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Abstract—Learning Spatio-temporal features has shown im-
proved performance on tasks involving video analysis using deep
learning, and the deep learning community has used these fea-
tures to solve a varied variety of problems. Video steganography
is one such problem where learning these features for a video can
help improve the performance of steganography. Steganography
is the practice of concealing confidential information, to protect
the information from an adversary, into an ordinary cover
message in a way that the cover message does not seem suspicious
to the adversary. Recent deep-learning-based steganography
methods have proven to improve the secrecy and capacity of
steganography over traditional techniques. In this paper, we
propose a novel state-of-the-art deep 3D-CNN architecture with
enhancement feature learning for full video steganography. The
proposed model outperforms the current state-of-the-art methods
for full video steganography both qualitatively and quantitatively.
We have validated our model by comparing it with new as well
as traditional steganography techniques, on quality and different
statistical metrics, namely, PSNR, SSIM, APD, VIF at the frame,
and video level. Moreover, to check the undetectability of our
model, we have subjected our model to detection by steganalysis
tools like SRNet. Results of fine-tuning classifiers, like ResNet and
Inception-v3, to detect steganographic messages from ordinary
messages maintains our model’s undetectability and accuracy.

I. INTRODUCTION

In everyday life, we come across a lot of data whose
confidentiality, secrecy, and ownership must be ensured. For
instance, with the advent of cloud-storage [13], many individ-
uals and organizations prefer to store their data on the cloud,
as it provides a mechanism to conveniently and easily access
and share data over the network. Preventing such information
from being disclosed is of utmost importance, as these data
may contain crucial confidential information.

Cryptography and Steganography [5]–[7], [14] both provide
methods to ensure the security of confidential data on public
channels. Fig. 1 highlights the central difference between
cryptography and steganography techniques. In cryptography,
Alice sends a secret message to Bob on a public channel
by encoding the plain-text into a cipher-text using some
encryption algorithm, on receiving the message, Bob uses
the corresponding decryption algorithm to reveal the secret
message. However, in steganography, Alice hides the secret

message into a different cover message using a hiding al-
gorithm such that the cover message appears undefiled and
sends it to Bob on the public channel. On the receiving
end, Bob reveals the secret message using the corresponding
revealing algorithm. In both situations, there is Eve, who is
eavesdropping the conversation between Alice and Bob. In
the case of cryptography, looking at the cipher-text, Eve can
guess the presence of secret communication between Alice
and Bob and in some cases, even decipher the secret message.
In the case of steganography, it is difficult for Eve to identify
secret communication because the steganographic message is
indistinguishable from the cover message.

The significant advantage of Steganography over Cryptogra-
phy is that cryptography techniques only focus on hiding the
secret message and not the existence of secret communica-
tion, whereas steganography techniques provide a method for
communication that the adversary does not deem suspicious.
Other than covert communication, steganography can be used
for digital watermarking [6], [15] without compromising the
integrity of the cover message.

Fig. 1: Cryptography vs Steganography

Over the years, steganography has become a popular tech-
nique for covert communication as well as digital water-
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marking, as it conceals not only the message but also hides
the mere existence of a secret message, which is essential
for privacy-sensitive communication. The main feature of
steganography is also a challenge qualifying the performance
of steganography. Designing a steganography algorithm that
not only hides the information within a cover message but
also preserves the integrity of the cover message as well as
allows for recovery of the secret message is a challenging task.
Embedding information within a cover message can alter the
visual appearance as well as the underlying statistics of the
cover, making it prone to discovery by visual or statistical anal-
ysis. The performance of a steganography algorithm is judged
on its Undetectability: similarity between cover message and
container message (steganographic message), Capacity: the
amount of information embedded in the cover message and
Reproducibility: how accurately the secret message can be
recovered from the container message. Capacity and Unde-
tectability are highly correlated; longer the secret message,
higher will be the capacity, and more the cover will be altered,
making it susceptible to discovery.

Video is continuing to grow both in popularity and impor-
tance all across the internet, therefore, video steganography
[7], [9], [17] has recently started to gain traction in the research
community. Using image steganography techniques for frame-
wise video steganography can be thought of as a possible
solution but it is not necessarily optimal, as it does not take
into consideration the temporal coherence between successive
video frames. Recently, Kumar et al. proposed VStegNET [7]
in BMVC’19, for full-video steganography and VStegNET is
the current state-of-the-art model to solve the problem of full
video steganography. For this paper, we further explored the
task of hiding a full-sized video into another video of the same
size and proposed a novel deep 3D CNN architecture inspired
by traditional auto-encoders [18] for full video steganography.
The proposed model outperforms the current state-of-the-art
VStegNET [7]. Our key contributions are as follows:

• A novel deep 3D CNN architecture, outperforming the
current state-of-the-art VStegNET (BMVC’19) [7] for
full video steganography.

• Qualitative as well as Quantitative analysis of the model
at both frame and video level with metrics like APD [5],
[9], SSIM [24], PSNR [25], and VIF [26] to show the
effectiveness of our proposed model.

• Rigorously tested the ’undetectability’ of the model by
testing it against traditional as well as deep steganalysis
tools.

• Experimental analysis along with ablation study, using
payload capacity, failure cases, drawbacks, etc. of the
model is done to test the generalizability and to validate
the performance of the proposed model.

• Superiority of the model is maintained by comparing the
model with other state-of-the-art models like NIPS’17 [5],
HCCVS [9], and VStegNET [7].

The rest of the paper is organized as follows: Section II
describes some of the well known state-of-the-art techniques

for digital steganography. Section III explains our proposed
methodology, subsequently, the results and experiments are
explained in section IV. Finally, we conclude our proposal in
section V with future remarks.

II. RELATED WORK

One of the provincial methods of steganography is the LSB
(Least Significant Bit) steganography [1] which, as the name
suggests, hides the secret message in the least significant
bits of the cover image. To ensure that the variation in the
cover image is minimal, manipulating only the least significant
bits is a good strategy; however, LSB steganography loses
the information from the cover image. Since LSB uses a
hand-crafted technique for hiding messages, by design, the
steganographic images produced are not visually different, but
it alters the underlying statistics of the cover image, making
it prone to reliable detection by steganalysis [19].

More sophisticated methods have been designed that pre-
serve the underlying image statistics and work on designing
distortion functions that force the embedding process to local-
ize to more noisy and challenging to model parts of the image.
Advanced steganographic techniques focus on minimizing
the designed distortion functions between the cover and the
steganographic image.

All distortion based steganographic techniques have the
same end goal: to localize the information to more noisy and
complex regions of the image by minimizing the distortion
function; they differ only in their approach of defining the
distortion function. Highly Undetectable steGO (HUGO) [2]
is one of the most secure and content-adaptive steganogra-
phy technique that hides the secret payload spatially in the
image. The distortion function is based on Subtractive Pixel
Adjacency Matrix (SPAM) [20] feature vectors to adaptively
identify noisy regions or complex textures in the image to hide
the payload. Likewise, Wavelets Obtained Weights (WOW)
[3] is an additive steganography technique having the same
capacity as HUGO. S-Uniward [4] uses, ”distortion function
based on the sum of relative changes of coefficients in a
directional filter bank decomposition of the cover”. The only
problem with these techniques is their low capacity of only
0.2 bits per pixel (bpp).

With advancements in deep learning research, recent
steganography techniques pose steganography as an unsuper-
vised learning task and train deep neural networks that have
shown to outperform traditional steganography algorithms to
achieve a capacity as high as 8 bpp. Recently, Baluja et
al. [5] proposed an image steganography technique that uses
deep convolutional neural networks to hide a complete image
within another image. They use an autoencoder based deep
learning model for the task and train it with the weighted sum
of reconstruction loss between the secret and revealed secret
image and the cover and container image. They have achieved
an embedding capacity of 100%. HiDDeN [6] is another deep
learning model for not only image steganography but also
watermarking. Their system hides an n-bit message within
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an image such that the steganographic image is robust to
perturbations like blurring, cropping, and lossy compression.

Deep learning techniques used for full video steganography,
where the goal is to hide one complete video into another
video of the same size, are most relevant to our work.
Video steganography is becoming popular with the research
community as videos have a temporal dimension that provides
more redundancy and proves to be useful in hiding the
secret message and increasing the capacity of steganography.
Recently, Weng et al. proposed HCCVS (ICMR’19) [9], which
uses 2D-convolutions with temporal residual modeling to hide
and reveal the secret message. They use two convolutional
neural networks: one to hide the reference frames and the other
to hide residual frames and train the networks to solve the
problem of full video steganography. In contrast to the HCCVS
approach, Kumar et al. proposed VStegNET (BMVC’19) [7],
which uses 3D-convolutions [16] with hourglass network [21]
to inherently do the temporal modeling and achieved a payload
capacity of 24 bpp. VStegNET [7] is the current state-of-the-
art model for full video steganography.

III. PROPOSED METHODOLOGY

Our proposed architecture consists of two connected deep
3D convolutional neural networks: a hiding network (HN),
which is used by Alice to hide the secret video frames
into cover video frames thereby generating container video
frames, and a revealing network (RN), which is used by
Bob to extract the secret video frames from the container
video frames as shown in Fig. 2. Both hiding network (HN)
and revealing network (RN) are based on traditional encoder-
decoder architecture, where the frames go through a series
of down-sampling steps followed by a series of up-sampling
steps. Our network resembles the down-sampling step of the
encoder, but we have designed a gradual up-sampling step
for the decoder, as compared to successive up-sampling. The
network specifications are described in detail in section III-A.

In this paper, we have used 3D-convolutions to exploit the
Spatio-temporal [16], [22], [23] relationship between consecu-
tive video frames and appropriately designed skip-connections,
max-pooling, and up-sampling layers to make the model most
suitable for full video steganography.

A. Network specifications

The overall architecture consists of two connected deep 3D
convolutional neural networks:
• Hiding Network (HN) : HN takes 8 cover video frames

and 8 secret video frames, concatenated along the tem-
poral dimension, as input. The network comprises of 5
levels of feature extraction and reconstruction each. In the
feature extraction phase, the feature maps are convoluted
with 3 3D-convolutions of shape 3× 3× 3, each applied
with 32, 64, 128, 256, and 512 filters at consecutive lev-
els, respectively. After convolution, at every level except
the last, the feature maps are down-sampled using max-
pooling as shown in Fig. 3. In the reconstruction phase,
before convolution operation, all the feature maps from

Fig. 2: Proposed Overall Architecture

Fig. 3: Overview of the Hiding Network

the corresponding level are collected and concatenated
with the current feature map, except for the first level. As
the output of ’Conv1’ is 16×320×240×32 and the output
’Conv12’ followed by up-sampling is 8×320×240×64,
a temporal pooling of ’Conv1’ is required to be able
to concatenate ’Conv1’ with up-sampled ’Conv12’. The
skip-connections at each level vouch for any feature loss
that might happen during the extraction or reconstruction
phase as demonstrated by [28]. In contrary to traditional
decoders, which continuously up-sample the feature maps
for reconstruction, our proposed architecture undergoes a
down-sampling step every two up-sampling steps, which
eventually helps in feature enhancement at every level
of reconstruction. The output of HN is the 8 container
video frames of dimension 320 × 240 × 3 each, which
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Fig. 4: Results of our model showcasing the container (Column 2) and revealed secret (Column 5) frames generated by hiding
and revealing networks, respectively, along with the difference maps between the cover-container (Column 3) and secret-revealed
secret (Column 6) video frames.

are visually similar to the cover video frames.
• Revealing Network (RN) : The architecture of RN

is exactly similar to the HN, except for two design
requirements: First, the input to RN is 8 container video
frames of dimension 320×240×3 each. Second, because
the input is only 8 container video frames, there is no
need for an additional temporal pooling for skip con-
nection between ’Conv1’ and up-sampled ’Conv12’. The
output of RN is 8 revealed secret frames of dimension
320× 240× 3 each.

B. Loss function

The loss function to regularize the training of the proposed
model should be designed in the way that optimization of the
loss function should:

• Ensure that the container frames are visually indistin-
guishable from the cover frames.

• Ensure clear reconstruction of the hidden secret frames

The loss function of our proposed model is described below:

Loss(C,C ′, S, S′) = Lcover
container + β ∗ Lsecret

revealed secret

= ||C − C ′||2 + β ∗ ||S − S′||2

The term β is introduced as to weight the reconstruction er-
rors between cover-container video frames and secret-revealed
secret video frames.

IV. EXPERIMENTS AND RESULTS

As a proof of concept, we trained our model on an action
recognition dataset, UCF101 [8]. Fig. 4 showcases some of the
results of our model. It is evident from Fig. 4 that our model
produces container frames which are visually indistinguishable
from the cover frames, also, the revealed secret frames are very
similar in appearance to the original secret frames. Difference
maps between the cover and container video frames as well as
the secret and revealed secret video frames shown in column
3 and column 6 of Fig. 4, respectively, justifies our claim.

For Quantitative analysis, the performance of our model
is evaluated on three different axes, namely: Undetectablity,
Capacity and Reproducibility.
• Undetectablity: difficulty in detecting the hidden mes-

sage. It is measured as the robustness of the model
against various steganalysis tools. As a proxy to this,
similarity between the cover and container message can
also be measured using metrics like, Peak Signal-to-
Noise Ratio (PSNR), Absolute Pixel Discrepancy (APD),
Visual Information Fidelity [26] (VIF) and Structural
Similarity Index (SSIM).

• Capacity: number of message bits that are hidden per
video bit. Primarily measured in Bits Per Pixel (BPP).

• Reproducibility: similarity between the original secret
frames and revealed secret frames. It can be measured
with the same metrics as undetectability namely, PSNR,
SSIM, APD & VIF.

The goal is to achieve higher PSNR, VIF, and SSIM and low
APD.

All the experiments in this paper were performed on a
workstation with Nvidia Geforce 1080Ti GPU Card.

A. Dataset Specifications

UCF101 dataset [8] is an action recognition dataset of
13,320 videos. This dataset was chosen because it comprises
of videos with variation in the camera motion, different illumi-
nation conditions, different object scale, pose and viewpoint,
cluttered background, etc. The size of each frame of the video
is 320× 240× 3, with a mean clip size of 7.21 seconds with
a rate of 25 frames per second.

B. Video and Frame sampling

The input to the model is 8 frames of both cover and secret
video, so frames are extracted from both cover and secret
videos. These two videos can be of different length or different
frame rates, therefore, the number of frames in both the videos
can be different. As the number of frames is different, we do
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a temporal equalization before feeding them to the model, as
suggested by BMVC’19 VStegNET [7].

Temporal equalization is done as follows: Assume N1 and
N2 are the number of frames in the two chosen videos since
the model processes 8 frames of both the videos at a time,
the highest multiple of 8 that is smaller than or equal to the
minimum of N1 or N2 is chosen as N, the number of frames
fed to the model.

N = min(N1, N2)−min(N1, N2)mod8

C. Training and Testing methodology

The complete dataset is partitioned into training and test
set with 10,000 videos in the training set and the remaining
3,320 videos in the testing set. The model was trained end-to-
end using Adam optimizer with Loss(C, C’, S, S’) as an error
signal and learning rate α = 1e− 4.

For training, any two videos are randomly sampled from the
set of 10,000 videos (Total possible combination = 10000C2),
without loss of generality one is taken to be cover video and
the other as secret video. The training was done for two values
of β, 0.75, and 1.00. For β = 0.75 our proposed model
converged after training on 6,250 video pairs and for β = 1.00,
it converged after 8,500 video pair. The converged model was
observed to generalize well over unseen test pairs as well.

For testing, we generated a list of 500 video pairs from the
3,320 videos in the testing set (Total possible combination =
3320C2). The testing was done on these fixed 500 video pairs
so that comparison with other state-of-the-art techniques can
be reported. The results reported in Table I and II for different
video steganography models are averaged over all these fixed
500 test samples.

D. Comprehensive Results

To show the superiority of our model, we have compared the
results of our model with other well-know and state-of-the-art
models for steganography.

Fig. 5: Qualitative comparative analysis between NIPS’17
Image model [5], BMVC’19 VStegNET [7], and Our model.

In table I and table II, we have reported the comparative
results of our proposed model against LSB steganography
[1], NIPS’17 Image model [5], ICMR’19 HCCVS [9] and
BMVC’19 VStegNET [7], on different performance metrics.
The code for LSB [1] and HCCVS [9] was not available so we
have borrowed the results from VStegNET [7], whereas, we
have trained NIPS’17 Image model and BMVC’19 VStegNET
on our dataset and the results for the same are reported. The
results of all the performance metrics show that our model
outperforms other well-known state-of-the-art steganography
techniques.

Model ||C − C ′||2 ||S − S′||2
LSB [1] 6.64 8.64

Baluja et. al. [5] 6.31 4.97
HCCVS [9] 3.80 5.84

VStegNET [7] 3.23 4.70
Ours 2.87 4.11

TABLE I: Comparative Results of our proposed method on
APD metric

Model VStegNET Ours
β = 0.75 β = 1.0 β = 0.75 β = 1.0

APD C - C’ 3.23 3.51 2.87 2.98
S - S’ 4.70 4.68 4.11 3.97

PSNR C - C’ 35.57 34.97 36.62 36.27
S - S’ 31.60 31.88 32.88 33.24

SSIM C - C’ 0.94 0.94 0.95 0.95
S - S’ 0.92 0.93 0.93 0.94

VIF C - C’ 0.71 0.69 0.74 0.72
S - S’ 0.60 0.60 0.65 0.65

TABLE II: Comparison of our model on different statistical
metrics with VStegNET [7].

The qualitative results of Our model, NIPS’17 Image model
[5] and BMVC’19 VStegNET [7] are shown in Fig. 5 and
7. The comparison in Fig. 5 show that our model generates
a container frame that is color accurate and closer in visual
appearance to the cover frame. The container frame generated
using the NIPS’17 Image model has visible traces of the secret
frame also evident in the difference-map, whereas the one
generated using VStegNET has a yellow hue all across the
image, making it suspicious to an adversary. Not only the
container frame, but the secret revealed by our model is also
sharper as compared to blurry results of NIPS’17 Image model
and BMVC’19 VStegNET. The complete revealed secret frame
is smooth in case of NIPS’17 Image model, whereas noticeable
blurriness is present near the hand of the person in case of
BMVC’19 VStegNET.

Fig. 7 helps in justifying our claims, wherein we zoom-in
a 135×135 patch from both the container and revealed secret
frames. The zoomed-in patches of the container frame show
traces of the man’s face from the secret frame in case of both
NIPS’17 Image model and BMVC’19 VStegNET, which is

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



(a) Hiding Network activation maps (b) Revealing Network activation maps

Fig. 6: Activation maps generated by Hiding and Revealing networks at the same level because of sequence of up-sampling
and down-sampling steps.

easily noticeable to an adversary, whereas no such trace can
be identified in our case depicting the better quality of our
container frames. The zoomed-in patch of the secret frames
is smooth both in the case of NIPS’17 Image model and
BMVC’19 VStegNET, whereas our model reveals a much
sharper secret.

Fig. 7: Visual comparison of our model with NIPS’17 image
model [5] and BMVC’19 VStegNET [7]. First and third col-
umn shows the container and revealed secret frames generated
by corresponding methods and the second column shows
135×135 patch which is zoomed to show the superiority of
Our model.

E. Performance analysis

To investigate the performance gain, we analyzed the ar-
chitecture and feature maps generated by both hiding and
revealing networks. Our approach is similar to BMVC’19
VStegNET [7] in using an encoder-decoder architecture for
both the hiding and revealing networks. However, our decoder
is different in the way described in section III-A which helps
to gradually learn and improve upon the features required to
hide the secret video frames in case of hiding network and to

Model Accuracy
Inception-V3 0.52

ResNet50 0.49

TABLE III: Classification Accuracy: Both Inception [11] and
ResNet [10] were fine tuned for the task of detection starting
with weights of ImageNet [12]

reconstruct the secret video frames from the container video
frame in case of revealing network.

Fig. 6a & 6b show activation maps generated at level 2
by hiding and revealing network, respectively, for both the
feature extraction and reconstruction phases. As we can see
in Fig. 6a the second feature map during the reconstruction
phase is more similar to its correspondent in the extraction
phase as compared to the first one at the same level, showing
that gradual up-sampling helps in improving upon the features
required to hide the secret frames. Whereas in Fig. 6b we can
see that the second feature map during reconstruction reveals
more information about the secret hidden as compared to the
first, thereby proving that gradual up-sampling helps enhance
the activation maps at the time of revealing as well.

F. Steganalysis

Steganalysis [19], [27], the study of detecting messages
hidden using steganography, is a parallel research field to
steganography. We have tested the undetectability of our model
by subjecting it to state-of-the-art steganalysis techniques.

In general, the cover message is destroyed after hiding the
secret message. However, we analyzed the scenario where the
adversary somehow has access to labeled cover and container
video frames by training ResNet [10] and Inception [11]
classifiers on these labeled video frames, the results for which
are reported in table III. The classification accuracy of the two
models shown in Table III shows nothing but random guessing.

Recently, steganalysis tools based on deep learning have
proven to be better than traditional machine learning tech-
niques which relied on hand-crafted SRM [27] features. We
have tested our model against SRNet [19], a deep-learning-
based technique for steganalysis. Fig. 8 tells us the number
of training examples required for the adversarial networks to
achieve almost perfect accuracy of detection. It is evident from
the figure that our proposed model requires almost double the
number of samples (approximately 30000) than state-of-the-art
BMVC’19 VStegNET [7].
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Fig. 8: Robustness analysis against adversarial attacks

We have also subjected the container frames generated by
our model to revelation by revealing networks of NIPS’17
Image model [5] and BMVC’19 VStegNET [7], the results of
which are shown in Fig. 9. Meaningless revealed secrets by
[5], [7] demonstrate that the container frames generated by our
model are secure to revelation by other steganography models.

Fig. 9: Revealing network of NIPS’17 [5] and VStegNET [7]
produces meaningless results when given the container images
generated by our model

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel deep 3D convolu-
tional neural network for full video steganography, inspired by
traditional encoder-decoder architecture and Spatio-temporal
modeling of videos, which outperforms the current state-of-
the-art methods. We have demonstrated the superiority of the
network by comparing, both qualitatively and quantitatively,
with well-know state-of-the-art methods for digital steganog-
raphy.

A minor extension will be to make β trainable and allow
the network to learn the weights of the reconstruction losses.
A major extension over the present model will be to analyze
the effect of perturbations like lossy compression, blurring,
cropping, trimming, etc. to the container video and make
the model robust to such kind of alterations. Appropriately
modeling the redundancy between the secret video frames can

help increase capacity. These are the two major improvements
that can be done to the present technique and we plan
to incorporate these changes in our current state-of-the-art
method for video steganography.
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