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Abstract—This paper presents an approach for position and
attitude control of a quadrotor using adaptive backstepping
technique along with an uncertainty observer via Recurrent
Neural Network (RNN). The quadrotor dynamics are expressed
as two subsystems, namely translational and rotational, on which
the backstepping control law has been developed. In comparison
with feedforward neural networks, RNN has better dynamic
characteristics and approximation capabilities. Therefore, an
RNN based uncertainty observer has been employed to accom-
modate the system uncertainties as well as the unknown external
disturbances. The proposed controller consists of two parts - an
adaptive backstepping based controller that contains an RNN
observer and a robust controller to deal with the approximation
error induced by the RNN. The RNN parameters have been
updated via an update law based on Lyapunov stability theory
in an online manner where the overall system stability is also
guaranteed. The proposed approach has been implemented in
simulations for trajectory tracking of the quadrotor in the
presence of parametric uncertainties and external disturbances.
Also, the hardware results are presented to show the effectiveness
of the proposed approach on DJI Matrice 100.

Index Terms—Quadrotor, Adaptive backstepping, Recurrent
neural Network (RNN), Uncertainty Observer

I. INTRODUCTION

Quadrotor UAVs have found great applications [1] [2] in last
decade due to its abilities like aggressive maneuver, vertical
take-off and landing and fixed point hovering. To make them
suitable for industrial applications, it is essential to develop a
robust control strategy that can handle all types of bounded
external disturbances and tackle the problem of modeling
inaccuracies and parametric uncertainties very precisely.

Several linear and nonlinear control strategies have been
developed for the quadrotor in the past. Most of the nonlinear
control design techniques such as feedback linearization [3]
and dynamic inversion [4] are based on the linear input-output
dynamics with cancellation of some useful nonlinearities
where sometimes such cancellations are not desirable. In order
to reduce the complexity in controller design while avoiding
the cancellation of the useful nonlinearities, backstepping algo-
rithms are gaining much attention for the flight controller de-
sign. The backstepping design is a recursive control algorithm
that works by designing intermediate control laws for some
of the state variables which are known as virtual or pseudo
controls of the system. In [5], a robust control strategy using

H∞ controller for attitude stabilization and a backstepping
controller for trajectory tracking of the quadrotor is developed.
A backstepping controller is developed for attitude and posi-
tion control of a quadrotor in [6]. Proposed approach is robust
against disturbances and uncertainties and does not require the
prior knowledge of the perturbations. Two nonlinear control
strategies are developed for quadrotor motion control using
sliding mode and backstepping approach in [7]. In [8], a
composite nonlinear control scheme using sliding mode and
backstepping approach for quadrotor is developed. Inner loop
controller is established using sliding mode and backstepping
controller is designed for outer loop control. However, sliding
mode controller exhibits the chattering phenomenon. To limit
the value of controller gain while maintaining the nominal
performance, disturbance observer based control schemes have
attracted the attention of the researchers nowadays. In [9], a
nonlinear disturbance observer based backstepping controller
is developed for the attitude control of a quadrotor. The
performance and effectiveness of the proposed strategy are
tested using numerical simulations. This work has been further
extended for full control of the quadrotor in [10]. However,
such disturbance observer techniques requires the complete
information of model dynamics for realization effectively.

In most of the practical applications, the information of
modelling and parametric uncertainties are not known in ad-
vance and very difficult to estimate using conventional model
based observer techniques accurately. To tackle this estimation
problem, disturbance observer design based on neural network
and other learning approaches is being very popular recently.
In [11], a neural network based backstepping controller is
proposed for trajectory tracking of a quadrotor. Proposed
controller does not need to have exact model information
and physical parameters for implementation, Therefore this
scheme can be applied to any quadrotor model irrespective
of their mass, inertia and length. An adaptive control scheme
for trajectory tracking using fuzzy logic based backstepping
algorithm is developed in [12]. In this work, model based
control law is approximated using fuzzy system and adaptive
laws are derived using Lyapunov theory. In [13], a robust
controller using backstepping and sliding mode algorithm
with adaptive radial basis function neural network (RBFNN)
is proposed for the attitude control of octorotor subjected
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to modelling uncertainties and disturbances. The uncertainty
observer based on adaptive RBFNN estimates the lumped
uncertainties effectively without their bound information. In
addition, the adaptive learning algorithm is derived using
Lyapunov theory to learn the RBFNN parameters online and
compensate the approximation error. However, RBFNN does
not have feedback loop so there may not be possibility to cap-
ture the dynamic characteristics more accurately. To capture
the dynamic characteristics more accurately and to enhance the
approximation capability of a neural network, recurrent neural
network (RNN) provides better solution. RNN based nonlinear
control schemes for quadrotor are not very well presented in
the literature and very few work has been done in this area
[14]. To the best of our knowledge, RNN based backstepping
controller for the real time trajectory tracking of a quadrotor
is not developed so far. This motivates us to do this work. The
main contribution are as follows:
• A robust controller for position as well as attitude sub-

systems using backstepping is developed and asymptotic
stability is investigated using Lyapunov stability theory.

• Multi-Input-Multi-Output RNN based observer is devel-
oped for effective estimation of modelling uncertainty
along with the external disturbances with the unknown
upper bound. Only two RNN observer are required that
reduces the computation complexity up to a large extent.

• The weights of the RNN are updated online where
the update laws for weights have been estimated via
Lyapunov stability theory by guarantee the overall system
stability.

• Extensive numerical simulations are carried out in the
presence of parametric uncertainty and external distur-
bances to check the effectiveness followed by real time
validation using DJI Matrice 100.

The rest of this paper is organized as follows. The quadrotor
model and problem formulation are presented in section II and
III respectively. Proposed methodology is presented in section
IV. Simulation and Hardware results are presented in V and
VI respectively. Finally conclusion of the paper is given in
section VII.

II. QUADROTOR DYNAMICS

The dynamical equations governing the motion of the 6DoF,
under-actuated quadrotor is presented using a Newton-Euler
equations [15] as shown below:

ẍ = u1

m (cosφ sin θ cosψ + sinφ sinψ)− ρxẋ
m

ÿ = u1

m (cosφ sin θ sinψ − sinφ cosψ)− ρy ẏ
m

z̈ = u1

m (cosφ cos θ)−Ga − ρz ż
m

φ̈ = (
Jy−Jz
Jx

)θ̇ψ̇ − Ir
Jx
θ̇ω̄ − ρφ

Jx
φ̇+ u2

Jx

θ̈ = (Jz−JxJy
)φ̇ψ̇ − Ir

Jy
φ̇ω̄ − ρθ

Jy
θ̇ + u3

Jy

ψ̈ = (
Jx−Jy
Jz

)φ̇θ̇ − ρψ
Jz
ψ̇ + u4

Jz

(1)

where:
• [x y z] represents the position and altitude of the quadro-

tor in meters.
• [φ θ ψ] represents the roll, pitch and yaw of the quadrotor

in rads.

• m, Jx, Jy and Jz represents the mass of the quadrotor
and the moment of inertia in the x, y and z directions
respectively.

• ρx, ρy , ρz , ρφ, ρθ and ρψ represents the aerodynamic
damping coefficients.

• Ir represents the moment of inertia of the rotor.
• ω̄ is given in terms of angular speeds of the rotors as
ω4 + ω3 − ω1 − ω2 and Ga represents the acceleration
due to gravity.

• [u1 u2 u3 u4] represents the control inputs to the quadro-
tor and is given as:

u1 = b(ω2
1 + ω2

2 + ω2
3 + ω2

4)
u2 = bl(ω2

1 + ω2
4 − ω2

2 − ω2
3)

u3 = bl(ω2
3 + ω2

4 − ω2
1 − ω2

2)
u4 = d(ω2

4 + ω2
2 − ω2

1 − ω2
3)

(2)

where, ωi is the angular speed of the ith rotor; l is the
distance between a rotor and the center of mass of the
quadrotor; b and d are thrust and drag factor respectively.

III. PROBLEM FORMULATION

The quadrotor dynamics (1) can be composed into two
subsystems namely translational subsystem and rotational sub-
system. If Γ = [x y z]T , Σ = [φ θ ψ]T and the external
disturbances in both the subsystems dp = [dx dy dz]

T ,
da = [dφ dθ dψ]T then both the subsystems are written as:

Γ̈ = f(Γ, Γ̇) + g(Γ, Γ̇)u+ dp (3)

ζ̈ = fa(ζ, ζ̇) + ga(ζ, ζ̇)u+ da (4)

let us consider virtual control inputs form (1) as:

ux = (cosφ sin θ cosψ + sinφ sinψ)u1 (5)
uy = (cosφ sin θ sinψ − sinφ cosψ)u1 (6)
uz = (cosφ cos θ)u1 (7)

For brevity, write f(Γ, Γ̇) as f , fa(ζ, ζ̇) as fa, g(Γ, Γ̇) as g
and ga(ζ, ζ̇) as ga. When there exists modelling uncertainties,
one can write

Γ̈ = f + δf + (g + δg)up + dp (8)

ζ̈ = fa + δfa + (ga + δga)ua + da (9)

where

f =

 −ρxẋm
−ρxẏm

−Ga − ρxż
m

 , g =
1

m
I3×3 and up =

uxuy
uz

 (10)

fa =

(
Jy−Jz
Jx

)θ̇ψ̇ − Ir
Jx
θ̇ω̄ − ρφ

Jx
φ̇

(Jz−JxJy
)φ̇ψ̇ − Ir

Jy
φ̇ω̄ − ρθ

Jy
θ̇

(
Jx−Jy
Jz

)φ̇θ̇ − ρψ
Jz
ψ̇

 , ua =

u2u3
u4

 (11)

ga =

 1
Jx

0 0

0 1
Jx

0

0 0 1
Jx

 (12)

The lumped uncertainties can be written as Dp = δf +
δgup + dp and Da = δfa + δgaua + da where Dp =
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[Dx Dy Dz]
T , Da = [Dφ Dθ Dψ]T needs to be estimated.

We can write (8) and (9) as:

Γ̈ = f + gup +Dp (13)

ζ̈ = fa + gaua +Da (14)

Finally, the objective can be summarized as: To design the
control laws up and ua for translational subsystem (13) and
rotational subsystems (14) respectively such that the generated
control force drives the quadrotor to track the reference trajec-
tory despite of modelling uncertainty and external disturbances
while ensuring the stability of the closed loop system. The
lumped uncertainties are assumed to be upper bounded by
some unknown constant and are estimated with the help of
RNN. Thus, one can write mathematically as:

lim
t→∞

x→ xd, lim
t→∞

y → yd, lim
t→∞

z → zd and lim
t→∞

ψ → ψd

IV. ADAPTIVE BACKSTEPPING CONTROLLER AND
UNCERTAINTY OBSERVER

This section is divided into two parts to design the control
law for each of the subsystems.

A. Position subsystem controller design

1) Backstepping Controller: The position subsystem (13)
can be written as:{

ẋ1 = x2
ẋ2 = f + gup +Dp

(15)

where x1 = [x y z]T , x2 = [ẋ ẏ ż]T If the desired position is
x1d = [xd yd zd]

T then the tracking error can be written as:

e1 = x1d − x1 (16)
ė1 = ẋ1d − x2 (17)

Let a stabilizing control signal (Ω) for κ1 > 0 where κ1 ∈
R3×3 and the velocity error (e2) are given as:

Ω = −κ1e1 + ẋ1d (18)

e2 = x2 − Ω (19)

Let us consider the Lyapunov function as:

V1 =
1

2
eT1 e1 (20)

The time derivative of V1 can be written as:

V̇1 = eT1 ė1 (21)

= eT1 (x2 − ˙x1d) = e1(x2 − Ω− κ1e1) (22)

= eT1 e2 − eT1 κ1e1 (23)

To compute the control law, let us consider the augmented
Lyapunov function as

V2 = V1 +
1

2
eT2 e2 (24)

By taking the time derivative of V2

V̇2 = V̇1 + eT2 ė2 (25)

= eT1 e2 − eT1 κ1e1 + eT2 (f + gup +Dp − ˙x1d + κ1ė1)
(26)

The following controller is chosen to make system asymp-
totic stable for some κ2 > 0 where κ2 ∈ R3×3 as:

up =
1

g
[−f −Dp + ẍ1d − e1 − κ2e2 − κ1ė1] (27)

=
1

g
[−κ2e2 − e1 − f −Dp − κ1ė1 + ẍ1d] (28)

By combining (26) and (27), (26) becomes

V̇2 = V̇1 + eT2 ė2

= eT1 e2 − eT1 κ1e1 + eT2 (−e1 − κ2e2)

= −eT1 κ1e1 − eT2 κ2e2
V̇2 ≤ 0 (29)

Thus the system stability is guaranteed in the sense of Lya-
punov.

However, the lumped uncertainty Dp is required to imple-
ment the control law (28) which is generally not known in real-
time. Since RNN provides better approximation capabilities
and can capture the dynamic characteristics well than the other
feed-forward techniques. Moreover, RNN doesn’t require the
system dynamics knowledge unlike the disturbance observer
techniques [9], [10]. Thus an RNN based uncertainty observer
has been proposed.

Fig. 1: RNN Architecture

2) RNN based Uncertainty Observer: The architecture of
RNN is shown in Figure 1 which has three layers having
l inputs and three outputs. Hidden layer has self feedback
connection with the weight vector w and has n neurons.

Here the lumped uncertainties Dp are being estimated which
can be approximated via RNN as

Dp = vTH(e2, b, c, w) + ε (30)

where H = [h1 h2 ..... hn]T , hi = e−neti and neti =∑m
j=1

(xj+w
D
j exhi−cij)

2

b2ij
and exhi is the value of hi before one

time instant. ε is the approximation error which is bounded
by some unknown constant as ε ≤ |εm|. Since the ideal
weights v, b, c, w are not known thus the estimation of lumped
uncertainties can be given as:

D̂p = v̂T Ĥ(e2, b̂, ĉ, ŵ) (31)
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The estimation error is given as D̃p = D − D̂p and can be
simplified as:

D̃p = vTH + ε− v̂T Ĥ
= vTH + ε− (v − ṽ)T (H − H̃)

= ṽTH + vT H̃ − ṽT H̃ + ε

= ṽT Ĥ + v̂T H̃ + ṽT H̃ + ε (32)

To obtain H̃ , the Taylor series expansion has been employed
and thus one can expand H̃ as:

H̃ =
∂H̃

∂b
(b− b̂) +

∂H̃

∂c
(c− ĉ) +

∂H̃

∂w
(w − ŵ) +O (33)

H̃ =


h̃1
h̃2
. .

h̃n

 =


∂h̃1

∂b
∂h̃2

∂b
. . . .
∂h̃n
∂b

 b̃+


∂h̃1

∂c
∂h̃2

∂c
. . . .
∂h̃n
∂c

 c̃+


∂h̃1

∂w
∂h̃2

∂w
. . . .
∂h̃n
∂w

 w̃ +O (34)

where,

w =
[
w1 w2 ... wm

]T
c =

[
c11 ... c1m, c21 ... c2m, ... cn1 ... cnm

]T
b =

[
b11 ... b1m, b21 ... b2m, ... bn1 ... bnm

]T
The derivative terms can be obtained as follows:

∂h1
∂c

=

[
∂h1
∂c11

∂h1
∂c12

...
∂h1
∂c1m

, 0 0 ... 0

]
∂h2
∂c

=

[
0 ... 0,

∂h2
∂c21

∂h2
∂c22

...
∂h2
∂c2m

, 0 0 ... 0

]
∂hn
∂c

=

[
0 ... 0 ... 0,

∂hn
∂cn1

∂hn
∂cn2

...
∂hn
∂cnm

]
Similarly ∂H

∂b ,
∂H
∂w can also be estimated. From (34), one can

write
H̃ = Dhbb̃+Dhcc̃+Dhww̃ +O (35)

By substituting (35) into (32), the following expression is
obtained as:

D̃p = ṽT Ĥ + v̂T (Dhbb̃+Dhcc̃+Dhww̃ +O) + ṽT H̃ + ε

= ṽT Ĥ + v̂TDhbb̃+ v̂TDhcc̃+ v̂TDhww̃ + ∆ (36)

where ∆ = v̂TO + ṽT H̃ + ε is considered as total approxi-
mation error which has an unknown bound as ∆ ≤ ∆m.

3) Stability Analysis: In the presence of parametric uncer-
tainties and external disturbances, the following controller can
be implemented as:

up = g−1[−κ2e2−e1−f−D̂p−κ1ė1 + ẍ1d]+uRobustp (37)

where uRobustp is the robust controller which is taken into
account to cope with the approximation error induced by RNN
and is explained in this section. The proposed strategy has been
explained in the Figure 2.

Theorem 1: For the given position subsystem (15), when
the control signal (37) is applied along with the robust con-
troller (38) and RNN observer (31) where the RNN parameters

Fig. 2: Proposed control strategy

are updated online using (40) then the overall system stability
can be guaranteed and thus the tracking error converges to
zero asymptotically.

uRobustp = −g−1(∆̂ + χe2) (38)

where ˙̂
∆ = η4e2 (39)


˙̂v = η−1v ĤeT2
˙̂
b = η1Dhbv̂e2
˙̂c = η2Dhcv̂e2
˙̂wD = η3Dhwv̂e2

(40)

Proof: Consider the Lyapunov’s function as:

V3 =
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
tr(ṽT η−1v ṽ) +

1

2η1
b̃T b̃+

1

2η2
c̃T c̃

+
1

2η3
w̃T w̃ +

1

2η4
∆̃T ∆̃ (41)

where ∆̃ = ∆−∆̂ and ηi i = 1, 2, 3, 4 are positive coefficients.
The time derivative of V3 can be written as:

V̇3 = eT1 ė1 + eT2 ė2 −
1

2
tr(ṽT η−1v

˙̂v)− 1

2η1
b̃T

˙̂
b− 1

2η2
c̃T ˙̂c

− 1

2η3
w̃T ˙̂w − 1

2η1
∆̃

˙̂
∆ (42)

Now

ė2 = ẋ2 − ẍ1d + κ1ė1 (43)
= f + gup +Dp − ẍ1d + κ1ė1 (44)

Substituting the control law (37) in the above equation, one
can get

ė2 = −κ2e2 − e1 + D̃p + guRobustp

= −κ2e2 − e1 + ṽT Ĥ + v̂TDhbb̃+ v̂TDhcc̃

+ v̂TDhww̃ + ∆ + guRobustp (45)
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From (42) and (45), the following expression is obtained
as:

V̇3 = eT1 e2 − eT1 κ1e1 + eT2 (−κ2e2 − e1 + ṽT Ĥ + v̂TDhbb̃

+ v̂TDhcc̃+ v̂TDhww̃ + ∆ + guRobustp )− 1

2η4
∆̃

˙̂
∆

− 1

2
tr(ṽT η−1v

˙̂v)− 1

2η1
b̃T

˙̂
b− 1

2η2
c̃T ˙̂c− 1

2η3
w̃T ˙̂w

= −eT1 κ1e1 − eT2 κ2e2 + eT2 (ṽT Ĥ + v̂TDhbb̃+ v̂TDhcc̃

+ v̂TDhww̃ + ∆ + guRobustp )− 1

2
tr(ṽT η−1v

˙̂v)

− 1

η1
b̃T

˙̂
b− 1

η2
c̃T ˙̂c− 1

η3
w̃T ˙̂w − 1

η1
∆̃

˙̂
∆

= −eT1 κ1e1 − eT2 κ2e2 + tr
(
ṽT Ĥe2 − ṽT η−1v ˙̂v

)
+ eT2 ∆

+ tr
(
ṽT Ĥe2 − ṽT η−1v ˙̂v

)
+

(
eT2 v̂

TDhbb̃−
1

2η1
b̃T

˙̂
b

)
+(

eT2 v̂
TDhcc̃−

1

η2
c̃T ˙̂c

)
+

(
eT2 v̂

TDhwD w̃
D − 1

η3
w̃T ˙̂w

)
+ eT2 gu

Robust
p − 1

η1
∆̃

˙̂
∆ (46)

When the robust controller (38) and update rules (40) are
employed in the above equation, one can get

V̇3 = −eT1 κ1e1 − eT2 κ2e2 + eT2 ∆− eT2 (∆̂ + χe2)− 1

η1
∆̃

˙̂
∆

= −eT1 κ1e1 − eT2 (κ2 + χ)e2

= −eT1 κ1e1 − eT2 κ3e2
≤ −λmin(κ1)||e1||2 − λmin(κ3)||e2||2

V̇3 ≤ 0 (47)

By employing the Lyapunov stability theory, one can conclude
that all the parameters are bounded and the tracking errors e1
and e2 approaches to zero asymptotically. This completes the
proof.

The controller obtained in (37) and (38) can be applied into
position subsystem (15) to track the desired point. Since ux, uy
and uz are the auxiliary input signals, one can easily obtain
the expression for actual control input u1 as:

u1 = ||up|| =
√
u2x + u2y + u2z (48)

To navigate the quadrotor from given initial position to some
desired position, some roll and pitch movement will take place.
The expression of desired roll angle φd and pitch angle θd has
been obtained in terms of ux, uy and uz as follows:

φd = sin−1
(
ux sinψd − uy cosψd

u1

)
(49)

θd = tan−1
(
ux cosψd + uy sinψd

uz

)
(50)

B. Attitude subsystem controller design
The attitude subsystem (14) can be written as follows if

ζ1 = [φ θ ψ]T , ζ2 = [φ̇ θ̇ ψ̇]T :{
ζ̇1 = ζ2
ζ̇2 = fa + gaua +Da

(51)

If the desired Euler angles are ζ1d = [φd θd ψd]
T then

the tracking error and angular velocity error are defined
respectively as:

e3 = ζ1d − ζ1 (52)
e4 = ζ2 − ξ (53)

where ξ is the stabilizing signal and given as

ξ = −µ1e3 + ζ̇1d (54)

for µ1 > 0 where µ ∈ R3×3 is the diagonal gain matrix

By following the same procedure as given in section IV-A,
the controller ua for attitude subsystem can be given as:

ua = g−1a [−µ2e4−e2−fa−D̂a−µ1ė1+ ζ̈1d]+u
Robust
a (55)

where µ2 ∈ R3×3 > 0 is the diagonal gain matrix, uRobusta is
the robust controller and is obtained as:

uRobusta = −g−1a (∆̂a + βe4) (56)

where β ∈ R3×3 > 0 and ˙̂
∆a = ηa4e4 (57)

The lumped uncertainties are estimated using RNN observer
as:

D̂a = v̂Ta Ĥa(e4, ba, ca, wa) (58)

If the estimation error D̃a = Da − D̂a = vTaHa + εa − D̂a

where εa is the approximation error due to RNN observer
then with the application of Taylor series expansion similarly
as done for position subsystem, one can obtain

D̃a = ṽTa Ĥa + v̂Ta (DAbb̃a +DAca c̃a +DAwaw̃a) + ∆a

(59)

Each term in the above equation can be estimated by following
the same as in (34) and (36). The overall control architecture
of quadrotor is explained in Figure 3.

Fig. 3: Overall control of quadrotor

Theorem 2: If controller (55) along with the robust con-
troller (56) and the RNN based uncertainty observer (58)
are applied to the attitude subsystem (51) then the tracking
error converges to zero asymptotically where the parameters
of RNN observer are updated online as:

˙̂va = ηva
−1Ĥae

T
4

˙̂
ba = ηa1DAbv̂e4
˙̂ca = ηa2DAcv̂e4
˙̂wa = ηa3DAwv̂e4

(60)
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where ηa1, ηa2, ηa3 ∈ R and ηva ∈ R3×1 are the learning rates
to update the parameters of RNN.

Proof: Consider the Lyapunov function as

V4 =
1

2
eT3 e3 +

1

2
eT4 e4 +

1

2
tr(ṽTa η

−1
va ṽa) +

1

2ηa1
b̃Ta b̃a

+
1

2ηa2
c̃Ta c̃a +

1

2ηa3
w̃Ta w̃a +

1

2ηa4
∆̃T
a ∆̃a (61)

By following the same procedure as given in Theorem 1 and
with the help of (52), (53), (55), (56), (57) and (60), we get

V̇3 = −eT3 µ1e3 − eT4 (µ2 + β)e4

≤ −λmin(µ1)||e3||2 − λmin(µ2 + β)||e4||2

V̇4 ≤ 0 (62)

Thus the overall system stability cab be guaranteed using
Lyapunov stability theory and one can conclude that the
tracking error converges to zero asymptotically where all the
parameters of RNN observer remains bounded.

V. SIMULATION RESULTS

To validate the effectiveness of the proposed controller,
a regulation task is performed in simulation where the pa-
rameters of quadrotor have been taken from [15]. Figures
4 - 9 represents the position, altitude and the attitude of
the quadrotor, when performing the regulation task, under
the influence of the proposed controller against the classical
backstepping controller. It must be noted that in both the cases,
a disturbance of 0.2 sin 0.6t is applied to the quadrotor along
with the parametric uncertainty of −20% and the control law
parameters are chosen to be same. Figures 4 - 9 shows that the
proposed controller performs better at tracking with smaller
margins of errors as compared to the classical backstepping
control. In addition, the proposed controller takes lesser effort
as compared to that in the case of classical control strategy.
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Figures 10-13 represents the control effort that is required
in performing the regulation task under the influence of the
proposed controller as well as the classical backstepping
controller. The control effort u1, shown in Figure 10, has a
larger magnitude in the classical backstepping controller as
compared to that in the proposed approach. In addition, the
control efforts u2, u3 and u4 are almost similar in magnitude
to that of the classical backstepping controller. This proves that
the proposed RNN-based control strategy does not increase the
burden on the actuators.
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Figures 14a-14f represent the evolution of the RNN weights
of the attitude subsystems where v = [v1 v2 v3], the weights of
position subsystem are updated in same manner as that of at-
titude subsystem. one can see that all the weights are bounded
which ensures stability of the proposed control strategy.
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Fig. 14: Weight Evolution in Attitude Subsystem

VI. HARDWARE RESULTS

This section presents the results obtained with the real-time
implementation of the proposed controller on the DJI Matrice
100. The DJI Matrice 100, shown in Figure 15, alongside
the DJI Manifold, is capable of implementing user defined
control strategies. A detailed description of the DJI Matrice
100 and the associated ROS DJI-OSDK can be found in our
previous work [16]. Since the numerical simulations have
already covered the regulation task, the hardware is used to
validate the efficacy of the proposed strategy in a tracking task.
Hence the goal of this section is to used the DJI Matrice 100
to perform a lemniscate tracking task. To establish robustness
of the proposed controller against external disturbances, the
tracking task is performed in an outdoor environment as shown
in Figure 16. Weights of the RNN are initialized randomly
between -1 and 1. Of the several trials performed, results from
one such is presented in this section.

Fig. 15: DJI Matrice 100 Fig. 16: Test Environment

Figure 17 represents the 3D plot of the trajectory tracked by
the quadrotor against the desired trajectory. The quadrotor was
subjected to a wind disturbance of 10.26 km/hr blowing south-
west. It can be noted from the Figure 17 that the proposed
strategy effectively tracks the desired trajectory in the x, y and
z directions. From the several trials conducted, the maximum
error in tracking is found to be 18.32 cm, 23.22 cm and 17.14
cm in the x, y and z directions respectively.

Figure 18 represents the error in the euler angle tracking.
Since the desired values of the euler angles are not given by
the user (except yaw, which is considered to be fixed at zero

here), it only makes sense to represent the error in tracking
the euler angles rather than the actual euler angles in the case
of a tracking task. From the Figure 18 it can be concluded
that the proposed controller effectively tracks the inner loop
euler angles. This feature of the controller can prove to be
important in cases where the quadrotor is expected to perform
acrobatic maneuvers as well.

Fig. 17: 3D Trajectory

Fig. 18: Error in tracking euler angles

Fig. 19: Control Effort during tracking

Figure 19 represents the control effort required by the pro-
posed control strategy to perform the tracking task. The control
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effort in the proposed work is almost equal in magnitude to
that in our previous work [16]. This is key observation to
be noted as the effect of adding the RNN observer does not
significantly increase the stress on the actuators even in the
presence of external disturbances.

Figures 20 represent the evolution of the RNN weights
for the attitude and position subsystems when the quadrotor
performs the trajectory tracking task. It should be noted that
the weights are bounded which ensures efficient tracking of the
quadrotor. The video of the experimental results of quadrotor
tracking the lemniscate trajectory can be found in [17].

Fig. 20: Weight Evolution in Position and Altitude Subsystem

VII. CONCLUSION

This paper presents an adaptive backstepping control strat-
egy with a RNN-based disturbance observer for the position
and altitude tracking of a quadrotor UAV. Quadrotor dynamics
are subjected to parametric uncertainties, modeling inaccura-
cies and bounded external disturbances. In order to tackle this
problem, the paper presents an RNN based observer which
helps in approximating the unknown system dynamics. In
addition to this, the paper also presents a technique of making
the overall control law robust to external disturbance. The
parameters of the RNN are updates online using Lyapunov
stability theorem which also ensures overall system stability.

To assess the efficacy of the proposed control strategy,
numerical simulations are conducted using MATLAB. The
numerical simulations presented are for that of a regulation
task. From the graphs obtained in the associated section, one
can note that the proposed controller has a superior tracking
performance as compared to that of the classical backstepping
control law. To validate the design in real-time, the proposed
control strategy is implemented on the DJI Matrice 100 to

track a lemniscate trajectory. It can be noted that the maximum
error in tracking is found to be 18.32 cm, 23.22 cm and 17.14
cm in the x, y and z directions respectively. In addition a key
observation that can be noted is that the proposed strategy
performs tracking effectively with control efforts that are
comparable to that of a FTSMSTC proposed in our previous
work [16]. The video results [17] reveals that the lag caused
by the online tuning of the RNN is insignificant and hence
the proposed algorithm can be used for several industrial
applications that involve the use of vision algorithms.
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