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Abstract—We propose an image-based real-time path planner 

for the self-driving car IARA, named DeepPath. DeepPath uses a 

CNN for inferring paths from images. During the self-driving car 

operation, DeepPath receives an image and the current car pose. 

Then, it sends the image to a CNN trained to infer a model of the 

path. After that, DeepPath generates the path in the IARA’s 

coordinate system using the path model. Subsequently, given the 

current IARA’s pose, DeepPath transforms each pose of the path 

in the IARA’s coordinate system into another pose in the world 

coordinate system. Finally, it sends the path to the IARA’s 

Behavior Selector subsystem, the next subsystem in the IARA’s 

Decision-Making system. We evaluated the performance of 

DeepPath in real world scenarios. Our results showed that 

DeepPath is able to correctly generate paths for IARA that differ 

only slightly from those defined by humans. 

Keywords—path planning, self-driving cars, deep neural 

networks. 

I. INTRODUCTION 

The architecture of the autonomy system of self-driving 
cars is typically organized into two main parts: the perception 
system and the decision-making system [1]. Fig. 1 shows a 
block diagram of the typical architecture of self-driving cars, 
where the perception and decision-making systems are shown 
as a collection of subsystems of different colors.  

The perception system is responsible for creating an 
internal representation of the world and is generally divided 
into many subsystems responsible for tasks such as: self-
driving car localization in a set of previously built offline 
maps, online static obstacles mapping, online road mapping, 
moving obstacles detection and tracking, and traffic 
signalization detection and recognition, among others. The 
decision-making system is responsible for navigating the car 
from its initial pose to a final goal pose and is commonly 
partitioned as well into many subsystems responsible for tasks 
such as: route planning in offline maps, path planning, 
behavior selection, motion planning, obstacle avoidance and 
control, though this partitioning is somewhat blurred and there 
are several different variations in the literature [1].  

Given the initial pose of the self-driving car and a final goal 
pose defined by a user operator, the route planner subsystem 
generates a route,  , in offline maps through a road network 
from the initial car’s pose to the final goal pose [2]. A route is a 
sequence of waypoints,                  | | , where 

each waypoint,   , is a coordinate pair,           , in the 
offline maps. Given the route, the path planner subsystem 
generates a path,  , considering the current car’s state and the 
internal representation of the environment, as well as traffic 
rules [1] [3]. A path is a sequence of poses, 
                | | , where each pose,   , is a coordinate 

pair,        , in offline maps plus the desired car orientation, 
  , at the position defined by the coordinate pair, i.e.,    
          . 

 

Fig. 1. Overview of the typical architecture of self-driving cars [4]. TSD 

denotes Traffic Signalization Detection and MOT Moving Objects Tracking. 

We have developed a self-driving car, named Intelligent 
Autonomous Robotic Automobile (IARA, Fig. 1), whose 
autonomy system follows the typical architecture of self-
driving cars [4]. IARA is based on a Ford Escape Hybrid 
adapted with a variety of sensors and processing units. Its 
autonomy system is composed of many subsystems, which 
includes a Mapper [5], a Localizer [6], a Moving Obstacle 
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Tracker [7], a Traffic Signalization Detector [8] [9], a Route 
Planner, a Path Planner, a Behavior Selector, a Motion Planner 
[10], an Obstacle Avoider [11] and a Controller [12], among 
others.  

In this paper, we present a new image-based real-time path 
planner for the self-driving car IARA, named DeepPath (Fig. 
2). DeepPath uses a deep convolutional neural network (CNN, 
for short) for inferring paths from images. While the self-
driving car is in operation, DeepPath receives an image, 
captured from the IARA’s front camera, and the current pose 
of IARA, computed by the IARA’s Localizer subsystem [6]. 
Then, it sends the image to a CNN trained to infer a model of 
the path, which consists of a displacement on the y-axis of the 
IARA’s coordinate system (Fig. 2) plus a set of three knots that 
specify a cubic spline. After that, DeepPath generates the path 
in the IARA’s coordinate system using the path model. 
Subsequently, given the current IARA’s pose in the world 
coordinate system, DeepPath transforms each pose of the path 
in the IARA’s coordinate system into another pose in the world 
coordinate system. Finally, it sends the path to the IARA’s 
Behavior Selector subsystem (Fig. 1), the next subsystem in the 
IARA’s Decision-Making system. 

We evaluated the performance of DeepPath in real world 
scenarios. For that, we used DeepPath for path planning along 
the ring road of the Universidade Federal do Espírito Santo 
(UFES) campus, which has 3.7 km of extension. Our 
experimental results showed that DeepPath is able to correctly 
generate paths for IARA that differ only slightly from those 
defined by humans – the Root Mean Square (RMS) of the 
differences between the poses of the paths estimated from 
images by DeepPath and those of the desired paths (paths 
followed by human drivers) is 0.37 m, on average.  

This paper is structured as follows. After this introduction, 
in Section II, we present related works. In Section III, we detail 
DeepPath. In Section IV, we describe the experimental 
methodology adopted to evaluate DeepPath and, in Section V, 
we discuss experimental results. Finally, in Section VI, we 

close with conclusions and directions for future work. 

II. RELATED WORKS 

There are various methods proposed in the literature to 
address the problem of path planning for self-driving cars. For 
reviews on these methods, readers are referred to González et 
al. [3], Paden et al. [1] and Badue et al. [4].  

Among those based on CNNs, some methods infer paths 
from images. Guo et al. [13] proposed a path planning method 
that uses a behavior-induction potential map to generate a path 
from a front-view camera image. The proposed method is 
intended to imitate the following mechanism: when a human 
driver sees a vehicle ahead on the road, he does not consider 
the distance he must keep from it, but what path he must take 
to interact with it. In the proposed method, a CNN is adopted 
to detect vehicle candidates in an image. The bounding box 
candidates are then merged based on both the image evidence 
and the statistical support of candidates. After that, the detected 
vehicles are classified into six categories by a Bayesian 
Network. Finally, a behavior-induced potential map is 
constructed in which a mass-spring-damper system with a 
cubic spline is employed to generate a path for following a 
predefined route. Simulations with videos collected in urban 
environments were conducted to evaluate the performance of 
the behavior-induced potential map on path generation. 
Simulation results showed that paths generated by the proposed 
method are close to those by human drivers.  

Reh et al. [14] proposed a path planning technique that 
employs a CNN to infer a path from an aerial image. To build 
training and test datasets, a set of aerial images was collected 
from Google Maps and annotated with paths followed by 
human drivers, which were observed from the road side of an 
intersection. Experimental results showed that the proposed 
method generates paths similar to those by human drivers. 

In comparison to DeepPath, the methods mentioned above 
[13] [14] involve statistical models or aerial images, while 
DeepPath requires only front-view camera images and car 

 
Fig. 2. Overview of DeepPath. 
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poses. 

Other methods infer motion commands (such as steering 
wheel angle, speed and lateral/longitudinal positions) from 
front-view camera images. In fact, these methods address the 
tasks of path planning and motion planning [4] at the same 
time.  Bojarski et al. [15] proposed a motion planning method 
that uses a convolutional neural network (CNN) to infer a 
steering wheel angle from a single front-view camera image. 
Most of the training and test dataset was collected by driving 
on a variety of roads in central New Jersey. Experimental 
results showed that the proposed method was able to drive on 
local roads with or without lane markings, and on highways.  

Che et al. [16] presented a motion planning technique 
similar to that of Bojarski et al. [15]. Its CNN was trained and 
tested using the comma.ai dataset [17], which was collected by 
driving on roads. Test results showed that the presented 
technique can produce relatively accurate vehicle steering.  

Yan et al. [18] proposed a multi-modal multi-task CNN to 
predict a steering wheel angle and a speed simultaneously. The 
proposed model receives as input a stream of front-view 
images and a sequence of speeds. It was evaluated on the 
public Udacity dataset (https://github.com/udacity/self-driving-
car) and on the newly collected SAIC dataset. Experimental 
results showed that the proposed model provides an accurate 
speed prediction, in addition to further improving the state-of-
the-art steering wheel angle estimate.  

Cai et al. [19] presented a CNN long short-term memory 
(LSTM) to infer a trajectory composed of speeds and 
lateral/longitudinal positions, 3.0 seconds in the future.  The 
presented model takes as input a stream of front-view images 
and a sequence of car states in the past 1.5 seconds. It was 
evaluated using training and test datasets extracted from the 
Robotcar dataset [20]. Experimental results suggest that the 
presented model generates trajectories similar to the ground 
truth when turning at various intersections or keeping straight. 

Compared to DeepPath, the methods mentioned above [15] 
[16] [18] [19] address the tasks of path planning and motion 
planning simultaneously, while DeepPath handles path 
planning only. The reason is that DeepPath was designed for 
the self-driving car IARA, whose autonomy system deals with 
path planning and motion planning separately in different 
subsystems [4]. 

III. CNN PATH GENERATION SYSTEM (DEEPPATH) 

During the self-driving car operation, DeepPath receives as 
input an image from the IARA’s front camera and the current 
IARA’s pose from the IARA’s Localizer subsystem, and 
generates as output a path (Fig. 2). It does so by using a CNN 
to infer a model of the path, which consists of four parameters: 
a displacement on the y-axis of the IARA’s coordinate system 
plus a set of three knots that specifies a cubic spline. The 
model of the path is then transformed into an actual path by: (i) 
generating the path in the IARA’s coordinate system and then 
(ii) transforming each pose of the path in the IARA’s 
coordinate system into another pose in the world coordinate 
system.  

In the following subsections, we describe this process in 
more details. 

A. CNN Architecture 

To infer a model of the path, DeepPath employs a modified 
version of the CNN for image segmentation proposed by Bulo 
et al. [22], pre-trained on the Mapillary Vistas dataset. The 
CNN architecture they proposed is composed of three sections. 
The first section (or body) of the network is the WideResNet38 
architecture [23], which contains 17 residual blocks. The first 
15 blocks contain 2 convolution operations each, while the last 
2 blocks contain 3. The second section of the network is the 
DeepLabV3 architecture [24]. It performs 4 parallel 
convolutions, with different dilation rates for exploring 
multiple scale contexts, and combines the results with a Spatial 
Pyramid Pooling operation [24]. The innovation proposed by 
Bulo et al. [22] was the replacement of all the Batch 
Normalization layers in those architectures by a new structure 
made of LeakyReLU neurons [25] with negative slope of 0.01, 
which performs an operation called In-Place Activated Batch 
Normalization. This modification allows the release of a 
significant amount of GPU memory, which can be exploited to 
scale up the batch size. Finally, the third (or final) section of 
the network performs bilinear up-sampling so that the output 
has the same dimensions as the input image of the network. 

To repurpose this CNN to the regression task required by 
DeepPath (of inferring path model parameters from images) 
instead of image segmentation, we modified only the final 
section of the network. We replaced this bilinear up-sampling 
layer by a fully connected layer with four linear neurons that 
output: the displacement on the y-axis of the IARA’s 
coordinate system, and the set of three knots that specify a 
cubic spline. 

B. Path Model 

Fig. 3 shows a path and its parameters in the IARA’s 
coordinate system. The displacement,   , is the distance that 
IARA has to move on its y-axis to be exactly over the desired 
path, i.e., the path that the operator wants IARA to go through. 
The set of three knots,             , defines the cubic 
spline that best fits the desired path,            , in a 
coordinate system that is identical to that of IARA, except by 
the fact that it is translated in the y-axis by the displacement, 
  . The spline starts in the origin of this coordinate system and 
crosses the three knots at coordinates       ,         and 
       . The values   ,    and    are in meters and were 
chosen so that the paths generated by DeepPath would be long 
enough to allow safe autonomous operation at speeds of up to 
     m/s (or    km/h). These values can be altered if faster 
speeds are desired. 

C. Path Generation 

DeepPath generates paths in the IARA’s coordinate system 
using the path model. An estimated path in the IARA’s 
coordinate system,   , consists of a sequence of poses, 
      

    
      

     |  |
  , in which   

     
    

    
  . The 

car position at each pose   
 ,    

    
  , is defined by the value 

of   
 , that can be any value between   and    m along the 

spline, and of   
           

       , where    is the 

displacement. The car orientation at each pose   
 ,   

 , is 
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defined by the slope of the line that tangents the spline (or the 
derivative of the spline) at the position    

    
  . It is 

approximated by the equation 

  
        (

      (  
      )       (  

   )

  
)  , (1) 

where    is small. 

 

Fig. 3. Desired path and its parameters in the IARA’s coordinate system (in 
meters) with an occupancy grid map in the background. The red rectangle 

indicates the current IARA’s pose; the small dashed red line indicates the 

displacement,   ; the three green dots represent the three knots,         , of 
the cubic spline; and the purple curve represents the cubic spline that best fits 

the desired path.  

D. Coordinate Transformation 

Given the current IARA’s pose in the world coordinate 
system, DeepPath transforms each pose of a path in the 
IARA’s coordinate system,   

     
    

    
  , into another 

pose in the world coordinate system,   
     

    
    

  , using 
the equation 

(

  
 

  
 

  
 
)  (

            
           

   

)(

  
 

  
 

  
 

)  (

  

  

  

)  (2) 

where               is the IARA’s pose in the world 
coordinate system at the time of the coordinate transformation, 
i.e., the time when the input image is captured. 

IV. EXPERIMENTAL METHODOLOGY 

To examine the performance of DeepPath, we used the 
hardware and software infrastructure of the self-driving car 
IARA (Fig. 1). To train the CNN of DeepPath and test its 
performance, we built a series of training and test datasets, 
using data logged from IARA’s sensors and computed by 
IARA’s subsystems. We then assessed the quality of the paths 
generated by DeepPath by comparing them with the desired 
paths using proper metrics. 

A. IARA 

IARA (Fig. 1) is a self-driving car developed by the 
computational intelligence research group of the Laboratório 
de Computação de Alto Desempenho – LCAD 
(http://www.lcad.inf.ufes.br) at the Universidade Federal do 
Espírito Santo (UFES), in Brazil. IARA is based on a Ford 
Escape Hybrid, which was modified to allow electronic control 
of steering, throttle, brakes, gears and several signalization 
items; and to provide the car odometry for the IARA’s 
autonomy system, and power supply for computers and 

sensors. Its main computer is a Dell Precision R5500 with two 
Xeon X5690 six-core 3.4 GHz processors and one NVIDIA 
TITAN Xp. Its sensors include one Velodyne HDL 32-E 
LIDAR, one Trimble RTK GPS, one Xsens MTi IMU and one 
Bumblebee XB3 stereo camera. 

The IARA’s autonomy system follows the typical 
architecture of self-driving cars [4]. It is based on the Carnegie 
Mellon Robot Navigation Toolkit (CARMEN [25]), which is a 
modular open source software collection for mobile robot 
control. We have significantly extended and currently maintain 
a version of CARMEN, available at https://github.com/LCAD-
UFES/carmen_lcad. For details on the IARA’s autonomy 
system, readers are referred to Badue et al. [4]. 

B. Datasets 

To train the DeepPath’s CNN and test its performance, we 
built a series of training and test datasets, whose characteristics 
are summarized in Table I. To build these datasets, we logged 
data from all IARA’s sensors while IARA was being 
conducted by a human driver along the ring road of the UFES 
main campus. This ring road has 3.7 km of extension.  

Table I: Characteristics of the training and test datasets 

Datasets 
Sources of 
Datasets 

Number of 
Images 

Image Size 

Training Dataset Logs 1 to 4 31,911 

640×480-
pixel 

Validation Dataset Log 5 7,276 

Test Dataset 1 Log 6 6,260 

Test Dataset 2 Log 7 8,199 

 

We recorded seven sensor data logs, whose characteristics 
are summarized in Table II. In the Logs 1 and 2, the driver 
tried and kept IARA centralized on the lane along the ring 
road–in the Log 1, the driver travelled clockwise, while, in the 
Log 2, counterclockwise. In the Logs 3 and 4, the driver 
conducted IARA on a zigzag course, swinging to the left and to 
the right side of the center of the lane–in the Log 3, the driver 
travelled clockwise, while, in the Log 4, counterclockwise. 
From the Logs 5 to 7, the driver tried and kept IARA 
centralized on the lane along the ring road–in the Logs 5 and 6, 
the driver travelled clockwise, while, in the Log 7, 
counterclockwise.  

Table II: Characteristics of the sensor data logs 

Logs Path Shape Travel Direction Desired Path Source 

Log 1 Centralized Clockwise Log 1 

Log 2 Zigzag Counterclockwise Log 2 

Log 3 Centralized Clockwise Log 1 

Log 4 Zigzag Counterclockwise Log 2 

Log 5 Centralized Clockwise Log 1 

Log 6 Centralized Clockwise Log 1 

Log 7 Centralized Counterclockwise Log 2 

 

In all the seven sensor data logs, we computed and logged 
as well IARA’s poses on the paths along the ring road using 
the IARA’s Localizer subsystem. Finally, for each camera 
image in the seven logs, we estimated and logged the 
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parameters of the model of a segment of the desired ring road 
path extending 30 m in front of the IARA’s pose, at the time 
when each camera image was captured, using the logged 
IARA’s poses. In Section IV.C, we describe this process in 
detail. 

We have two desired ring road path paths, one clockwise 
and one counterclockwise. They are the paths followed by the 
driver while he kept IARA centralized on the lane along the 
ring road in the Logs 1 and 2 mentioned above. So, desired 
paths for images of the Logs 3 and 4 were captured from data 
of the Logs 1 and 2, respectively. Desired paths for images 
from the Logs 5 and 6 were captured from data of the Log 1, 
while, for images from the Log 7, from data of the Log 2. The 
Logs 3 and 4 were necessary for teaching the CNN the cases in 
which the displacement,   , is far from zero. 

The dataset used to train the CNN (Training Dataset) was 
extracted from the Logs 1 to 4 (Table I). It is composed of 
31,911 images of 640×480-pixel and the parameters of its 
associated path models. The Validation Dataset was extracted 
from the Log 5. It is composed of 7,276 images of 640×480-
pixel and the parameters of the associated path models. We 
built two test datasets, which were extracted from the Logs 6 
and 7. The Test Dataset 1 is composed of 6,260 images of 
640×480-pixel and the parameters of the associated path 
models, and the Test Dataset 2 is composed of 8,199 images of 
640×480-pixel. 

C. Generation of the Parameters of the Desired Path Model  

As mentioned before, for each camera image in the seven 
logs, we estimated and logged the parameters of the model of a 
segment of the desired ring road path extending 30 m in front 
of the IARA’s pose at the time when each camera image was 
captured.  

To estimate the displacement,   , we found the point in the 
desired ring road path closest to the current IARA’s position, 
and computed the difference between the ordinates of this 
nearest point and of the current IARA’s position; when the 
point is to the left of IARA,    is positive and when it is to the 
right, negative. 

To estimate the set of three knots,   ,    and   , we found 
the cubic spline with three knots that best approximates the 
segment of the desired ring road path closest to the current 
IARA’s position. For that, we (i) transformed each point of the 
relevant segment of the desired ring road path in the world 
coordinate system into another point in the IARA’s coordinate 
system, (ii) discounted the displacement,   , of each one of its 
points and (iii) used the conjugate gradient optimization 
algorithm to gradually change initial guesses for the set of three 
knots, so that the positions estimated using the spline were as 
close as possible to the points of the desired ring road path 
segment with the same abscissa. Fig. 4 shows an example of a 
relevant segment of the desired ring road path, the current 
IARA’s pose and the estimated cubic spline. 

More precisely, to estimate the three knots of the path 
model, we solved the minimization problem given by the 
equation 

              , (3) 

where       
    

      
     

|  |
   is the sequence of poses 

of the desired ring road path, in which   
     

    
    

  , and 
 

        √
 

|  |
∑    

    
   

|  |

   

 
(4) 

is the squared root of the average of the summation of the 

squares of the Euclidian distance,     
    

  , between each 

position estimated using the spline,   
     

        (    
 ) , 

and the position of the desired path with the same abscissa, 

  
     

    
  . 

Initial guesses for the knots   ,    and    are taken from 
the ordinates associated to the abscissas closest to   ,    and 
   m, respectively, of poses of the desired ring road path. 

 

Fig. 4. Example of a relevant segment of the desired ring road path, the 
current IARA’s pose and the estimated cubic spline. The red rectangle 

indicates the current IARA’s pose, yellow points represent the relevant 

segment of the desired ring road path and the purple curve represents the 
estimated cubic spline.  

D. CNN Loss and DeepPath Evaluation Metrics 

To train the DeepPath’s CNN, we used as loss function the 
Mean Squared Error (MSE) of the differences between the 
elements of the vector of path model parameters estimated 
from an image by DeepPath,           

    
    

  , and that 
inferred from the desired ring road path for the image, 

          
    

    
 }, using the equation 

    
 

|  |
∑    

    
   

|  |

   
, (5) 

where   
  is i-th element of the vector estimated by DeepPath 

(i.e.,   
    ,   

    ,   
     and   

    ),   
  is the i-th 

element of the vector inferred from the desired ring road path 
and |  |    is the number of parameters of the path model.  

To analyze the performance of DeepPath, for each path 
model parameter,                  ,  we used the Root 
Mean Square (RMS) of the differences between the values  
estimated from an image   by DeepPath,   

 , and that inferred 

from the desired ring road path for the image  ,   
 , using the 

equation 

     √
 

|  |
∑    

    
   

|  |

   
, (6) 
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where |  | is the number of images in the test dataset,   . In 
the experiments, we examined the value of      for each path 

model parameter, i.e.,      ,      
,      

, and      
. 

We also used the Root Mean Square (RMS) of the 
differences between the positions of the path estimated by 

DeepPath for an image  ,   
       

      
        

       |  
 |

   

and those of the desired ring road path for the image  , 

  
       

      
        

     
  |  

 |

  , using the equation 

       √  

|  
 |
∑      

      
   

|  
 |

   
, 

(7) 

where     
       

      
       

  is i-th position of the path 

estimated for the image   and     
       

      
       

  is the i-th 

position of the desired ring road path for the image  . In the 
experiments, we examined the value of        on average for 

all images in each test dataset,   , i.e.,  

     
 

|  |
∑ √  

|  
 |
∑      

      
   

|  
 |

   

|  |
   . 

(8) 

V. EXPERIMENTAL RESULTS 

To evaluate the performance of DeepPath, we trained the 
CNN for inferring path models from images using the training 
and validation datasets. We then examined the quality of the 
paths generated by DeepPath by comparing them with the 
associated path segments of the desired ring road path. Finally, 
we assessed the performance of DeepPath on the autonomous 
operation of IARA. 

A. CNN Training 

To train the CNN of DeepPath, we initialized all but its last 
layer parameters with the set of values of the parameters and 
hyperparameters provided by Bulo et al. [21], who trained their 
CNN for image segmentation. The last fully connected layer of 
our CNN (that replaced the final up-sampling section of the 
original CNN – Section III.A) was initialized with random 
weights. The weights of all remaining layers were kept 
unfrozen for fine-tuning.  

The CNN was trained for 11 epochs, with batch size of 4, 
using the Adam optimizer. As loss function, we used the MSE 
of the differences between the elements of the vector of path 
model parameters estimated from an image by DeepPath and 
those inferred from the desired ring road path for the image 
(see Section IV.D). We performed 9 different training 
procedures to find a good combination between the value of 
the learning rate and the size of the final section of the network 
(fully connected layer with four output neurons). The learning 
rates used were: 10

-6
, 10

-7
 and 10

-8
; and the final section 

configurations used were: only one layer with 4 output 
neurons; addition of an intermediate layer with 20 neurons; and 
addition of an intermediate layer with 100 neurons. Fig. 5 
shows the evolution of the mean loss of the validation dataset 
after each train epoch for each combination between these 
hyperparameters. As shown in Fig. 5, the learning rate of 10

-6
 

provided the best (lower) mean loss among the rates used. 

Since changes to the final section configuration (addition of an 
intermediate layer with 20 or 100 neurons) did not significantly 
reduce the loss, we chose the simplest configuration with only 
one layer with 4 output neurons.  

 

Fig. 5. Mean loss on the validation dataset after each train epoch, for each 

hyperparameter combination. In line captions,        denotes the 

combination of learning rate of      with only one layer with 4 output 

neurons (as in the original network);           denotes the combination 

of learning rate of      with addition of an intermediate layer with 20 

neurons;            denotes learning rate of      with addition of an 
intermediate layer with 100 neurons; and so on.  

B. DeepPath Test 

To analyze the performance of DeepPath on the test 
datasets, we used the IARA’s software infrastructure (Section 
IV.A) to play the same logs of sensor data used for building the 
test datasets (Section IV.B), so that DeepPath would run as if it 
was operating connected to IARA in real world scenarios. 
While the sensor data logs were being played, we saved the 
path model parameters estimated from images by DeepPath 
(Section III.B). We then compared the saved path model 
parameters with the ground truth (parameters inferred from the 
desired ring road path paths) in the test datasets.   

We executed two test experiments with the two test 
datasets and, for each path model parameter, we measured the 
RMS of the differences between the values estimated from 
images by DeepPath and the ground truth in each of the two 
test datasets. Table III shows the RMS parameter errors (in 
meters). In Table III, the last line shows, for each path model 
parameter, the RMS on average for all images in each of the 
two test datasets. As Table III shows, the errors are small–in 
the order of 1.00 m, at most.  

Table III: RMS of the differences between the parameters estimated by 

DeepPath and the ground truth 

Test 
Dataset 

     (m)      
(m)      

(m)      
(m) 

1 0.64 0.36 0.48 0.77 

2 0.38 0.27 0.37 0.64 

Average 0.51 0.32 0.43 0.70 

 

We also examined the RMS of the differences between the 
positions of the paths estimated by DeepPath for images and 
those of the desired ring road path in each of the two datasets. 
Table IV shows the RMS position errors (in meters). As Table 
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IV shows, the errors are also small – in the order of 0.5 m, at 
most. 

Table IV: RMS of the differences between the positions estimated by 

DeepPath and the ground truth 

Test Dataset     (m) 

1 0.42 

2 0.31 

Average 0.37 

 

Finally, we evaluated the performance of DeepPath on the 
autonomous operation of IARA. A video that shows the real-
time operation of DeepPath in some relevant situations in these 
experiments is available at http://tiny.cc/22eejz.  

The real world experiments demonstrated that IARA's 
autonomy system is capable of following a road while using 
DeepPath as a path planner. DeepPath was able to generate 
paths that kept IARA in the right lane on the curved sections of 
the road, as shown in Fig. 6. DeepPath was also able to keep 
IARA in the right lane on the straight sections of the road, as 
shown in Fig. 7.    

In addition, DeepPath was capable of taking IARA to the 
right lane, even when the displacement,   , was large, as 
shown in Fig. 8. This figure shows an example of this behavior 
observed during a test experiment with an image (and 
associated IARA’s pose) of the Training Dataset captured 
while the human driver conducted IARA on a zigzag course. 

However, DeepPath generally makes mistakes when the 
road has forks. When DeepPath encounters a fork in the road, it 
may not be able to choose a suitable path and IARA is stopped 
by the Motion Planner or the Obstacle Avoider subsystems. 
This is expected, because DeepPath does not know the route to 
follow, as the route is not one of the inputs of its CNN. 

 

Fig. 6. Screenshot of IARA’s autonomy system interface captured during 
autonomous operation at a time DeepPath generated a path that led IARA 

safely along a curved stretch of the road. The screenshot shows, in the left 

upper corner, the camera image; in the left bottom corner, a graph with the 

current IARA’s pose indicated by a green  , the displacement represented by 
a blue vector and the cubic spline in the world coordinate system represented 

by a purple curve (we discounted the current IARA’s position of the cubic 

spline, of the displacement, and of the IARA’s position itself, for visualization 
purposes); in the right upper corner, the online occupancy grid map, which is 

used by the IARA’s Localizer subsystem to generate the current IARA’s pose; 

and, in the right bottom corner, the point cloud computed from the Velodyne 
LiDAR sensor data, which is used by the IARA’s Mapper subsystem to 

generate the online occupancy grid map.  

 

Fig. 7. Screenshot of IARA’s autonomy system interface captured during 
autonomous operation at a time DeepPath generated a path that led IARA 

safely along a straight stretch of the road.  

 
Fig. 8. Screenshot of IARA’s autonomy system interface captured during a 

test experiment at a time DeepPath generated a path that took IARA to the 

right lane, even with a large displacement,   .  

C. Discussion 

 The related works that we discussed in Section II evaluated 
the performance of their methods on path generation 
qualitatively and/or quantitatively. In the qualitative analyses, 
some works [13] [14] [16] [18] [19] plotted estimated and 
desired paths on graphs, compared them visually and argued 
that paths generated by their methods are close to those by 
human drivers; another work [15] showed videos of their test 
cars driving in diverse conditions.  In quantitative assessments, 
a work [16] computed the errors of steering wheel angle 
estimates and constructed a histogram of these errors; another 
work [18] computed the Mean Absolute Error (MAE) of 
steering wheel angle and speed predictions; and another work 
[19] computed the MAE of path position estimates, which can 
be compared with our results, as we have also computed the 
errors of path position estimates. Cai et al. [19] reported the 
MAE of path position predictions of their method for three 
different  behaviors: 0.77 m for keep straight, 0.61 m for turn 
left and 0.63 m for turn right. For all behaviors, the MAE 
obtained by their method was larger than the RMS reached by 
DeepPath, which was 0.37 m, on average. As the RMS is 
always larger or equal to the MAE, DeepPath outperformed the 
method by Cai et al. [19]. 

VI. CONCLUSION AND FUTURE WORK 

We proposed DeepPath, an image-based real-time path 
planner for the self-driving car IARA. DeepPath uses a CNN to 
infer paths from images. While the self-driving car is in 
operation, DeepPath periodically receives an image and the 
current IARA’s pose as an input, and generates a path as an 
output. For this, DeepPath uses a CNN to infer a model of the 
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path, which consists of four parameters: a displacement on the 
y-axis of the IARA’s coordinate system plus a set of three 
knots of a cubic spline. DeepPath then uses the path model to 
generate a path in the IARA’s coordinate system. Finally, it 
moves the path to the world coordinate system using the 
current IARA’s pose.  

We evaluated the performance of DeepPath in real world 
scenarios. For that, we used DeepPath for path planning along 
the ring road of the UFES campus, which has 3.7 km of 
extension. Our experimental results showed that DeepPath is 
capable of correctly generating paths for IARA that differ only 
slightly from desired paths (paths followed by human drivers)–
the RMS of the differences between the path model parameters 
estimated from images by DeepPath and those inferred from 
desired paths are 0.51 m, 0.32 m, 0.43 m and 0.71 m (for the 
displacement and the three spline knots, respectively), on 
average for the test datasets; and the RMS of the differences 
between the poses of the paths estimated from images by 
DeepPath and those of the desired paths is 0.37 m, on average 
for all images in the test datasets. 

A direction for future work is to investigate a CNN based 
approach that infers control commands (i.e., acceleration, brake 
and steering efforts) from camera images. Another direction for 
future research is to provide a route as an input to the CNN, 
which will indicate it the path forward when DeepPath finds a 
fork in the road. Finally, other direction for further research is 
to examine the benefits of using other types of pre-trained 
CNNs for inferring path models from images. 
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