask learning as question answering,” arXiv
preprint arXiv:1806.08730, 2018.

[11] L. Zhou and K. Small, “Multi-domain dialogue state tracking as dy-
namic knowledge graph enhanced question answering,” arXiv preprint
arXiv:1911.06192, 2019.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” International Conference on
Learning Representations, 2018, accepted as poster. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[14] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirec-
tional attention flow for machine comprehension,” arXiv preprint
arXiv:1611.01603, 2016.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[16] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[17] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of NAACL-HLT, 2018, pp. 2227–2237.

[18] B. Thomson and S. Young, “Bayesian update of dialogue state: A
pomdp framework for spoken dialogue systems,” Computer Speech &
Language, vol. 24, no. 4, pp. 562–588, 2010.

[19] J. D. Williams and S. Young, “Partially observable markov decision
processes for spoken dialog systems,” Computer Speech & Language,
vol. 21, no. 2, pp. 393–422, 2007.

[20] Z. Wang and O. Lemon, “A simple and generic belief tracking mech-
anism for the dialog state tracking challenge: On the believability of
observed information,” in Proceedings of the SIGDIAL 2013 Conference,
2013, pp. 423–432.

[21] J. D. Williams, “Web-style ranking and slu combination for dialog state
tracking,” in Proceedings of the 15th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL), 2014, pp. 282–
291.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

