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Abstract—Mel-frequency filter bank (MFB) based approaches
have the advantage of higher learning speeds compared to using
the raw spectrum due to a smaller number of features. However,
speech generators with the MFB approach require an additional
computationally expensive vocoder for the training process. The
pre- and post-processing needed by the MFB and the vocoder is
not essential to convert human voices, because it is possible to
use only the raw spectrum to generate different style of voices
with clear pronunciation. In this paper, we introduce a vocoder-
free end-to-end voice conversion method using a transformer
network to alleviate the computational burden from additional
pre- and post-processing. Our transformer-based architecture,
which does not have any CNN or RNN layers, has shown the
benefit of learning fast while solving the limitation of sequential
computation of the conventional RNN. For this reason, our
model is a fast and effective approach to convert realistic voices
using raw spectra in a parallel manner to generate different
style of voices with clear pronunciation. Furthermore, we can
get an adapted MFB for speech recognition by multiplying the
converted magnitude with the phase information, and therefore
our conversion model is also suitable for speaker adaptation. We
perform our voice conversion experiments on TIDIGITS-dataset
using the naturalness, similarity, and clarity with Mean Opinion
Score as metrics.1

Index Terms—voice conversion, vocoder-free, transformer,
spectrum, phase

I. INTRODUCTION

Voice conversion has gained considerable attention in var-
ious industrial areas. Recently, encoder-decoder models built
with recurrent neural networks (RNNs), such as the long short-
term memory (LSTM) [1], bidirectional long-short term mem-
ory (BiLSTM) [2], and gated recurrent unit (GRU) [3] have
been widely utilized for sequence modelling. There are several
neural network models based on the RNN encoder-decoder
structure, also known as sequence-to-sequence (Seq2Seq) [4],
that have achieved good results for voice conversion tasks.

RNNs, however, process words one by one. This sequential
property can be an obstacle for parallel computation on GPUs
and results in slower training. Furthermore, if the temporal
relationships are long, the model tends to forget distant data
points or mixes them with the subsequent data. The trans-
former network [5] partially solved these problems of RNNs
by using an attention mechanism to derive global dependency

1Codes are available at https://github.com/kaen2891/kaen2891.github.io

between input and output, which reached state-of-the-art per-
formance in many fields. The transformer, which does not have
any convolutional (CNN) [6] or recurrent layers, has shown
the advantage of learning fast and eliminates the problem of
sequential computation imposed by the conventional RNN.

Given a speech waveform as the input for voice conversion,
the short-time Fourier transform (STFT) converts it into a
raw spectrum in time-frequency domain form. This spectrum
computed with the STFT can provide more useful information
than the plain waveform. The conventional approaches used
in text-to-speech (TTS), voice conversion, and speech recog-
nition, obtain a Mel-frequency filter bank (MFB, also called
Mel-spectrogram) from the raw spectrum after the STFT. This
raw spectrum is then compressed according to the Mel curve
[7] reflecting the characteristics of the Cochlea in the human
ear. The phase information is removed when the spectrum is
compressed via the Mel curve.

The MFB, which consists of only 40 to 80 feature dimen-
sions per time step, has the advantage of higher learning speed
compared to raw spectrum. However, it cannot be converted
directly to waveform speech because of the lost phase infor-
mation. Thus, speech generators with MFB approach require
additional computationally expensive vocoder for the training
process. In other words, MFB fed into the Seq2Seq must
be synthesized to natural speech through phase estimation
with the help of a vocoder which synthesizes the linear scale
spectrum. Only then, it is possible to get the final output of
the model into waveform speech.

Thus, speech generators with MFB approach require addi-
tional vocoder that demands a computationally heavy training
process. Although, the voice quality may be better when
using a vocoder such as Griffin-Lim [8] or WaveNet [9], it
is necessary to consider the problems with complexity due to
the extra computation.

The goal of this paper is to achieve smaller computational
cost and clear converted voices without a vocoder. In this pa-
per, we introduce a vocoder-free end-to-end voice conversion
method using transformer network to alleviate the computa-
tional burden from additional pre- and post-processing. Our
model is a fast and effective approach to convert realistic
voices using raw spectra in a parallel manner to generate
different style of voices with clear pronunciation. We focus
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on converting the raw spectrum obtained by the STFT without
the help of a vocoder, which would require iterative synthesis.
In addition, it is possible to use phase information to restore
the waveform speech through inverse STFT.

Our conversion model can also be used in speaker adap-
tation for speech recognition. Our approach can convert the
source voice to a target voice without using MFB or vocoder.
We can get an adapted MFB for speech recognition by
multiplying the converted magnitude with the corresponding
phase. Furthermore, it is also possible to convert the voices of
minors, elderly, speakers with dialects or those with speech
impediments to those of the typical. Through this speaker
adaptation, our model can achieve better speech recognition
performance. We perform our voice conversion experiments on
TIDIGITS-dataset using the naturalness, similarity, and clarity
with Mean Opinion Score (MOS) as metrics.

II. RELATED WORK

In this section, we introduce the prior research on vocoder,
voice conversion, and the transformer network used in this
paper.

A. Vocoder

Vocoder is used to synthesize linear scale spectrum into
speech signals by synthesizing natural speech through phase
estimation. In Griffin-Lim algorithm [8], the STFT of the
speech signal output in the previous step is calculated and the
amplitude is replaced by the modified-STFT magnitude given
as input. This algorithm recovers speech signals with the STFT
magnitude that is the most similar to a given modified-STFT
through an iterative process of restoring the original signal by
minimizing the squared error of the amplitudes between the
new STFT and the modified STFT given as input.

WaveNet [9] is an autoregressive model that uses sequential
features between speech samples and has succeeded in syn-
thesizing high quality speech by predicting the next sample
using previous samples. However, the rate of the generation is
slow because each sample is generated one by one from the
previous samples. Parallel WaveNet [10], which uses inverse
autoregressive flow (IAF) to synthesize voices, is designed
to solve the WaveNet’s slow sample generation. Since IAF
does not know the distribution of the target voice data set
during training, the learning is performed by extracting the
distribution information of the target data set using a well-
trained WaveNet (teacher network) and comparing it with the
result of IAF. It has the advantage of faster speech synthesis
than WaveNet, but the drawback of lower synthesized speech
quality. Unlike the parallel WaveNet [10], WaveGlow [11]
does not require a pre-trained teacher network and has the
advantage of fast voice synthesis. However, since WaveGlow
uses a distribution based loss function, the quality of synthe-
sized speech is poor. Furthermore, when combined with TTS,
it poses the problem that the quality of synthesized speech
depends on the quality of the MFB predicted from the text.

B. Voice Conversion

In Parrotron [12], the voices of speaker with a disability are
converted into generic voices. The encoder consists of CNNs
and three BiLSTMs, while the decoder consists of two LSTMs.
The model uses attention between the encoder-decoder. In
order to solve the problem of signal-to-signal conversion,
the auxiliary speech recognition decoder is connected to the
encoder output for multitask learning [13] and is used only
while training.

Usually, in order to translate between voices in different
languages and synthesize the translated output as speech, the
data had to go through speech recognition, translation, and
TTS tasks. In this paper which called Translatotron [14],
however, they convert the speech of different languages with
an end-to-end attention based Seq2Seq network. The model
can directly translate the speech of one language into another
without going through other steps. The encoder is composed
of 8 BiLSTMs, and its output is used to predict the phoneme
temporal information of the input and the target through aux-
iliary tasks. Likewise, in Parrotron, these auxiliary decoders
were used only while training. In addition to this, the decoder
can be optionally adjusted according to the speaker. Thus, the
voice can be converted to the desired speaker’s voice by using
pre-trained speaker encoder. They used the WaveRNN vocoder
[15] rather than Griffin-Lim because it dramatically improves
the voice quality.

C. Transformer network

RNN is widely used method for sequence modeling tasks
such as neural translation and language modeling. RNNs, how-
ever, process words one by one. This sequential process can
be an obstacle for parallelization and leads to slow learning.
Furthermore, if the temporal relationships are long, the model
tends to forget distant data points or mixes them with the
subsequent data. The transformer network [5] relies entirely on
attention mechanisms to derive global dependencies between
inputs and outputs. As Fig. 1 shows, the transformer model
architecture without CNN and RNN have shown the advantage
of fast learning. The shortcomings of traditional RNN due
to poor performance in long temporal dependencies, have
been solved with self-attention. BERT [16], which evolved
from transformer, is used in many natural language processing
(NLP) tasks including translation, summary and prediction
of sentence relevance. BERT is used in other fields too.
VideoBERT [17] learned a two-way joint distribution of visual
and linguistic token sequences derived from bidirectional
vectors for speech recognition from video data. This has led to
the research in a variety of tasks, including action classification
and video captions. In [18], combination transformer network
with TTS model called Tacotron2 [19] is used to present the
results of speech synthesis. In [18], as well as in [20], voice
conversion is performed based on the transformer network.
Especially, the later one perform voice transformation with
pre-trained model parameters using vocoder-based synthesis.

Just like [18], [20], we use transformer network for voice
conversion due to its generalization performance through self-
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Fig. 1. Vanila transformer network.

attention as well as fast and effective parallel learning tech-
niques. In these methods, a vocoder is also used to improve
the quality of speech synthesis. The improved quality however
comes with the cost of additional computation required for the
synthesis. Therefore we perform our experiments by focusing
on the conversion of raw spectrum stage without adopting the
voice synthesis method through the vocoder. More details are
given in Section 3.

III. METHOD

This section introduces the usage of raw spectrum rather
than MFB for end-to-end voice conversion without the help
of a vocoder.

A. Raw spectrum

Fig. 2 shows a flowchart of the conversion of a waveform
speech into spectrum, MFB, and back to waveform speech.
Given a continuous audio signal x[n], this can be expressed
as:

x[n] = Acos(ωnT + φ) = Acos(2πfnT + φ) (1)

where A is amplitude, ω is angular frequency in radi-
ans/seconds, f is ω/2π, φ is initial phase in radian, n is time
index, and T is 1

fs
, respectively. The signal is then processed

Fig. 2. The steps required to obtain the spectrum and Mel-frequency filter
banks from an audio signal.

by applying a pre-emphasis filter on the x to amplify the
high frequencies. The pre-emphasis filter is useful in several
ways. For example, the high-frequencies are generally lower
in amplitude than low-frequencies and therefore using a pre-
emphasis filter helps to avoid numerical problems during STFT
and improves the signal-to-noise ratio.

After applying the pre-emphasis filter, the signal is split into
short time frames. Since the frequency contour of the signal
is lost over time, the Fourier transform is performed assuming
that the frequency of the signal is stationary for a very short
period, not over the entire signal. The typical frame size for
speech processing is from 20ms to 40ms, with a 50% overlap.
For example, a common choice is 25ms for frame size and
10ms (15ms overlap) for stride overlap size.

The next step is to cut the signal into frames and apply
Hamming or the Hanning window function to each frame.
The spectrum can be calculated by performing an N-point
FFT (NFFT) on each frame. Here, N is generally set as 256
(16ms) or 512 (32ms). Finally, the spectrum that is obtained
through STFT can be expressed with magnitude and phase by
the following equation:

D = S ∗ P (2)

where D is complex-valued spectrum, S is magnitude and P
is phase, respectively.

In summary, raw spectrum can be recovered from speech
waveform directly as shown in Fig. 2. Thus, we use spectrum
to perform voice transformation in an effective way with out
any post-processing.

B. Proposed model structure

1) Model flow: The vocoders mentioned in Section 2 are
complex and computationally expensive, they require a lot
of repetitive computation to restore the audio waveforms. To
solve this problem, we focus on the conversion at the spectrum
level. Fig. 3 shows, the conventional method of using MFB
in the upper part of the figure, and the proposed transformer
network in the lower part of the figure.
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Fig. 3. Difference between the conventional method and our proposed model on voice conversion. The conventional method shown in the upper part requires
pre- and post-processing with MFB, while our proposed model only requires the raw spectrum to create the waveform.

One of the conventional methods, Tactoron [21] uses the
output of the MFB M1,M2, ...,Mn as the input to Seq2Seq-
based model and obtains the output through the vocoder.
The encoder input in the Seq2Seq considers all the temporal
information and in that way is no different from our model.
However the decoder predicts n frames of MFB at once,
thereby reducing the number of decoder steps to n/γ, where γ
is the reduction factor. Post-processing of linear scale spectrum
F is performed using CBHG (1D convolution bank, highway
network, bidirectional gated recurrent unit) module which
results in F1, F2, ..., Fn. The vocoder is essential to convert
F into a waveform expressed as S′

1, S
′
2, ..., S

′
n. The method

uses the conventional autoregressive vocoder which predicts
current step based on the previous input. Once S′

1 is obtained,
S′
1 is used to predict S′

2 and finally S′
n. However, this iterative

process leads to a high computational cost.
On the other hand, in the proposed model shown in Fig. 3,

the magnitude S and phase P are obtained using Eq. (2) from
the raw spectrum after passing through STFT. The S is then set
as the input to the model encoder and converted in a parallel
manner using the decoder. After element-wise multiplication
between final output of the model x̂ and input phase P , it is
possible to get a converted target speech by inverse STFT. We
can recover the predicted voice instantly using the converted
magnitude and phase of the source without help of the vocoder.
Our proposed model is a fast and effective approach to convert
realistic voices using raw spectrum in a parallel manner and
does not dependent on post-processing.

2) Tokens and zero-padding: Entering the model input
using corpus is done via word embedding. The spectrum,
unlike the corpus, consists of continuous values. The spectrum
contains N dimensions by time T . These values are not sparse
representations. The corpus sets the maximum length and
proceeds with a start of sentence (SOS) -token in the front
and an end of sentence (EOS) -token at the end.

The SOS-token combined sequence is used as the decoder
input, because Seq2Seq-based model needs to be trained with
real values by teacher forcing. However, in the inference phase,
the input of decoder uses only SOS-token. Through this, the

autoregressive transformer performs prediction using beam
search or greedy search. We then put the EOS-token into our
decoder input and perform voice conversion. In addition, since
beam search is based on beam depth and the softmax function,
we use greedy search.

We apply zero-padding for the whole spectrum. The rea-
son for using zero-padding is that the transformer network
considers the whole sequence and learns in parallel. Even if
the voice scripts are the same, the length of each speaker’s
characteristics is different.

In order to avoid attention between a zero value and the
real vector, we multiply the vector with −1e − 9 when there
is a zero value on the dimension in each time step. The zero-
padding is described in the next section.

3) Transformer-based model architecture: Fig. 4 shows
our transformer-based model architecture. Firstly, we obtain
a spectrum that depends on the NFFT coefficients and then
separate S and P by Eq.(2). After that, S is used as the
encoder input. In this case, we do not use word embedding
[22] because the S is a time-frequency domain that consists of
sampling the frequency along the time axis. The final input is
S plus the position vector passed through Positional Encoding
(PE). Then, multi-head attention is performed through the N -
encoders. The multi-head attention results pass through two-
layer feed-forward network that contains rectified linear units
(ReLu) [23]. The process up to now is to make new context
information by combining the entire temporal information for
each time step. We then use a residual connection [24] that
adds input data to the values obtained until now. This means
that the context information that is not included in the input
temporal information is processed by the input and added. The
encoder looks at the given temporal information and encodes
each time step into a better representation.

The decoder only uses the magnitude from the target y,
which has passed through STFT in training phase. However,
the decoder is different from the encoder since it uses masked
multi-head attention when performing self-attention. The rea-
son for using masked multi-head attention is to prevent self-
attention. This is done by covering features after the current
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Fig. 4. Our transformer-based model architecture. The input of the encoder is
the magnitude of the raw spectrum and the output of decoder is the converted
magnitude. Predicted x̂ is multiplied element-wise with the phase of the source
spectrum. In our method, word embedding, output linear, and softmax function
are not needed.

time step during self-attention. This shows that the transformer
network is an autoregressive model. After that, attention is
concatenated between the encoder outputs and decoder out-
puts. This process determines how much the decoder uses
temporal information from the input spectrum of x to express
yi. The results of encoder-decoder attention are added to the
masked multi-head attention results of the decoder and passed
to a feed-forward network. So far, the outputs x̂ have the same
dimension dmodel as inputs x and targets y, only the temporal
lengths of the magnitude are different. The predicted x̂ only
has the magnitude converted from source x to target, which is
then multiplied by P to make a spectrum containing complex
numbers. Finally, it can be restored to waveform speech using
the inverse STFT.

The transformer has fewer parameters than other models,
and because it uses feed forward network, parallelism is easily
achieved and fast operation is possible. In addition, modeling
can be more accurately because the information between long
temporal relationships is directly linked.

IV. EXPERIMENTAL SETUP

In this section, we introduce the dataset, pre-processing, and
hyperparameters.

A. Database and feature extraction

We use the TIDIGITS [25] dataset which consists of 326
speakers (111 men, 114 women, 50 boys, 51 girls) who
pronounce numbers. Among them we experiment with inde-
pendent numeric units (e.g., ”one”, ”two”, ..., ”oh”, ”zero”).
Our experiments require a pair of source and target data
from each corresponding speaker. Therefore, we train on a
paired dataset of 55 men, 57 women, 25 boys and 26 girls.
The testing- and training data was split according to the
division used in TIDIGITS. The sampling rate of the corpus
is 20kHZ and dataset was collected with an Electro-Voice
RE-16 Dynamic Cardiod microphone in a quiet space.

We downsampled 20kHZ to 16kHZ in order to reduce
the computation. We preprocessed the dataset with NFFT
as 512 (32ms) and hop length as 256 (16ms) to get the raw
spectrum. The dimension of the obtained spectrum is (257, T ).
However, since the transformer dmodel is 2n, we intentionally
remove the last imaginary part of the spectrum.

B. Data pre-processing

Fig. 5. Original waveform (left), VAD (middle), trimmed waveform (right)

1) Voice Activity Detection: Voice Activity Detection
(VAD) is a technology applied to voice processing that detects
the presence or absence of human voice. As shown in Fig. 5,
VAD is an algorithm mainly used in speech recognition that
determines the threshold criteria for distinguishing background
noise from real speech. We use VAD2 to reduce the maximum
sequence length of the dataset by removing the silent sections
at the front and the back of the data based on a threshold
to speed up computation. Through the pre-processing, this
technique not only makes our model accelerate learning, but
also prevents the complexity from growing too fast as the
temporal information gets longer.

2) SOS-token, EOS-token, Padding: In NLP, the first token
of a sentence is SOS-token, and the last token is EOS-token.
Usually, EOS-token is used to let the model know when the
input sentence is over. In addition, SOS-token is utilized in the
inference phase as the decoder input. Thus, we created SOS-
and EOS-token corresponding to the (256, 1) dimension which
are uniformly distributed at random, with values between 0
and 1. We concatenated the SOS-token in front of the decoder

2https://github.com/F-Tag/python-vad
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inputs in the whole training dataset. In the test phase, we put
only the SOS-token into the decoder and our model infers the
prediction using greedy search.

The last step of the pre-processing is inserting the padding.
First, we find the maximum sequence lengths in the training
dataset. Then, to match the magnitude temporal information,
we zero-pad with the whole training dataset to the maximum
sequence length. During training, −1e− 9 values are used to
prevent multi-head attention from occurring in the zero-padded
locations. Moreover, to match the same sequence length for
inputs of the model, we add zero-padding after concatenating
the EOS-token with target dataset at the end.

C. Hyperparameter

We used the Adam optimizer [26] with β1 = 0.9, β2 = 0.98,
and ε = 1e − 9 set as the parameters. Since the number of
training dataset is small, we could not use the original learning
rate in [5]. On the other hand, our initial learning rate is
1e − 4 and we have the number of decay step as 4000 and
decay rate as 0.96.

We implemented our model with Tensorflow 2.0 and trained
with one Titan RTX GPU. However, since we have small
paired dataset and no post-processing, it is enough to use one
1080TI GPU in our experiments. During the inference, the
GPU only uses 500 – 550 MiB of memory.

TABLE I
MODEL HYPERPARAMETERS

Hyperparameters Value
Nencoder 6
Ndecoder 6
Nheads 8
dmodel 256
dff 1024
Drate 0.1

Table I shows the hyperparameters. Six encoders and de-
coders, as well as eight multi-head attentions were used in
our model. The model size dmodel is 256 and the dimension
size used for the feed forward network dff is 1024. As the
dropout [27] rate we selected 0.1 and used it for training only.
We adopted two losses.

L1 =
n∑

i=1

|ytrue − ypredicted| (3)

LMSE =
1

2

n∑
i=1

(ytrue − ypredicted)2 (4)

Lfinal = L1 ∗ 0.5 + LMSE ∗ 0.5 (5)

Eq. (4) has the advantage of minimizing the difference be-
tween variance and bias quickly, while Eq. (3) tends to ignore
the outliers, which is problem with Eq. (4). Therefore, we
combined these equations based on the hypothesis that they
could complement each other in this case.

V. RESULTS

In this section, we perform our voice conversion exper-
iments on TIDIGITS dataset using the metrics naturalness,
similarity, and clarity with mean opinion score.

Fig. 6. Visualization of our model’s conversion results. The first row of the
figure shows the inference results of conversion from a man’s voice to a boy’s
voice saying ”1”. The second row shows the inference results of conversion
from a woman’s voice to a man’s voice saying ”5”. In all figures, 8kHz is
maximum frequency corresponding to the y-axis.

Fig. 6 shows the speech conversion results of our proposed
model. The figures in the first row are the results of voice
conversion from a man to a boy. The figure on the left is the
input spectrum of a man’s voice, the center is the converted
output, while the source spectrum from a boy’s voice is on the
right. As shown on the top row in Fig.6, after converting x to
x̂, the spectrum spreads out to higher frequencies to resemble
the target y closely. Likewise, a similar effect can be observed
on the second row, where the spectrum is compressed instead.

Fig. 7 shows more accurate analysis of our conversion re-
sults. The first row shows the amplitude spectra of the source,
prediction, and the target respectively when transforming from
a man’s voice to a boy’s voice. The maximum over the y-
axis in manx is nearly 1.3 and boyy is around 0.9, while
our converted result x̂ is similarly close to 0.9. Frequencies
of manx in the lower frequency bins are higher than the
frequencies of boyy . Through this analysis, it is clear that low
frequencies from manx are densely distributed and higher in
magnitude than boyy .

Likewise, each figure on the second row shows the am-
plitude spectra of the source, prediction, and the target re-
spectively when transforming from a woman’s voice to a
man’s voice. The maximum value over the y-axis in womanx
peaks at 7.0 and the maximum of many is around 2.4, while
our conversion result x̂ similarly has the maximum to 2.4.
Furthermore, the maximum value of x̂ occurs around the same
frequencies as in the target many . Before conversion, the
highest magnitude in lower frequency bins is 7.0, but gets
scaled to the range of many . Our model correctly attenuates
the magnitude of the frequency bins 50 to 100 in order to
closer resemble the man’s voice. Therefore the results, as
shown in Fig. 7 indicate that our proposed model successfully
performed the conversion.
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Fig. 7. Visualization of the difference in the spectral content our model’s
conversion results. The samples shown here are the same as in Fig.6. The
x-axis consists of 256 bins accordingly to the NFFT with N=512.

To get quantitative performance, we randomly gathered
38 adults in the age range from 20 to 30 years old. We
measured our proposed model’s performance using the metrics
naturalness, similarity, and clarity with mean opinion score.
Samples of voices were randomly selected, and the same
batches of samples were given to each participant. For each
source and each target we generated four random samples, in
total, 144 samples were evaluated.3 Source speakers and target
speakers are different.

TABLE II
MEAN OPINION SCORE EVALUATION FOR NATURALNESS OF CONVERTED

SPEECH WITH 95% CONFIDENCE INTERVAL. HIGHER SCORE
CORRESPONDS TO A MORE NATURAL VOICE (1-5).

Source
Target Man Woman Boy Girl

Man - 3.28±0.29 4.20±0.53 3.72±0.33
Woman 2.82±0.29 - 3.18±0.30 3.45±0.29
Boy 2.97±0.31 3.24±0.27 - 3.80±0.28
Girl 3.01±0.29 3.56±0.25 3.53±0.32 -

Table II is an evaluation of how natural the converted voice
sounds to a human. The highest score (4.20 ± 0.53) was
obtained from the conversion tasks from man to boy, while
the lowest score (2.82 ± 0.29) from conversion tasks from
woman to man. Table III is an evaluation of how similar the

TABLE III
SIMILARITY EVALUATION FOR THE CONVERTED SPEECH WITH 95%

CONFIDENCE INTERVAL. HIGHER SCORE IS MORE SIMILAR TO TARGET
VOICE (1-5).

Source
Target Man Woman Boy Girl

Man - 3.91±0.24 4.36±0.19 4.26±0.22
Woman 3.09±0.31 - 3.69±0.31 3.93±0.24
Boy 3.30±0.30 3.50±0.27 - 4.28±0.18
Girl 3.39±0.30 4.04±0.20 4.13±0.24 -

converted voice is to the target voice. We got the highest

3Audio samples are available at https://kaen2891.github.io/

similarity (4.26 ± 0.22) from conversion tasks from man to
boy and the lowest similarity (3.09 ± 0.31) from conversion
tasks from woman to man.

TABLE IV
CLARITY EVALUATION FOR THE CONVERTED SPEECH WITH 95%

CONFIDENCE INTERVAL. HIGHER SCORE IS CLEARER WITH RESPECT TO
THE SCRIPT (1-5).

Source
Target Man Woman Boy Girl

Man - 3.78±0.27 4.31±0.19 4.22±0.21
Woman 3.57±0.30 - 3.83±0.26 3.80±0.22
Boy 3.47±0.26 3.80±0.26 - 4.24±0.22
Girl 3.84±0.30 4.00±0.23 4.24±0.22 -

Table IV is an evaluation of how clear the pronunciation
of the converted voice is given the script. We got the highest
clarity (4.31 ± 0.19) from conversion tasks from man to boy
and the lowest clarity (3.47±0.26) from conversion tasks from
boy to man. The score when converting to a child’s voice was
generally high. In the overall speaker average mean opinion
score, we obtained 3.40 ± 0.31 in naturalness, 3.82 ± 0.25
in similarity, and 3.93 ± 0.25 in clarity. Our results showed
that the proposed method can perform the transformation with
good clarity while maintaining appropriate naturalness and
similarity.

VI. CONCLUSION

A. Summary

We proposed a voice transform with self-attention mech-
anism in a raw spectrum level, while conventional methods
use a vocoder in MFB level. MFB-based approaches have the
advantage of higher learning speeds compared to using the
raw spectrum due to a smaller number of features. However,
speech generators with MFB approach require an additional
computationally expensive vocoder for the training process.
With the vocoder, it is possible to get better quality of the voice
in the synthesis. On the contrary, the problems with complexity
due to the extra computation are inevitable. The additional pre-
and post-processing such as MFB and vocoder are not essential
to convert human voices. In this paper, we proposed a vocoder-
free end-to-end voice conversion method using transformer
network to alleviate the computational burden from additional
pre- and post-processing. Our proposed model is a fast and
effective approach to convert realistic voices using raw spectra
in a parallel manner to generate different style of voices
with clear pronunciation. We focused on converting the raw
spectrum obtained by the STFT without the help of the
vocoder, which would have required iterative synthesis. We
gathered 38 participants and conducted MOS evaluation on the
naturalness, similarity and clarity of the converted speech. In
the overall speaker average mean opinion score, we obtained
3.40 ± 0.31 in naturalness, 3.82 ± 0.25 in similarity, and
3.93 ± 0.25 in clarity. Our results showed that the proposed
method could perform the transformation with good clarity
while maintaining appropriate naturalness and similarity.
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B. Future Work

In the evaluation phase, there was an unnatural converted
part of x̂. It seems to be caused by misalignments since
the lengths of x̂ and phasex deviate significantly. This is a
feature of the transformer-based model which converts to the
maximum length. In other words, the lengths in the whole
dataset are the same because of zero-padding. However, if the
actual vector length of phasex is less than the x̂, it causes
a serious problem that leads to misalignment. In the above
case, the quality of the recovered waveform can be poor. Thus,
the pitch is broken, and it sounds less natural. Therefore, our
model needs to modify the phase information as well to solve
the misalignment problem. This discovery is unexpected, and
it suggests that there is a problem related to the input spectrum
length.

We indentified the importance of phase in the study. The
problem can be solved if phasex and the converted x̂ are
aligned with each other. To do this, we must use complex
neural network [28] to align the magnitude and phase included
in the raw spectrum. If the phase is aligned based on the
converted magnitude, the quality of voice will be improved. It
will be possible to convert voices of minors with poor speech
recognition performance to those of common adults. We can
achieve better speech recognition performance through speaker
adaptation which replaces the features of minor’s voice with
the features of common adult’s voice. We are going to research
phase adaptation and alignment with magnitude as our next
task.
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