
k-Nearest Neighbor based Clustering with Shape
Alternation Adaptivity

Yifeng Lu, Yao Zhang, Florian Richter, Thomas Seidl
Database Systems and Data Mining Group

LMU Munich, Germany
Email: lu@dbs.ifi.lmu.de, yao.zhang@campus.lmu.de, richter@dbs.ifi.lmu.de, seidl@dbs.ifi.lmu.de

Abstract—Existing clustering algorithms aim at identifying
clusters from a single dataset. However, many applications
generate a series of datasets. For example, scientists need to
repeat an experiment many times to ensure reproducibility;
sensors collect information day after day. In such scenarios,
we need to identify clusters separately from a large number of
datasets, which can contain an unknown number of clusters with
various densities and shapes.

Density-based clustering algorithms are commonly used in
identifying arbitrary shaped clusters when the cluster num-
ber is unknown. Most density-based clustering algorithms are
“DBSCAN-alike”, where clusters are formed by connecting
consecutive high dense regions. Therefore, points are grouped
as one cluster as long as they are densely connected. When the
distribution shape of points is changed across different datasets,
parameter tuning on each dataset is necessary to obtain proper
results, which is time-consuming.

In this work, we developed a new kNN density-based clustering
algorithm, which does not adopt the DBSCAN paradigm. Instead,
we identify clusters by maximizing the intra-cluster similarities,
which are estimated using: 1) the probability that two points
belong to the same cluster; 2) the probability that a point is a
cluster center. The kNN concept and minimum spanning tree are
used to compute both probabilities. Our approach is capable of
extracting clusters in arbitrary shapes using the single parameter
k, and can handle a series of datasets with less parameter tuning
effort. Experiments on both synthetic and real-world datasets
show that our approach outperforms other recent kNN clustering
algorithms.

I. INTRODUCTION

Identifying clusters in arbitrary shapes is useful in many
applications, such as spatial data or scientific data cluster-
ing. Usually, the number of clusters is unknown in those
applications, so that density-based clustering algorithms, such
as DBSCAN [1], are very popular. In recent years, novel
methods, such as ISB-DBSCAN [2] and RNNDBSCAN [3],
are proposed, which are “DBSCAN-alike” with the concept
of k-nearest neighbor (kNN) employed to define density. The
ability to identify arbitrary shaped clusters is kept. More
importantly, only a single parameter k is required, which can
be roughly estimated using the minimum number of points
required to form a cluster. Moreover, they also handle clusters
in various densities better.

Clusters in those algorithms are formed by connecting
consecutive highly dense regions whose local density ex-
ceeds a given threshold, which is defined using kNNs. Thus,
the connectivity is purely determined by local density. The
distribution shape of data points on a global scale is not

(a) (b)

(c) (d)

Fig. 1: RNNDBSCAN correctly detects one cluster in (a)
but failed to find two clusters properly in (b) and (c), when
parameters are fixed. Even if we set parameters to find two
clusters, the small cluster in (d) is incorrectly labeled as noise.

considered. However, in some applications such as scientific
research, a series of datasets are generated at once, waiting
for clustering. Points distribution shape in those datasets may
alter, for instance, from a strip shape to a dumbbell shape,
which implies cluster changing. However, existing DBSCAN-
alike approaches can not adapt automatically when distribution
shapes alter across different datasets. A painful parameter
tuning process is necessary for each dataset.

Fig. 1(a-c) illustrate three datasets with data points dis-
tributed in different shapes but similar densities. Clusters are
identified using a DBSCAN-alike approach (RNNDBSCAN
[3]) under the same parameter. In the first dataset (a), it is safe
to say that the result is correct as all points are in the same
strip-shaped cluster. When the number of points increased on
the two ends (b,c), it is likely that there are two clusters.
However, RNNDBSCAN can not adapt automatically and still
return a single cluster. Of course, we can also choose the
parameters to return two clusters in Fig. 1(b,c), but then the
single strip-shaped cluster in (a) will be separated. Therefore,
users always need to manually adjust the parameter on each

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

(a) (b)

(c) (d)

Fig. 2: Clustering results of our approach. The parameter k
is set to work properly on (d). No further parameter tuning is
applied to the rest of datasets.

dataset to generate the correct result, which is infeasible
for applications where hundreds of datasets are waiting for
clustering.

In some cases, lacking the awareness of the overall data
points distribution also makes parameter tuning more difficult,
even on a single dataset. For example, in Fig. 1d, the small
cluster (gray) is identified as noise if we set parameters to
detect the two big clusters properly since the density threshold
is too large.

In this work, a new kNN clustering algorithm is proposed to
tackle this problem by avoiding the DBSCAN-alike structure.
It can handle arbitrary shaped clusters using a single parameter
k. It is also aware of the overall data distribution so that
clusters can be identified and separated even if it is densely
connected to other clusters, without parameter tuning. We
estimate similarities using the concept of kNN to reflect the
probability that two points belonging to the same cluster and
the probability that a point is a cluster center. The Affinity
Propagation [4] algorithm is applied to extract cluster centers.

Fig. 2 illustrates the clustering result of our approach on
toy examples given above. The parameter k is selected so
that three clusters are detected in Fig. 2d. Without manual
parameter tuning for the rest of the datasets, our approach can
adapt itself to identify clusters properly.

II. RELATED WORKS

The concept of k-nearest neighbor is widely used in density-
based clustering approaches. For example, the relationship
between the connectivity of a mutual k-nearest neighbor
graph and the clustering structure is studied in [5]. The SNN
[6] algorithm uses the kNN to handle clusters with various
densities. LDBSCAN [7] employs the local outlier factor as

the metric, which is also defined using kNN. However, extra
parameters are required in those approaches.

Our work is a single parameter kNN clustering algorithm.
Most reported single parameter kNN clustering algorithms
borrowed the idea of DBSCAN [1]. The RECORD [8] al-
gorithm makes use of kNN graph and reverse kNN graph to
define core points. Clusters are extracted from the subgraph of
core observations. HDBSCAN [9] builds a minimum spanning
tree on a mutual reachability graph. Edges are iteratively
removed to generate optimized clusters. The IS-DBSCAN [10]
approach introduced the concept of influence space of a data
point, which is defined as the intersect between its reverse
and k nearest neighbor sets. The influence space concept
is then used to describe local density and reachability of
data points. ISB-DBSCAN [2] goes a step further by using
an undirected influence space graph. In RNN-DBSCAN [3],
density reachability is defined by only using the concept of k-
nearest neighbor and reverse k-nearest neighbor. A data point
is a core point if the number of its reverse k-nearest neighbor
is larger than k. KNNCLUST [11] does not follow a DBSCAN
clustering style. Instead, it starts clustering by assigning dif-
ferent cluster labels to each data point. The cluster label is
then updated recursively by computing a posterior probability
concerning labels in kNN. Unfortunately, all methods above
can not adapt automatically to the drift in cluster shapes. The
parameter k needs to be determined separately for a series of
datasets.

Of course, there are algorithms such as spectral clustering
[12] that can handle cluster shape alteration. However, they
need to know the cluster number in advance.

III. PRELIMINARIES

A good clustering should have a high intra-cluster similarity.
To identify cluster properly, we need a good estimation of
similarities, and an algorithm that maximizes the intra-cluster
similarity. Affinity Propagation (AP) [4] is designed to identify
clusters that maximizing the intra-cluster similarity based on a
similarity matrix and a preference vector. As suggested in AP,
the similarity matrix and the preference vector should reflect
the probability that two points belong to the same cluster and
the probability that a point is a cluster center. Thus, the major
challenge of this work is how to estimate both probabilities
properly.

In this work, we use the kNN distance to measure those
two probabilities. The heuristic of cluster centers proposed is
DPC [13] is also employed in computing the preference vector.
Those two probabilities are utilized as the similarity matrix
and the preference vector for AP to generate cluster centers,
which eventually produces clusters. Only one parameter k is
employed in the whole process.

A. Affinity Propagation

Affinity Propagation does not require the user to estimate
the number of clusters or the density of points. Instead, the
user has to provide a similarity matrix S in which sij is the
similarity between point i and j. The diagonal of S is the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

preference vector. sii is the preference of point i, denoted
as prefi. The similarity measures how likely that two points
belong to the same cluster. The preference value reflects the
likelihood that a point being a cluster center. Cluster centers
and cluster assignments are determined by maximizing the
overall intra-cluster similarity:

S =
N∑
i=1

Si,ei (1)

where ei is the cluster center of point i. Obviously, the overall
distribution of data points influences the final clustering result.

AP is reported to work well on certain tasks such as com-
putational biology, where the similarity between observations
is well defined. In a more general case, the similarity between
points is set to the negative Euclidean distance. Preferences
of all points are initialized to the same value, such as the
minimum or the median of similarities. However, it is difficult
to achieve the desired results with the default setting of AP.
Figure 3 illustrates the clustering results on two datasets.
Although the data only contains 2/3 simple clusters, AP does
not identify these clusters successfully due to shapes and
cluster proximity.

Fig. 3: Clustering results of AP under default settings.

B. Density Peaks Clustering

Density Peaks Clustering (DPC) is a semi-automated clus-
tering approach, which makes use of two heuristics to highlight
cluster centers: 1) cluster centers are surrounded by neighbors
with lower density; 2) cluster centers are far away from other
points with a higher density. A decision graph is derived by
computing the local density ρi and the distance to the nearest
point with a higher density δi (delta distance) for each point.
Then the user identifies cluster centers by selecting points
manually with both large ρ and large δ.

The DPC algorithm shows outstanding performance in a
variety of clustering tasks by providing a great visualization
tool for identifying cluster centers manually. There are some
algorithms proposed in recent years to fully automate the
cluster center selection process by analyzing the values of ρ
and δ. Indeed, the original DPC algorithm also proposes to
examine the product of ρ and δ for each data point. However,
those approaches introduce additional parameters, which need
to be precisely selected [14].

Nonetheless, the heuristic introduced by DPC is useful for
our approach, which provides a good description of cluster
centers. We apply it to compute the probability of a point
being a cluster center, i.e., the preference of points.

IV. PROPOSED ALGORITHM

There are four major steps in our approach: 1) estimating the
similarity matrix; 2) estimating the preference vector; 3) using
affinity propagation to identify cluster centers; 4) assigning
labels to the rest of data points.

A. Similarity Estimation

As mentioned above, similarities used by AP should reflect
how likely that two points belong to the same cluster. To
achieve the goal, we adopt the idea of minimax distance on
graph. Minimax distance can model the underlying structures
and the transitive relations nonparametrically [15]. Moreover,
minimax distance on a graph is equivalent to longest edge on
the path of the corresponding minimum spanning tree (MST).
In this work, we built MST on our dataset. Instead of using
edge length, the minimum edge density on the path from point
i to j is used to measure similarity. Edge density of an edge
e is represented using the kNN distance of the center point of
e in the dataset.

For simplicity, the MST is built based on the Euclidean
distance between points, known as the Euclidean Minimum
Spanning Tree (EMST). Other distance function can also be
used but beyond the scope of this paper.

Let T be the EMST built on our dataset, Tij be the path from
point i to point j, which is formed by a list of adjacent edges
eii1 , ei1i2 , . . . , eimj of T . The distance between two points i, j
is:

distij = max
e∈Tij

dk(e) (2)

where dk(e) of edge e is the kNN distance of the center point
of e with respect to points in the dataset.

k=3
A

BC

(a)

D

E
F

k=3

(b)

Fig. 4: Similarity and Preference on toy MST example.

Intuitively, we measure how sparse it is on the path from
point i to j. If data points stay densely around all edges on the
path, then disti,j is small, and i, j tend to come from the same
cluster. Figure 4a shows a toy example. Dashed lines (red and
green) represent the kNN distance of corresponding edges,
i.e., the edge density. Thus, the point B is closer to A than C.
As AP asks for negative similarity values, we normalize our
distance and take the negative as the similarity value:

sij = −
distij − distmin

distmax − distmin
(3)

where distmin = min
i6=j

(distij), distmax = max
i6=j

(distij)

Algorithm 1 illustrates procedure for calculating the simi-
larity matrix.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Algorithm 1 Similarity(X, k)

1: T ← MinimumSpanningTree(X)
2: for xi ∈ X do
3: for xj ∈ X, j 6= i do
4: distij = maxe∈Tij

dk(e)

5: for sij ∈ S, i 6= j do
6: sij ← − distij−distmin

distmax−distmin

7: return S;

B. Preference Estimation

The preference value of a data point implies the likelihood
of being a cluster center. According to the heuristic of DPC,
the preference value of a data point i is positively correlated
with two properties:

1) ρi, the local density of point i,
2) δi, the delta distance of point i (distance to a point with

larger ρ).
As DPC suggests to analyzing the production of ρ and δ for
automatic cluster center detection, we can assume prefi ∝
δi · ρi.

AP requires both similarity and preference values to be
negative values. A cluster center point with large ρi and δi
should have a negative preference value close to 0. Preference
values of off-center points must be much smaller than 0. In
consequence, we define the preference of a point i as:

prefi = (δi − distmax) · ρi (4)

where the local density ρi is defined as the kNN distance of
point i, which is similar to the edge density dk(e) defined
above.

In Figure 4b, the length of the red line is the local density of
points D, E, and F. δi and distmax are defined using distance
values in equation 2. Under such definition, boundary points
may also have high preference values (close to 0) when δi −
distmax ≈ 0. AP might identify those points as cluster centers
of small clusters. However, their cluster size are smaller than
k so that we can identify and correct those “outlier clusters”
easily.

Furthermore, prefj is not defined in equation 4 if ρj =
max(ρ), since δj is not defined. Thus, we let prefj =
maxi6=j(prefi) as j is very likely to be a cluster center.
Moreover, we need to normalize the preference value by
dividing by the maximum nonzero preference value:

prefi = −
prefi

maxpref6=0 pref
(5)

Such normalization reflects how likely a point i is to be a
cluster center, when compared with the most possible one.
Algorithm 2 presents the procedure for calculating the prefer-
ence vector.

C. Generating Clusters

After estimating similarities and preferences, we add the
preference vector pref into the diagonal of the similarity

Algorithm 2 Preference(X , k, dist)

1: ρi ← local density of xi ∈ X
2: j ← argmaxi ρi
3: for xi ∈ X , i 6= j do
4: δi ←delta distance of xi
5: prefi ← (δi − distmax) · ρi
6: prefj ← maxi6=j(prefi)
7: pref← − pref

maxpref6=0 pref
8: return pref

matrix S and let AP determine cluster centers. As AP tends
to maximize the overall intra-cluster similarity, the global
distribution of data points is also taken into consideration when
identifying cluster centers.

Cluster labels of the rest of the points are assigned in a
similar way to DPC. We traverse unlabeled points in descend-
ing order according to the local densities. The label of the
nearest cluster is attached. A refinement step is introduced by
comparing the label of each point to its k nearest neighbors.
Labels will be updated to the majority label among kNN. Such
a refinement step is useful since AP may generate “outlier
clusters”, as mentioned above. Algorithm 3 illustrates the
overall procedure of our approach.

Algorithm 3 Generating Clusters

Require: Dataset X , Parameter k
Ensure: Cluster labels l = [l1, ..., lN]T ;

1: N ×N similarity matrix: s← Similarity(X, k)
2: N × 1 preference vector: pref← Preference(X, k,−s)
3: diag(s)← pref
4: ∀xi ∈ X, li ← −1 . initial cluster label to -1
5: Exemplars E ← AffinityPropagation(s)
6: for xi ∈ E do
7: li ← A unique cluster label
8: Sort X in descending order of local density ρ
9: for all xi ∈ X, li = −1 do

10: li = argmax
(lj 6=−1)

(si,j)

11: for all xi ∈ X do
12: li ← majority label among kNN of xi . refinement
13: return c;

D. Computational Complexity

Our approach contains four primary steps: 1) EMST gen-
eration; 2) Similarity and Preference estimation; 3) AP for
cluster centers generation and 4) Cluster labels assignment.
The complexity of the first step, generating EMST, can achieve
O(N logN) by utilizing index structure and the Prim’s algo-
rithm [16]. Similarity and preference computation involves the
EMST traversing and the similarity matrix filling, which takes
O(N2). The time complexity of Affinity Propagation makes
O(N2T), where N is the number of data points, T is the
number of iterations. The last cluster assignment step is mainly

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

about nearest neighbor search, which takes O(N logN) in
total. In summary, our k-nearest neighbor density-based clus-
tering approach has a complexity of O(N2T).

V. EXPERIMENTAL RESULTS

We investigate our approach on both synthetic and real-
world datasets from the UCI Machine Learning Repository
[17]. Additionally, several artificial datasets of varying sizes,
densities, and shapes were generated to highlight the effectiv-
ity of our approach. A summary of each dataset is provided
in Table I.

TABLE I: Dataset Statistics

(a) Synthetic Datasets

Data N Nc d

spiral [17] 312 3 2
aggregation [17] 788 7 2

flame [17] 240 2 2
d31 [17] 3100 31 2

moon (Fig 5a) 600 2 2
gaussian (Fig 5b) 800 2 2

blobs (Fig 5c) 1K, 5K, 10K 2 2
strip (Fig 5d) 1K, 5K, 10K 2 2

(b) Real-world Datasets

Data N Nc d

iris [17] 150 3 4
digits [17] 1797 10 64
seeds [17] 210 3 7

segments [17] 2310 7 19
seismic-bumps [17] 210 3 8

satimage [17] 6430 6 37
banknote [17] 1372 2 4

Affinity Propagation algorithm under default settings (as
described in Section III-A) is conducted. RNNDBSCAN al-
gorithm is included to represent recent DBSCAN-alike kNN
clustering algorithms. KNNCLUST stands for the performance
of kNN clustering approaches that are not DBSCAN-alike.
Furthermore, two density-based algorithms, DBSCAN and
OPTICS, and a manifold-based algorithm, Spectral Clustering,
are also conducted as a baseline.

Adjusted Rand Index (ARI) [18] and Normalized Mutual
Information (NMI) [19] are reported. For each kNN based
algorithm, we vary k from 1 to 100 and report the result of k
with the best ARI score. Clusters generated by KNNCLUST
are inconsistent across multiple runs on the same dataset due
to its random access to data points. Thus, the average score
of several runs is reported while the best run is used for
visualization. For DBSCAN, minpts is selected from the set
{2, 5, 10, 20}, and eps is selected over a set of values equal
to the minpts nearest neighbor distance of each observation.
OPTICS has the same parameter pool as DBSCAN, while
the schema mentioned in [20] is used for cluster generation.
The affinity matrix we used in Spectral Clustering (SC) is
constructed using the kNN method, where k also varies from
1 to 100. Table II and III show the ARI and NMI score on

synthetic and real datasets. The best values in each row are
marked in bold.

TABLE II: ARI & NMI Score on Synthetic Datasets

Dataset Our AP RNN KNN DBS OPT SC

spir ari 1 0.101 0.179 1 1 0.162 0.388
nmi 1 0.538 0.454 1 1 0.395 0.466

aggr ari 0.996 0.177 0.991 0.809 0.992 0.984 0.809
nmi 0.988 0.681 0.987 0.895 0.98 0.977 0.895

flame ari 0.97 0.086 0.949 0.208 0.97 0.967 0.650
nmi 0.93 0.483 0.891 0.517 0.93 0.927 0.741

d31 ari 0.954 0.529 0.855 0.457 0.884 0.641 0.943
nmi 0.97 0.854 0.917 0.081 0.927 0.879 0.962

moon ari 0.984 0.076 0.976 0.485 0.980 0.976 0.802
nmi 0.97 0.458 0.946 0.379 0.970 0.951 0.754

gaus ari 0.962 0.042 0.183 0.544 0.526 0.034 0.98
nmi 0.931 0.409 0.156 0.554 0.501 0.195 0.97

blobs ari 0.941 0.093 0.511 0.245 0.765 0.469 0.921
nmi 0.908 0.508 0.569 0.493 0.717 0.619 0.887

strip ari 0.783 0.097 0.530 0.355 0.750 0.621 0.709
nmi 0.780 0.487 0.544 0.477 0.723 0.626 0.697

Average ari 0.949 0.150 0.647 0.443 0.791 0.607 0.672
nmi 0.935 0.552 0.640 0.485 0.781 0.696 0.711

Our approach has the best ARI and NMI scores in almost
all synthetic datasets. It is only defeated by the Spectral
Clustering on the gaus dataset with a narrow margin. On
real-world datasets, our method is also very competitive. It
has the best ARI score in 4 out of 7 datasets. It also ranks
second or third place in the rest of the datasets. In terms of
NMI score, our approach also outperforms competitors in real
datasets. It has the highest NMI score in 5 real datasets and
takes the second place in sati dataset with a marginal gap.
bank dataset is the only one that our approach is not among
top-2, but still better than AP, KNNCLUST, and OPTICS.
In summary, our approach provides solid clustering quality
compared with traditional methods, as well as novel kNN
based methods.

Fig. 5 visualizes the clustering result of our approach and
other kNN clustering algorithms on a series synthetic datasets.
Our approach provides the best clustering result, especially in
Fig. 5b/c, where two or three clusters are mutually overlapped.
Our approach can identify clusters from densely connected
data, while other kNN methods fail.

The last column of Fig. 5 compares the clustering quality
(ARI score) of our approach with other algorithms. The
available range of k with a high ARI score is much more
extensive than competitors, which means that the user can
estimate the parameter roughly. Indeed, accepting roughly
estimated parameters is an essential feature of kNN clustering
algorithms since users do not need to search for the best
parameter value accurately as kmeans or spectral clustering
required, which is time-saving.

More importantly, the more extensive available range of k
also means that our approach can handle a series of datasets
without parameter tuning on each dataset. In this example, our

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

KNNCLUST RNNDBSCAN Our Method ARI vs. k

(a) Our Method
RNNDBSCAN
KNNCLUST
SC

(b) Our Method
RNNDBSCAN
KNNCLUST
SC

(c)

Our Method
RNNDBSCAN

KNNCLUST
SC

(d)

Our Method
RNNDBSCAN

KNNCLUST
SC

Fig. 5: Visualization of kNN clustering approaches on synthetic datasets and the ARI score under different k values.

TABLE III: ARI & NMI Score on Real-World Datasets

Dataset Our AP RNN KNN DBS OPT SC

iris ari 0.882 0.344 0.548 0.562 0.739 0.578 0.767
nmi 0.867 0.633 0.688 0.664 0.722 0.731 0.811

digi ari 0.799 0.126 0.574 0.783 0.677 0.116 0.756
nmi 0.854 0.667 0.742 0.848 0.805 0.495 0.854

seed ari 0.753 0.177 0.534 0.434 0.582 0.470 0.602
nmi 0.712 0.510 0.562 0.543 0.554 0.550 0.629

segm ari 0.428 0.080 0.500 0.116 0.401 0.175 0.473
nmi 0.699 0.544 0.622 0.570 0.610 0.531 0.651

seis ari 0.738 0.186 0.436 0.477 0.499 0.558 0.616
nmi 0.711 0.526 0.555 0.565 0.531 0.618 0.644

sati ari 0.529 0.169 0.432 0.389 0.389 0.090 0.550
nmi 0.628 0.540 0.575 0.537 0.551 0.364 0.656

bank ari 0.516 0.027 0.763 0.029 0.668 0.342 0.531
nmi 0.569 0.394 0.707 0.391 0.638 0.439 0.451

Average ari 0.664 0.158 0.541 0.399 0.565 0.333 0.614
nmi 0.720 0.545 0.636 0.588 0.630 0.533 0.671

method can identify all clusters properly by fixing k at around
30. In contrast, KNNCLUST is able to find clusters correctly
only if the parameter is accurately selected. Spectral clustering
works only if the number of clusters is chosen appropriately.
RNNDBSCAN has a wider parameter range, but parameter
tuning is still necessary across different datasets.

VI. FURTHER PROPERTIES AND DISCUSSIONS

A. Automatic cluster centers detection for DPC

Many approaches are proposed to detect cluster centers for
DPC automatically by proposing new density functions [21]
or analyzing the scalar value, such as ρi · δi, of each point.
Points with properties larger than a threshold are returned as
cluster centers.

Our approach is different since we keep the information of
both ρ and δ, and use AP to find cluster centers that maximize
intra-cluster similarity. Thus, cluster centers are determined
not only by the properties of each point, but also by the
relationship between points. Fig. 6 illustrates cluster centers
found by our approach and their corresponding preference
values. We can see that three centers are not those points with
the highest preference value.

(a) Proposed Algo.
0 100 200 300 400 500 600

50

40

30

20

10

0

(b) Preference Plot

Fig. 6: Cluster centers (red stars) and their preference values
in the dataset.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

B. Various Dataset Size
Despite less complexity in parameter selection, another

essential property of kNN clustering over DBSCAN is the
dataset size invariant [3]. Fig. 7 shows the clustering qualities
of our approach on two datasets with different dataset sizes.
We can see that, although the DBSCAN structure is not used,
the quality does not differ a lot under different sizes.

1K
5K
10K

(a) Dataset blobs

1K
5K
10K

(b) Dataset strip

Fig. 7: ARI Performance vs k on blobs and strip dataset with
different sizes.

C. Cluster Number and Parameter k Estimation
There is no ground truth in the real-word for unsupervised

learning. Thus, even if we can try different settings, we do not
know which one is the best. Some unsupervised cluster quality
measures, such as the silhouette coefficient [22], are introduced
to address the problem. However, those methods can only
be applied to model-based algorithms such as kmeans, and
it is challenging to estimate the qualities of arbitrary shaped
clusters.

Note that the quality of our kNN clustering approaches is
relatively high on a wide range of parameters. Such property
can be used to estimate cluster numbers and the best parameter
setting in the real-world [3]. Our approach also keeps such
benefits. Fig. 8 illustrates the histogram of cluster number been
identified with respect to the value of parameter k for k ∈
[0, 100]. Red and blue lines are the corresponding best and
worst ARI scores in each cluster number. As shown in Fig. 8,
for k ∈ [1, 100], the number of clusters concentrates to a few
values. Thus, the real cluster number can be estimated as the
most frequent cluster number, and the value of k that leads to
the most frequent cluster number can be considered as a good
setting.

VII. CONCLUSION
In this work, we present a novel kNN based clustering

algorithm. Although we are not DBSCAN-alike, we still keep
the ability of arbitrary shape clustering using the only param-
eter k. Similarities and preferences of points are measured as
probabilities based on heuristics from DPC and kNN distance.
Affinity Propagation algorithm is employed to maximize the
overall intra-cluster similarity. In consequence, our kNN based
clustering approach is also aware of the overall distribution
in the dataset. In cases where we need to cluster a series of
datasets with similar density but different shapes, our approach
is particularly useful since it can adapt to changes in shapes
automatically. Furthermore, with all those functional benefits,
our approach still provides a reliable clustering quality.

2 3 4 5 6
clusters

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

0
10
20
30
40
50
60
70
80

fre
qu

en
cy

(a) blobs

2 3 4 5
clusters

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

0

10

20

30

40

50

60

fre
qu

en
cy

(b) gaus

2 3 4
clusters

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

0
5
10
15
20
25
30
35
40
45

fre
qu

en
cy

(c) flame

2 3 5 8
clusters

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

0

5

10

15

20

fre
qu

en
cy

(d) seeds

Fig. 8: Histogram of cluster number identified by our ap-
proach, k ∈ [1, 100]. The best (red) and the worst (blue) ARI
score are illustrated for each case.

REFERENCES

[1] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters a density-based algorithm for discovering clus-
ters in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining,
ser. KDD’96. AAAI Press, 1996, pp. 226–231.

[2] Y. Lv, T. Ma, M. Tang, J. Cao, Y. Tian, A. Al-Dhelaan, and M. Al-
Rodhaan, “An efficient and scalable density-based clustering algorithm
for datasets with complex structures,” Neurocomputing, vol. 171, pp.
9–22, 2016.

[3] A. Bryant and K. Cios, “Rnn-dbscan: A density-based clustering algo-
rithm using reverse nearest neighbor density estimates,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 30, no. 6, pp. 1109–
1121, June 2018.

[4] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[5] M. Brito, E. Chavez, A. Quiroz, and J. Yukich, “Connectivity of the
mutual k-nearest-neighbor graph in clustering and outlier detection,”
Statistics & Probability Letters, vol. 35, no. 1, pp. 33–42, 1997.

[6] L. Ertoz, M. Steinbach, and V. Kumar, “A new shared nearest neighbor
clustering algorithm and its applications,” in Workshop on clustering
high dimensional data and its applications at 2nd SDM, 2002, pp. 105–
115.

[7] L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan, “A local-density based
spatial clustering algorithm with noise,” Information systems, vol. 32,
no. 7, pp. 978–986, 2007.

[8] S. Vadapalli, S. R. Valluri, and K. Karlapalem, “A simple yet effective
data clustering algorithm,” in Sixth International Conference on Data
Mining (ICDM’06). IEEE, 2006, pp. 1108–1112.

[9] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia conference on
knowledge discovery and data mining. Springer, 2013, pp. 160–172.

[10] C. Cassisi, A. Ferro, R. Giugno, G. Pigola, and A. Pulvirenti, “Enhancing
density-based clustering: Parameter reduction and outlier detection,”
Information Systems, vol. 38, no. 3, pp. 317–330, 2013.

[11] T. N. Tran, R. Wehrens, and L. M. Buydens, “Knn-kernel density-
based clustering for high-dimensional multivariate data,” Computational
Statistics & Data Analysis, vol. 51, no. 2, pp. 513–525, 2006.

[12] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug.
2000.

[13] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

[14] H. Yan, Y. Lu, H. Ma et al., “Density-based clustering using automatic
density peak detection.” in ICPRAM, 2018, pp. 95–102.

[15] M. H. Chehreghani, “Efficient computation of pairwise minimax dis-
tance measures,” in 2017 IEEE International Conference on Data Mining
(ICDM). IEEE, 2017, pp. 799–804.

[16] Bentley and Friedman, “Fast algorithms for constructing minimal span-
ning trees in coordinate spaces,” IEEE Transactions on Computers, vol.
C-27, no. 2, pp. 97–105, Feb 1978.

[17] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[18] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[19] T. O. Kvalseth, “Entropy and correlation: Some comments,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 17, no. 3, pp. 517–
519, 1987.

[20] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data.
ACM, 1999, pp. 49–60.

[21] Z. Guo, T. Huang, Z. Cai, and W. Zhu, “A new local density for density
peak clustering,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 2018, pp. 426–438.

[22] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

