

Image-Based Real-Time Path Generation Using

Deep Neural Networks

Gabriel Moraes, Anderson Mozart, Pedro Azevedo, Marcos Piumbini, Vinicius B. Cardoso,

Thiago Oliveira-Santos, Alberto F. De Souza, Senior Member, IEEE, Claudine Badue

Departamento de Informática

Universidade Federal do Espírito Santo

Vitória, Brazil

{gabriel.moraes, anderson.mozart, pedro, marcos, vinicius, todsantos, alberto, claudine}@lcad.inf.ufes.br

Abstract—We propose an image-based real-time path planner

for the self-driving car IARA, named DeepPath. DeepPath uses a

CNN for inferring paths from images. During the self-driving car

operation, DeepPath receives an image and the current car pose.

Then, it sends the image to a CNN trained to infer a model of the

path. After that, DeepPath generates the path in the IARA’s

coordinate system using the path model. Subsequently, given the

current IARA’s pose, DeepPath transforms each pose of the path

in the IARA’s coordinate system into another pose in the world

coordinate system. Finally, it sends the path to the IARA’s

Behavior Selector subsystem, the next subsystem in the IARA’s

Decision-Making system. We evaluated the performance of

DeepPath in real world scenarios. Our results showed that

DeepPath is able to correctly generate paths for IARA that differ

only slightly from those defined by humans.

Keywords—path planning, self-driving cars, deep neural

networks.

I. INTRODUCTION

The architecture of the autonomy system of self-driving
cars is typically organized into two main parts: the perception
system and the decision-making system [1]. Fig. 1 shows a
block diagram of the typical architecture of self-driving cars,
where the perception and decision-making systems are shown
as a collection of subsystems of different colors.

The perception system is responsible for creating an
internal representation of the world and is generally divided
into many subsystems responsible for tasks such as: self-
driving car localization in a set of previously built offline
maps, online static obstacles mapping, online road mapping,
moving obstacles detection and tracking, and traffic
signalization detection and recognition, among others. The
decision-making system is responsible for navigating the car
from its initial pose to a final goal pose and is commonly
partitioned as well into many subsystems responsible for tasks
such as: route planning in offline maps, path planning,
behavior selection, motion planning, obstacle avoidance and
control, though this partitioning is somewhat blurred and there
are several different variations in the literature [1].

Given the initial pose of the self-driving car and a final goal
pose defined by a user operator, the route planner subsystem
generates a route, , in offline maps through a road network
from the initial car’s pose to the final goal pose [2]. A route is a
sequence of waypoints, | | , where

each waypoint, , is a coordinate pair, , in the
offline maps. Given the route, the path planner subsystem
generates a path, , considering the current car’s state and the
internal representation of the environment, as well as traffic
rules [1] [3]. A path is a sequence of poses,
 | | , where each pose, , is a coordinate

pair, , in offline maps plus the desired car orientation,
 , at the position defined by the coordinate pair, i.e.,
 .

Fig. 1. Overview of the typical architecture of self-driving cars [4]. TSD

denotes Traffic Signalization Detection and MOT Moving Objects Tracking.

We have developed a self-driving car, named Intelligent
Autonomous Robotic Automobile (IARA, Fig. 1), whose
autonomy system follows the typical architecture of self-
driving cars [4]. IARA is based on a Ford Escape Hybrid
adapted with a variety of sensors and processing units. Its
autonomy system is composed of many subsystems, which
includes a Mapper [5], a Localizer [6], a Moving Obstacle

Controller

Obstacle

Avoider

Localizer

Motion

Planner
State

Modified Trajectory

Odometry

Behavior

Selector

Path & Goal

Path

Planner

Mapper

Sensors

Perception System

Decision Making

System

Trajectory

Efforts

Offline Maps

Paths

Route

Planner

Route

MOT

TSD

Internal representation

of the environment

This study was financed in part by Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001; Conselho

Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq) -

grants 311654/2019-3, 200864/2019-0 and 311504/2017-5; and Fundação de
Amparo à Pesquisa do Espírito Santo - Brasil (FAPES) – grant 84412844. 978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Tracker [7], a Traffic Signalization Detector [8] [9], a Route
Planner, a Path Planner, a Behavior Selector, a Motion Planner
[10], an Obstacle Avoider [11] and a Controller [12], among
others.

In this paper, we present a new image-based real-time path
planner for the self-driving car IARA, named DeepPath (Fig.
2). DeepPath uses a deep convolutional neural network (CNN,
for short) for inferring paths from images. While the self-
driving car is in operation, DeepPath receives an image,
captured from the IARA’s front camera, and the current pose
of IARA, computed by the IARA’s Localizer subsystem [6].
Then, it sends the image to a CNN trained to infer a model of
the path, which consists of a displacement on the y-axis of the
IARA’s coordinate system (Fig. 2) plus a set of three knots that
specify a cubic spline. After that, DeepPath generates the path
in the IARA’s coordinate system using the path model.
Subsequently, given the current IARA’s pose in the world
coordinate system, DeepPath transforms each pose of the path
in the IARA’s coordinate system into another pose in the world
coordinate system. Finally, it sends the path to the IARA’s
Behavior Selector subsystem (Fig. 1), the next subsystem in the
IARA’s Decision-Making system.

We evaluated the performance of DeepPath in real world
scenarios. For that, we used DeepPath for path planning along
the ring road of the Universidade Federal do Espírito Santo
(UFES) campus, which has 3.7 km of extension. Our
experimental results showed that DeepPath is able to correctly
generate paths for IARA that differ only slightly from those
defined by humans – the Root Mean Square (RMS) of the
differences between the poses of the paths estimated from
images by DeepPath and those of the desired paths (paths
followed by human drivers) is 0.37 m, on average.

This paper is structured as follows. After this introduction,
in Section II, we present related works. In Section III, we detail
DeepPath. In Section IV, we describe the experimental
methodology adopted to evaluate DeepPath and, in Section V,
we discuss experimental results. Finally, in Section VI, we

close with conclusions and directions for future work.

II. RELATED WORKS

There are various methods proposed in the literature to
address the problem of path planning for self-driving cars. For
reviews on these methods, readers are referred to González et
al. [3], Paden et al. [1] and Badue et al. [4].

Among those based on CNNs, some methods infer paths
from images. Guo et al. [13] proposed a path planning method
that uses a behavior-induction potential map to generate a path
from a front-view camera image. The proposed method is
intended to imitate the following mechanism: when a human
driver sees a vehicle ahead on the road, he does not consider
the distance he must keep from it, but what path he must take
to interact with it. In the proposed method, a CNN is adopted
to detect vehicle candidates in an image. The bounding box
candidates are then merged based on both the image evidence
and the statistical support of candidates. After that, the detected
vehicles are classified into six categories by a Bayesian
Network. Finally, a behavior-induced potential map is
constructed in which a mass-spring-damper system with a
cubic spline is employed to generate a path for following a
predefined route. Simulations with videos collected in urban
environments were conducted to evaluate the performance of
the behavior-induced potential map on path generation.
Simulation results showed that paths generated by the proposed
method are close to those by human drivers.

Reh et al. [14] proposed a path planning technique that
employs a CNN to infer a path from an aerial image. To build
training and test datasets, a set of aerial images was collected
from Google Maps and annotated with paths followed by
human drivers, which were observed from the road side of an
intersection. Experimental results showed that the proposed
method generates paths similar to those by human drivers.

In comparison to DeepPath, the methods mentioned above
[13] [14] involve statistical models or aerial images, while
DeepPath requires only front-view camera images and car

Fig. 2. Overview of DeepPath.

DeepPath
Image

DNN

Localizer

Path Generator

Path in the IARA’s
Coordinate System

IARA
Current Pose

Path Model

Path in the World
Coordinate System

Coordinate
Transformer

IARA’s Coordinate
System

Z

Y

XRoll

Pitch
Yaw

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

poses.

Other methods infer motion commands (such as steering
wheel angle, speed and lateral/longitudinal positions) from
front-view camera images. In fact, these methods address the
tasks of path planning and motion planning [4] at the same
time. Bojarski et al. [15] proposed a motion planning method
that uses a convolutional neural network (CNN) to infer a
steering wheel angle from a single front-view camera image.
Most of the training and test dataset was collected by driving
on a variety of roads in central New Jersey. Experimental
results showed that the proposed method was able to drive on
local roads with or without lane markings, and on highways.

Che et al. [16] presented a motion planning technique
similar to that of Bojarski et al. [15]. Its CNN was trained and
tested using the comma.ai dataset [17], which was collected by
driving on roads. Test results showed that the presented
technique can produce relatively accurate vehicle steering.

Yan et al. [18] proposed a multi-modal multi-task CNN to
predict a steering wheel angle and a speed simultaneously. The
proposed model receives as input a stream of front-view
images and a sequence of speeds. It was evaluated on the
public Udacity dataset (https://github.com/udacity/self-driving-
car) and on the newly collected SAIC dataset. Experimental
results showed that the proposed model provides an accurate
speed prediction, in addition to further improving the state-of-
the-art steering wheel angle estimate.

Cai et al. [19] presented a CNN long short-term memory
(LSTM) to infer a trajectory composed of speeds and
lateral/longitudinal positions, 3.0 seconds in the future. The
presented model takes as input a stream of front-view images
and a sequence of car states in the past 1.5 seconds. It was
evaluated using training and test datasets extracted from the
Robotcar dataset [20]. Experimental results suggest that the
presented model generates trajectories similar to the ground
truth when turning at various intersections or keeping straight.

Compared to DeepPath, the methods mentioned above [15]
[16] [18] [19] address the tasks of path planning and motion
planning simultaneously, while DeepPath handles path
planning only. The reason is that DeepPath was designed for
the self-driving car IARA, whose autonomy system deals with
path planning and motion planning separately in different
subsystems [4].

III. CNN PATH GENERATION SYSTEM (DEEPPATH)

During the self-driving car operation, DeepPath receives as
input an image from the IARA’s front camera and the current
IARA’s pose from the IARA’s Localizer subsystem, and
generates as output a path (Fig. 2). It does so by using a CNN
to infer a model of the path, which consists of four parameters:
a displacement on the y-axis of the IARA’s coordinate system
plus a set of three knots that specifies a cubic spline. The
model of the path is then transformed into an actual path by: (i)
generating the path in the IARA’s coordinate system and then
(ii) transforming each pose of the path in the IARA’s
coordinate system into another pose in the world coordinate
system.

In the following subsections, we describe this process in
more details.

A. CNN Architecture

To infer a model of the path, DeepPath employs a modified
version of the CNN for image segmentation proposed by Bulo
et al. [22], pre-trained on the Mapillary Vistas dataset. The
CNN architecture they proposed is composed of three sections.
The first section (or body) of the network is the WideResNet38
architecture [23], which contains 17 residual blocks. The first
15 blocks contain 2 convolution operations each, while the last
2 blocks contain 3. The second section of the network is the
DeepLabV3 architecture [24]. It performs 4 parallel
convolutions, with different dilation rates for exploring
multiple scale contexts, and combines the results with a Spatial
Pyramid Pooling operation [24]. The innovation proposed by
Bulo et al. [22] was the replacement of all the Batch
Normalization layers in those architectures by a new structure
made of LeakyReLU neurons [25] with negative slope of 0.01,
which performs an operation called In-Place Activated Batch
Normalization. This modification allows the release of a
significant amount of GPU memory, which can be exploited to
scale up the batch size. Finally, the third (or final) section of
the network performs bilinear up-sampling so that the output
has the same dimensions as the input image of the network.

To repurpose this CNN to the regression task required by
DeepPath (of inferring path model parameters from images)
instead of image segmentation, we modified only the final
section of the network. We replaced this bilinear up-sampling
layer by a fully connected layer with four linear neurons that
output: the displacement on the y-axis of the IARA’s
coordinate system, and the set of three knots that specify a
cubic spline.

B. Path Model

Fig. 3 shows a path and its parameters in the IARA’s
coordinate system. The displacement, , is the distance that
IARA has to move on its y-axis to be exactly over the desired
path, i.e., the path that the operator wants IARA to go through.
The set of three knots, , defines the cubic
spline that best fits the desired path, , in a
coordinate system that is identical to that of IARA, except by
the fact that it is translated in the y-axis by the displacement,
 . The spline starts in the origin of this coordinate system and
crosses the three knots at coordinates , and
 . The values , and are in meters and were
chosen so that the paths generated by DeepPath would be long
enough to allow safe autonomous operation at speeds of up to
 m/s (or km/h). These values can be altered if faster
speeds are desired.

C. Path Generation

DeepPath generates paths in the IARA’s coordinate system
using the path model. An estimated path in the IARA’s
coordinate system, , consists of a sequence of poses,

 | |
 , in which

 . The

car position at each pose
 ,

 , is defined by the value

of
 , that can be any value between and m along the

spline, and of

 , where is the

displacement. The car orientation at each pose
 ,

 , is

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

defined by the slope of the line that tangents the spline (or the
derivative of the spline) at the position

 . It is

approximated by the equation

 (

 (
) (

)

) , (1)

where is small.

Fig. 3. Desired path and its parameters in the IARA’s coordinate system (in
meters) with an occupancy grid map in the background. The red rectangle

indicates the current IARA’s pose; the small dashed red line indicates the

displacement, ; the three green dots represent the three knots, , of
the cubic spline; and the purple curve represents the cubic spline that best fits

the desired path.

D. Coordinate Transformation

Given the current IARA’s pose in the world coordinate
system, DeepPath transforms each pose of a path in the
IARA’s coordinate system,

 , into another

pose in the world coordinate system,

 , using
the equation

(

) (

)(

) (

) (2)

where is the IARA’s pose in the world
coordinate system at the time of the coordinate transformation,
i.e., the time when the input image is captured.

IV. EXPERIMENTAL METHODOLOGY

To examine the performance of DeepPath, we used the
hardware and software infrastructure of the self-driving car
IARA (Fig. 1). To train the CNN of DeepPath and test its
performance, we built a series of training and test datasets,
using data logged from IARA’s sensors and computed by
IARA’s subsystems. We then assessed the quality of the paths
generated by DeepPath by comparing them with the desired
paths using proper metrics.

A. IARA

IARA (Fig. 1) is a self-driving car developed by the
computational intelligence research group of the Laboratório
de Computação de Alto Desempenho – LCAD
(http://www.lcad.inf.ufes.br) at the Universidade Federal do
Espírito Santo (UFES), in Brazil. IARA is based on a Ford
Escape Hybrid, which was modified to allow electronic control
of steering, throttle, brakes, gears and several signalization
items; and to provide the car odometry for the IARA’s
autonomy system, and power supply for computers and

sensors. Its main computer is a Dell Precision R5500 with two
Xeon X5690 six-core 3.4 GHz processors and one NVIDIA
TITAN Xp. Its sensors include one Velodyne HDL 32-E
LIDAR, one Trimble RTK GPS, one Xsens MTi IMU and one
Bumblebee XB3 stereo camera.

The IARA’s autonomy system follows the typical
architecture of self-driving cars [4]. It is based on the Carnegie
Mellon Robot Navigation Toolkit (CARMEN [25]), which is a
modular open source software collection for mobile robot
control. We have significantly extended and currently maintain
a version of CARMEN, available at https://github.com/LCAD-
UFES/carmen_lcad. For details on the IARA’s autonomy
system, readers are referred to Badue et al. [4].

B. Datasets

To train the DeepPath’s CNN and test its performance, we
built a series of training and test datasets, whose characteristics
are summarized in Table I. To build these datasets, we logged
data from all IARA’s sensors while IARA was being
conducted by a human driver along the ring road of the UFES
main campus. This ring road has 3.7 km of extension.

Table I: Characteristics of the training and test datasets

Datasets
Sources of
Datasets

Number of
Images

Image Size

Training Dataset Logs 1 to 4 31,911

640×480-
pixel

Validation Dataset Log 5 7,276

Test Dataset 1 Log 6 6,260

Test Dataset 2 Log 7 8,199

We recorded seven sensor data logs, whose characteristics
are summarized in Table II. In the Logs 1 and 2, the driver
tried and kept IARA centralized on the lane along the ring
road–in the Log 1, the driver travelled clockwise, while, in the
Log 2, counterclockwise. In the Logs 3 and 4, the driver
conducted IARA on a zigzag course, swinging to the left and to
the right side of the center of the lane–in the Log 3, the driver
travelled clockwise, while, in the Log 4, counterclockwise.
From the Logs 5 to 7, the driver tried and kept IARA
centralized on the lane along the ring road–in the Logs 5 and 6,
the driver travelled clockwise, while, in the Log 7,
counterclockwise.

Table II: Characteristics of the sensor data logs

Logs Path Shape Travel Direction Desired Path Source

Log 1 Centralized Clockwise Log 1

Log 2 Zigzag Counterclockwise Log 2

Log 3 Centralized Clockwise Log 1

Log 4 Zigzag Counterclockwise Log 2

Log 5 Centralized Clockwise Log 1

Log 6 Centralized Clockwise Log 1

Log 7 Centralized Counterclockwise Log 2

In all the seven sensor data logs, we computed and logged
as well IARA’s poses on the paths along the ring road using
the IARA’s Localizer subsystem. Finally, for each camera
image in the seven logs, we estimated and logged the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

parameters of the model of a segment of the desired ring road
path extending 30 m in front of the IARA’s pose, at the time
when each camera image was captured, using the logged
IARA’s poses. In Section IV.C, we describe this process in
detail.

We have two desired ring road path paths, one clockwise
and one counterclockwise. They are the paths followed by the
driver while he kept IARA centralized on the lane along the
ring road in the Logs 1 and 2 mentioned above. So, desired
paths for images of the Logs 3 and 4 were captured from data
of the Logs 1 and 2, respectively. Desired paths for images
from the Logs 5 and 6 were captured from data of the Log 1,
while, for images from the Log 7, from data of the Log 2. The
Logs 3 and 4 were necessary for teaching the CNN the cases in
which the displacement, , is far from zero.

The dataset used to train the CNN (Training Dataset) was
extracted from the Logs 1 to 4 (Table I). It is composed of
31,911 images of 640×480-pixel and the parameters of its
associated path models. The Validation Dataset was extracted
from the Log 5. It is composed of 7,276 images of 640×480-
pixel and the parameters of the associated path models. We
built two test datasets, which were extracted from the Logs 6
and 7. The Test Dataset 1 is composed of 6,260 images of
640×480-pixel and the parameters of the associated path
models, and the Test Dataset 2 is composed of 8,199 images of
640×480-pixel.

C. Generation of the Parameters of the Desired Path Model

As mentioned before, for each camera image in the seven
logs, we estimated and logged the parameters of the model of a
segment of the desired ring road path extending 30 m in front
of the IARA’s pose at the time when each camera image was
captured.

To estimate the displacement, , we found the point in the
desired ring road path closest to the current IARA’s position,
and computed the difference between the ordinates of this
nearest point and of the current IARA’s position; when the
point is to the left of IARA, is positive and when it is to the
right, negative.

To estimate the set of three knots, , and , we found
the cubic spline with three knots that best approximates the
segment of the desired ring road path closest to the current
IARA’s position. For that, we (i) transformed each point of the
relevant segment of the desired ring road path in the world
coordinate system into another point in the IARA’s coordinate
system, (ii) discounted the displacement, , of each one of its
points and (iii) used the conjugate gradient optimization
algorithm to gradually change initial guesses for the set of three
knots, so that the positions estimated using the spline were as
close as possible to the points of the desired ring road path
segment with the same abscissa. Fig. 4 shows an example of a
relevant segment of the desired ring road path, the current
IARA’s pose and the estimated cubic spline.

More precisely, to estimate the three knots of the path
model, we solved the minimization problem given by the
equation

 , (3)

where

| |
 is the sequence of poses

of the desired ring road path, in which

 , and

 √

| |
∑

| |

(4)

is the squared root of the average of the summation of the

squares of the Euclidian distance,

 , between each

position estimated using the spline,

 (
) ,

and the position of the desired path with the same abscissa,

 .

Initial guesses for the knots , and are taken from
the ordinates associated to the abscissas closest to , and
 m, respectively, of poses of the desired ring road path.

Fig. 4. Example of a relevant segment of the desired ring road path, the
current IARA’s pose and the estimated cubic spline. The red rectangle

indicates the current IARA’s pose, yellow points represent the relevant

segment of the desired ring road path and the purple curve represents the
estimated cubic spline.

D. CNN Loss and DeepPath Evaluation Metrics

To train the DeepPath’s CNN, we used as loss function the
Mean Squared Error (MSE) of the differences between the
elements of the vector of path model parameters estimated
from an image by DeepPath,

 , and that
inferred from the desired ring road path for the image,

 }, using the equation

| |
∑

| |

, (5)

where
 is i-th element of the vector estimated by DeepPath

(i.e.,
 ,

 ,
 and

),
 is the i-th

element of the vector inferred from the desired ring road path
and | | is the number of parameters of the path model.

To analyze the performance of DeepPath, for each path
model parameter, , we used the Root
Mean Square (RMS) of the differences between the values
estimated from an image by DeepPath,

 , and that inferred

from the desired ring road path for the image ,
 , using the

equation

 √

| |
∑

| |

, (6)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

where | | is the number of images in the test dataset, . In
the experiments, we examined the value of for each path

model parameter, i.e., ,
,

, and
.

We also used the Root Mean Square (RMS) of the
differences between the positions of the path estimated by

DeepPath for an image ,

 |
 |

and those of the desired ring road path for the image ,

 |

 |

 , using the equation

 √

|
 |
∑

|
 |

,

(7)

where

 is i-th position of the path

estimated for the image and

 is the i-th

position of the desired ring road path for the image . In the
experiments, we examined the value of on average for

all images in each test dataset, , i.e.,

| |
∑ √

|
 |
∑

|
 |

| |
 .

(8)

V. EXPERIMENTAL RESULTS

To evaluate the performance of DeepPath, we trained the
CNN for inferring path models from images using the training
and validation datasets. We then examined the quality of the
paths generated by DeepPath by comparing them with the
associated path segments of the desired ring road path. Finally,
we assessed the performance of DeepPath on the autonomous
operation of IARA.

A. CNN Training

To train the CNN of DeepPath, we initialized all but its last
layer parameters with the set of values of the parameters and
hyperparameters provided by Bulo et al. [21], who trained their
CNN for image segmentation. The last fully connected layer of
our CNN (that replaced the final up-sampling section of the
original CNN – Section III.A) was initialized with random
weights. The weights of all remaining layers were kept
unfrozen for fine-tuning.

The CNN was trained for 11 epochs, with batch size of 4,
using the Adam optimizer. As loss function, we used the MSE
of the differences between the elements of the vector of path
model parameters estimated from an image by DeepPath and
those inferred from the desired ring road path for the image
(see Section IV.D). We performed 9 different training
procedures to find a good combination between the value of
the learning rate and the size of the final section of the network
(fully connected layer with four output neurons). The learning
rates used were: 10

-6
, 10

-7
 and 10

-8
; and the final section

configurations used were: only one layer with 4 output
neurons; addition of an intermediate layer with 20 neurons; and
addition of an intermediate layer with 100 neurons. Fig. 5
shows the evolution of the mean loss of the validation dataset
after each train epoch for each combination between these
hyperparameters. As shown in Fig. 5, the learning rate of 10

-6

provided the best (lower) mean loss among the rates used.

Since changes to the final section configuration (addition of an
intermediate layer with 20 or 100 neurons) did not significantly
reduce the loss, we chose the simplest configuration with only
one layer with 4 output neurons.

Fig. 5. Mean loss on the validation dataset after each train epoch, for each

hyperparameter combination. In line captions, denotes the

combination of learning rate of with only one layer with 4 output

neurons (as in the original network); denotes the combination

of learning rate of with addition of an intermediate layer with 20

neurons; denotes learning rate of with addition of an
intermediate layer with 100 neurons; and so on.

B. DeepPath Test

To analyze the performance of DeepPath on the test
datasets, we used the IARA’s software infrastructure (Section
IV.A) to play the same logs of sensor data used for building the
test datasets (Section IV.B), so that DeepPath would run as if it
was operating connected to IARA in real world scenarios.
While the sensor data logs were being played, we saved the
path model parameters estimated from images by DeepPath
(Section III.B). We then compared the saved path model
parameters with the ground truth (parameters inferred from the
desired ring road path paths) in the test datasets.

We executed two test experiments with the two test
datasets and, for each path model parameter, we measured the
RMS of the differences between the values estimated from
images by DeepPath and the ground truth in each of the two
test datasets. Table III shows the RMS parameter errors (in
meters). In Table III, the last line shows, for each path model
parameter, the RMS on average for all images in each of the
two test datasets. As Table III shows, the errors are small–in
the order of 1.00 m, at most.

Table III: RMS of the differences between the parameters estimated by

DeepPath and the ground truth

Test
Dataset

 (m)
(m)

(m)
(m)

1 0.64 0.36 0.48 0.77

2 0.38 0.27 0.37 0.64

Average 0.51 0.32 0.43 0.70

We also examined the RMS of the differences between the
positions of the paths estimated by DeepPath for images and
those of the desired ring road path in each of the two datasets.
Table IV shows the RMS position errors (in meters). As Table

0,01

0,1

1

0 5 10

M
e

an
 L

o
ss

 (
m

)

Epoch Number

10⁻⁶ × 4

10⁻⁶ × 20+4

10⁻⁶ × 100+4

10⁻⁷ × 4

10⁻⁷ × 20+4

10⁻⁷ × 100+4

10⁻⁸ × 4

10⁻⁸ × 20+4

10⁻⁸ × 100+4

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

IV shows, the errors are also small – in the order of 0.5 m, at
most.

Table IV: RMS of the differences between the positions estimated by

DeepPath and the ground truth

Test Dataset (m)

1 0.42

2 0.31

Average 0.37

Finally, we evaluated the performance of DeepPath on the
autonomous operation of IARA. A video that shows the real-
time operation of DeepPath in some relevant situations in these
experiments is available at http://tiny.cc/22eejz.

The real world experiments demonstrated that IARA's
autonomy system is capable of following a road while using
DeepPath as a path planner. DeepPath was able to generate
paths that kept IARA in the right lane on the curved sections of
the road, as shown in Fig. 6. DeepPath was also able to keep
IARA in the right lane on the straight sections of the road, as
shown in Fig. 7.

In addition, DeepPath was capable of taking IARA to the
right lane, even when the displacement, , was large, as
shown in Fig. 8. This figure shows an example of this behavior
observed during a test experiment with an image (and
associated IARA’s pose) of the Training Dataset captured
while the human driver conducted IARA on a zigzag course.

However, DeepPath generally makes mistakes when the
road has forks. When DeepPath encounters a fork in the road, it
may not be able to choose a suitable path and IARA is stopped
by the Motion Planner or the Obstacle Avoider subsystems.
This is expected, because DeepPath does not know the route to
follow, as the route is not one of the inputs of its CNN.

Fig. 6. Screenshot of IARA’s autonomy system interface captured during
autonomous operation at a time DeepPath generated a path that led IARA

safely along a curved stretch of the road. The screenshot shows, in the left

upper corner, the camera image; in the left bottom corner, a graph with the

current IARA’s pose indicated by a green , the displacement represented by
a blue vector and the cubic spline in the world coordinate system represented

by a purple curve (we discounted the current IARA’s position of the cubic

spline, of the displacement, and of the IARA’s position itself, for visualization
purposes); in the right upper corner, the online occupancy grid map, which is

used by the IARA’s Localizer subsystem to generate the current IARA’s pose;

and, in the right bottom corner, the point cloud computed from the Velodyne
LiDAR sensor data, which is used by the IARA’s Mapper subsystem to

generate the online occupancy grid map.

Fig. 7. Screenshot of IARA’s autonomy system interface captured during
autonomous operation at a time DeepPath generated a path that led IARA

safely along a straight stretch of the road.

Fig. 8. Screenshot of IARA’s autonomy system interface captured during a

test experiment at a time DeepPath generated a path that took IARA to the

right lane, even with a large displacement, .

C. Discussion

 The related works that we discussed in Section II evaluated
the performance of their methods on path generation
qualitatively and/or quantitatively. In the qualitative analyses,
some works [13] [14] [16] [18] [19] plotted estimated and
desired paths on graphs, compared them visually and argued
that paths generated by their methods are close to those by
human drivers; another work [15] showed videos of their test
cars driving in diverse conditions. In quantitative assessments,
a work [16] computed the errors of steering wheel angle
estimates and constructed a histogram of these errors; another
work [18] computed the Mean Absolute Error (MAE) of
steering wheel angle and speed predictions; and another work
[19] computed the MAE of path position estimates, which can
be compared with our results, as we have also computed the
errors of path position estimates. Cai et al. [19] reported the
MAE of path position predictions of their method for three
different behaviors: 0.77 m for keep straight, 0.61 m for turn
left and 0.63 m for turn right. For all behaviors, the MAE
obtained by their method was larger than the RMS reached by
DeepPath, which was 0.37 m, on average. As the RMS is
always larger or equal to the MAE, DeepPath outperformed the
method by Cai et al. [19].

VI. CONCLUSION AND FUTURE WORK

We proposed DeepPath, an image-based real-time path
planner for the self-driving car IARA. DeepPath uses a CNN to
infer paths from images. While the self-driving car is in
operation, DeepPath periodically receives an image and the
current IARA’s pose as an input, and generates a path as an
output. For this, DeepPath uses a CNN to infer a model of the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

path, which consists of four parameters: a displacement on the
y-axis of the IARA’s coordinate system plus a set of three
knots of a cubic spline. DeepPath then uses the path model to
generate a path in the IARA’s coordinate system. Finally, it
moves the path to the world coordinate system using the
current IARA’s pose.

We evaluated the performance of DeepPath in real world
scenarios. For that, we used DeepPath for path planning along
the ring road of the UFES campus, which has 3.7 km of
extension. Our experimental results showed that DeepPath is
capable of correctly generating paths for IARA that differ only
slightly from desired paths (paths followed by human drivers)–
the RMS of the differences between the path model parameters
estimated from images by DeepPath and those inferred from
desired paths are 0.51 m, 0.32 m, 0.43 m and 0.71 m (for the
displacement and the three spline knots, respectively), on
average for the test datasets; and the RMS of the differences
between the poses of the paths estimated from images by
DeepPath and those of the desired paths is 0.37 m, on average
for all images in the test datasets.

A direction for future work is to investigate a CNN based
approach that infers control commands (i.e., acceleration, brake
and steering efforts) from camera images. Another direction for
future research is to provide a route as an input to the CNN,
which will indicate it the path forward when DeepPath finds a
fork in the road. Finally, other direction for further research is
to examine the benefits of using other types of pre-trained
CNNs for inferring path models from images.

REFERENCES

[1] B. Paden, M. Cap, S.Z. Yong, D. Yershov and E. Frazzoli, “A Survey
of Motion Planning and Control Techniques for Self-driving Urban

Vehicles”, IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1,

pp. 33-55, 2016.
[2] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P.

Sanders, D. Wagner and R. F. Werneck, “Route Planning in

Transportation Networks”, arXiv:1504.05140, 2015.
[3] D. Gonzalez, J. Perez, V. Milanes and F. Nashashibi, “A Review of

Motion Planning Techniques for Automated Vehicles”, IEEE

Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp.
1135–1145, 2016.

[4] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,

A. Forechi, L. F. R. Jesus, R. F. Berriel, T. M. Paixão, F. Mutz, T.
Oliveira-Santos and A. F. De Souza, “Self-Driving Cars: A Survey”,

arXiv:1901.04407v2, 2019.

[5] F. Mutz, L. P. Veronese, T. Oliveira-Santos, E. de Aguiar, F. A. Auat
Cheein and A. Ferreira De Souza, “Large-Scale Mapping in Complex

Field Scenarios Using an Autonomous Car”, Expert Systems with

Applications, vol. 46, pp. 439–462, 2016.
[6] L. de P. Veronese, J. Guivant, F. A. A. Cheein, T. Oliveira-Santos, F.

Mutz, E. de Aguiar, C. Badue and A. F. De Souza, “A Light-Weight

Yet Accurate Localization System for Autonomous Cars in Large-
Scale and Complex Environments”, IEEE 19th International

Conference on Intelligent Transportation Systems (ITSC), Rio de

Janeiro, Brazil, pp. 520–525, 2016.
[7] R. Sarcinelli, R. Guidolini, V. B. Cardoso, T. M. Paixão, R. F.

Berriel, P. Azevedo, A. F. De Souza, C. Badue and T. Oliveira-

Santos, “Handling Pedestrians in Self-Driving Cars Using Image
Tracking and Alternative Path Generation with Frenét Frames”,

Computers & Graphics, vol. 84, pp. 173-184, 2019.

[8] L. C. Possatti, R. Guidolini, V. B. Cardoso, R. F. Berriel, T. M.
Paixão, C. Badue, A. F. De Souza and T. Oliveira-Santos, “Traffic

Light Recognition Using Deep Learning and Prior Maps for

Autonomous Cars”, IEEE International Joint Conference on Neural
Networks (IJCNN), Budapest, Hungary, 2019.

[9] L. T. Torres, T. M. Paixão, R. F. Berriel, A. F. De Souza, C. Badue,

N. Sebe and T. Oliveira-Santos, “Effortless Deep Training for Traffic

Sign Detection Using Templates and Arbitrary Natural Images”,

IEEE International Joint Conference on Neural Networks (IJCNN),

Budapest, Hungary, 2019.
[10] V. Cardoso, J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-

Santos, L. Veronese and A. F. De Souza, “A Model-Predictive

Motion Planner for the IARA Autonomous Car”, IEEE International
Conference on Robotics and Automation (ICRA), Singapore, pp.

225– 230, 2017.

[11] R. Guidolini, C. Badue, M. Berger and A. F. De Souza, “A Simple
Yet Effective Obstacle Avoider for the IARA Autonomous Car”,

IEEE 19th International Conference on Intelligent Transportation

Systems (ITSC), Rio de Janeiro, Brazil, 2016.
[12] R. Guidolini, A. F. De Souza, F. Mutz and C. Badue, “Neural-Based

Model Predictive Control for Tackling Steering Delays of

Autonomous Cars”, International Joint Conference on Neural
Networks (IJCNN), Anchorage, Alaska, pp. 4324–4331, 2017.

[13] C. Guo, T. Owaki, K. Kidono, T. Machida, R. Terashima and Y.

Kojima, “Toward Human-Like Lane Following Behavior in Urban
Environment with a Learning-Based Behavior-Induction Potential

Map”, IEEE International Conference on Robotics and Automation

(ICRA), Singapore, pp. 1409–1416, 2017.
[14] E. Rehder, J. Quehl and C. Stiller, “Driving Like a Human: Imitation

Learning for Path Planning Using Convolutional Neural Networks”,

International Conference on Robotics and Automation Workshops,
Marina Bay, Singapore, pp. 1–5, 2017.

[15] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J.

Zhao and K. Zieba, “End to End Learning for Self-Driving Cars”,

arXiv:1604.07316v1, 2016.
[16] Z. Chen and X. Huang, “End-To-End Learning for Lane Keeping of

Self-Driving Cars”, IEEE Intelligent Vehicles Symposium (IV), Los

Angeles, CA, USA, pp. 1856–1860, 2017.
[17] E. Santana and G. Hotz, “Learning a Driving Simulator”,

arXiv:1608.01230v1, 2016.

[18] Z. Yang, Y. Zhang, J. Yu, J. Cai and J. Luo, “End-to-end Multi-
Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual

Perceptions”, 24th International Conference on Pattern Recognition

(ICPR), Beijing, China, pp. 2289–2294, 2018.
[19] P. Cai, Y. Sun, Y. Chen and M. Liu, “Vision-Based Trajectory

Planning via Imitation Learning for Autonomous Vehicles”, IEEE

Intelligent Transportation Systems Conference (ITSC), Auckland,
New Zealand, pp. 2736–2742, 2019.

[20] W. Maddern, G. Pascoe, C. Linegar and P. Newman, “1 year, 1000

km: The Oxford Robotcar Dataset”, The International Journal of
Robotics Research, vol. 36, no. 1, pp. 3–15, 2017.

[21] S. R. Bulo, L. Porzi and P. Kontschieder, “In-Place Activated

BatchNorm for Memory-Optimized Training of DNNs”, IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake

City, UT, USA, pp. 5639–5647, 2018.

[22] Z. Wu, C. Shen and A. V. D. Hengel, “Wider or Deeper: Revisiting
the ResNet Model for Visual Recognition”, Pattern Recognition, vol.

90, pp. 119–133, 2019.

[23] L.-C. Chen, G. Papandreou, F. Schroff and H. Adam, “Rethinking
Atrous Convolution for Semantic Image Segmentation”, Computer

Vision and Pattern Recognition, vol. 22, no. 7, pp. 1182-1189, 2017.

[24] A. L. Maas, A. Y. Hannun and A. Y. Ng, "Rectifier Nonlinearities
Improve Neural Network Acoustic Models", 30th International

Conference on Machine Learning, Atlanta, Georgia, USA, 2013.

[25] S. Thrun, D. Fox, W. Burgard and F. Dellaert, “Robust Monte Carlo
Localization for Mobile Robots”, Artificial Intelligence, vol. 128, no.

1–2, pp. 99–141, 2001.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

