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Abstract—The intensive consumption of resources by evolu-
tionary algorithms makes it very time-consuming to search for
network architectures. In this paper, We proposed a efficient
evolution method for neural architecture search. Our method
adopts the weight sharing strategy, in which a supernet is
built to subsume all architectures, to speed up architecture
evaluation. A universal choice strategy is designed to deal with
the inaccurate evaluation caused by the methods that speeding
up evaluation. Instead of searching for the best architecture,we
search for the set of excellent architectures and derive the
final architecture fromderive the target architecture according
to commonalities of these architectures. The proposed method
achieved better results(2.40% test error rate on CIFAR-10 with
3.66M parameters) compared to other the-state-of-art method
using less than 0.4 GPU days.

Index Terms—neural architecture search, efficient evolution,
weight sharing strategy, inaccurate evaluation

I. INTRODUCTION

Deep learning performs well on many tasks, of which the
deep network architecture plays an important role [1]-[6].
Especially in image classification tasks, novel and sophisti-
cated network architectures have been carefully designed by
researchers, such as ResNet [4], InceptionNet [7],DenseNet
[6], etc. Nevertheless, it is still very difficult to design a
better network architecture for existing tasks or to design a
suitable network architecture for new tasks. It is therefore not
surprising that in recent years, the deep learning community
has been working on automation design network architectures,
which is known as Neural Architecture Search(NAS) and has
achieved very good results [8]-[16].

Evolutionary Algorithm(EA) is one of the earliest methods
applied to NAS and is still widely used today [8], [11], [17]-
[21]. In the search procedure of EA, each sampled network
architecture needs to be trained from scratch and evaluated on
specific dataset so as to obtain the fitness. The computation
is very resource-intensive and severely limits both of the
search scale and evaluation fidelity of EA, which makes EA
very difficult to get excellent results. For example, in order
to obtain a state-of-the-art network architecture for CIFAR-
10 and ImageNet using EA required multiple GPUs and
thousands of GPU hours [20]. This kind of phenomenon does
not only exist in EA but also in other methods based on
reinforcement learning(RL) [9], [13], [22], gradient [23], [24],
etc.

When searching network architecture for complex tasks,
several method have been proposed to speed up evaluation
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procedure, such as searching on simpler proxy task [13], [22],
[23], training a surrogate to predict weights [25] or perfor-
mance [26] of each network architecture, forcing all possible
network architecture to sharing weights [23], [27]-[29], low-
fidelity evaluation [13], [22], [30], [31]. Though these methods
improve the efficiency of search, there is a certain gap between
the estimated performance and the true performance of the
network architecture. Such kind of drawback prevents NAS
from getting better results.

In order to make EA search mort efficient, we adopt single
path one-shot(SPON) training strategy [27], [29], in which a
supernet is defined to subsume all architectures(called paths),
to reduce the computation. In the standard SPON, each path
in the supernet is randomly sampled to be trained while rest
weights not in the path will not be updated, and finally the
best architecture is found out using a search algorithm on the
trained supernet. We propose three changes to the standard
SPON, first, path is no longer randomly sampled from whole
supernet but from the population which is controlled by EA
and second, architectures are evaluated during the training
of supernet, and third, we don’t search for the architecture
with highest performance in trained supernet. In this way,
time spent on evaluation of EA will be greatly reduced
since architectures don’t need to be trained from scratch for
evaluation. Tournament selection evolutionary algorithm is
used to evolve network architectures and more details will
be described in method section.

Yet despite its efficiency, it prevents search from getting
better results. There exists the gap between the accuracies of an
architecture using inherited weights of supernet and optimized
weights and it makes search a dilemma that the ranking
correlation between architectures under one-shot training and
the ones under stand-alone training is poor [28]. In addition to
one-shot training strategy, other speeding up evaluation strat-
egy referred above contribute to the gap. Searching network
architectures according to wrong performance is no longer
a good idea. Here we provide a new perspective on NAS.
Instead of finding best architecture, it’s worth trying to find
commonalities of good models. We call it universal choice
strategy(UCS), and it will be explained in detail later. Better
results are obtained with universal choice strategy compared
with searching for best architecture on the same supernet
which has been trained in standard one-shot way.

Our approach works well in popular NAS search space
[23]. Deterministic path one-shot training strategy allowed
EA to search efficiently with a single GTX 1080Ti GPU and
within 0.4 days, reducing the number of GPU-hours by more



than 6,000x compared to AmobaNet-A [20] which evolves
architecture too. In despite of efficiency, EENas products a
couple of competitive convolution cell and reduction cell on
CIFAR-10 dataset and achieves a test error of 2.40% with
3.60M parameters, compared to the same performance with
27.6M parameters of NASNet-A [22]. Then we transfer the
best model on CIFAR-10 to CIFAR-100 dataset and achieved
a competitive test error of 15.82% with 3.71M parameters,
compared to AmobaNet-B [20] with a test error of 15.8% and
34.9M parameters.
Our contributions can be summarized as follows:
*Efficiency: We use weight sharing strategy to speed up the
evaluation in EA. The architecture search can be completed
during the training phase of the supernet. The time spent on
searching on CIFAR-10 data set is less than 0.4 GPU days.
*Universal Choice Strategy A new idea is used to search
for the population of excellent architectures rather than the
best one and finally derive the target architecture according to
commonalities of these architectures. This can help us save
computation resource and obtain competitive results(2.40%
test error on CIFAR-10 with 3.66M parameters).
*Transferability We show that the architectures found by
EENas on CIFAR-10 is transferable to CIFAR-100.

II. RELATED WORK

We note that EENas is based on NAS method proposed in
[20], [23], [29]. These papers will be highlighted.

AmoebaNet [20] adopt tournament selection evolutionary
algorithm [33] to search for convolution cells in NAS search
space [23] with well designed mutation operator and achieves
remarkable results. However the fact that there are 450 GPUs
used for 7 days makes the demand for huge computation
resources unacceptable. Darts [23] proposed a novel algorithm
for differentiable network architecture search. A supernet
that subsumes all architecture is built and network weights,
togather with architecture parameters, are optimized. Archi-
tecture parameters determine the update degree of relative
operation’s weights. In other words, architecture parameters
act as a controller to slow down the updating of parameters for
bad operations. Such method has two kinds of drawbacks.First,
the fact that all network weights of supernet need to be trained
at the same time make it very resource intensive. Second,
joint optimization further make architecture parameters and
newwork weights coupled which misleads the architecture
parameters distrubution since there are bias, caused by the
greedy nature of the gradient based metho, in both parameters
and weights. The first problem is solved by works [24], [34]
via only sampling one or two architectures in supernet to
be trained every time. The second problem remains. SPON
[29] attempts to reduce the weight coupling in the supernet
and then search on the trained supernet via EA. Evaluation
of architectures isn’t correct since there is gap between the
accuracies of architectures under one-shot training and the
ones under stand-alone training [28]. The inaccurate evaluation
phenomenon not only exists in one-shot but also in other
efficient evaluation methods [13], [22], [23], [26]-[31] as
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mentioned in the previous section. Wrong accuracy means that
the optimal architecture obtained by searching may not have
the highest accuracy and efficient search methods have to face
such problem so as to get better results.

Evolutionary algorithms have been used to optimize the
network parameters and hyperparameters of neural networks
[18], [21], [35], and now lots of works focusing on NAS
has emerged [11], [12], [14], [19], [20], [36], [37]. Multi-
objective optimization has become popular in NAS and EA
has shown superior performance [14], [19], [37].Among them,
CARS [14] is very similar to this paper. The most important
difference is that it uses the wrong accuracy evaluated by one-
shot training to search for the optimal architecture.

III. METHODS

In our approach, a supernet is built to subsume all archi-
tectures sharing weights so as to accelerate the search. Apart
from this, the universal choice strategy is design to deal with
the accuracy gap caused by inaccurate evaluation.

A. Search Space

All experiments adopt the NASNet search space [23], in
which normal cell and reduction cell will be searched and
then stacked repeatedly for NV times(Fig.1, left) to construct a
convolutional network. The difference between the two cells
is that the normal cell does not downsample the input feature
map, while the reduction cell does. This distinction is made
by stride. As shown in Fig.1(middle), each cell contains K
nodes which are respresented by a number, called NODEID.
The first two nodes, respresented by minimum numbers 0
and 1, act as input nodes and receive the output from the
previous two cells respectively, and the last node, respresented
by maximum numbers K -1, acts as a output node and concate-
nates outputs of all hidden nodes. Every hidden node contains
two elements, and every element consists of a node’s number
which determines which node’s output is used as the hidden
node’s input and is called INNODE, and the tranform opration
type(OP). The following OPs are used: 3x3 max pooling, 3x3
average pooling, skip connection(either identity or reduction
connection), 3x3 and 5x5 separable convolution, 3x3 and 5x5
dilated separable convolution. Each separable convolution is
always applied twice and each convolutional operation follows
the ReLU-Conv-BN order [13], [23]. A valid cell is a directed
acyclic graph [23] so that INNODE of one hidden node must
smaller than its NODEID. We expanded the search space by
allowing both inputs of a hidden node to come from the
same one. NAS is equivalent to the discrete combinatorial
optimization problem and we need to find the best four choices
for every hidden node.

B. Genome Encoding and Mutation Operator

A network architecture can be represented by both normal
cell and reduction cell, and the two cells are directly encoded
into a single genome in the same scheme as indicated in
Fig.1. In the genome, there are two kinds of gene: OP and
INNODE. When generating offspring, a mutation operator [20]
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Fig. 1. [Illustration of search space, genome encoding and mutation oper-
ator.The left figure shows the outer structure of network in search space.
The genome (right) defines the cell architecture(middle). In the genome, blue
squares represent INNODE gene and yellow squares represent OP gene. Red
arrows indicate random changes in architecture

is adopt and further changed to transform parent architecture in
a random way. In each cell genome, we randomly choose one
OP gene and one INNODE gene and turn them into another
allele according to the description of valid architecture in the
previous subsection. The mutation operator is shown by the
red dotted arrows in Figl.

C. Evolutionary Algorithm and Universal Choice Strategy

The framework of EENas is summarized in Algorithm 1.
Given a supernet S, it first randomly generate a population
P of p different genomes and then update the ppopulation
by binary tournament algorithm [38] for C' generations. In
each generation, two genomes are randomly selected from
population and corresponding architectures are trained in strict
fairness way [27], in which both architectures are trained
alternately for T iterations, and then two architectures are
evaluated on randomly sampled B batchs of validation data.
This training and evaluation process is more fair compared to
the way in [32]. After evaluation, the poor genome will be
overwrited by the winning one and then mutates according to
the mutation operator decribed above. Obviously, through the
time spent on comparisons in tournaments has been greatly
reduced, the accuracies of architectures evaluated in above
way are inaccurate compared to ones trained from scratch,
and the best individual is not known. It is not an efficient and
wise approach to determine the best individual by training and
evaluating all architectures in the population at last generation
from scratch on the whole data set. In order to deal with
inaccuracy and derive the final genome, we no longer search
for a genome with the highest accuracy but designed the
universal choice strategy(UCS) to abtain a universal genome
jointly determined by a excellent genomes set.

Fig.2 shows an example to describe UCS. At the beginning,
all the genomes in the initial population constitute a excellent
genomes set W. At the end of tournament in every generation,
UCS adds the winning genome to W or removes the poor
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Fig. 2. Illustration of the universal choice strategy.

genome from W if necessary. A universal genome G can
be derived from W. All genes at the same location in all
genomes among W make up a gene pool, in which the gene
with the most appearing times is selected as the final gene
at that location.In this way, a universal genome consists of
those final genes can be derived from . At the same time,
in the last axC generations, the information entropy E of
the genome is calculated and it is equal to the sum of all
the information entropies of the gene pool at each location.
In other words, UCS records both the information entropy E
and the universal genome G in the last axC' generations. And
finally, the universal genome GG with the minimum information
entropy E is selsected as the final genome.

1) The reason for not choosing the universal genome G at
the last generation but determining it based on the information
entropy is that the information entropy reflects the diversity of
the population to a certain extent. The lower the diversity, the
more concentrated the gene distribution is at each location.
Population based knowledge, reflecting the universal gene
choices of genomes in the set W, helps to derive the final
genome or two cell architectures. 2) And the reason for setting
a threshold(«v) is that it can ensure that the final genome with
minimum information entropy appears in the later stages of
evolution, and in this stage, W contains a lot of excellent
genomes, even through they may not be the top ones in search
space.

D. Efficiention Analysis

We discuss the efficiention of EENas. In a tournament, there
are two sub-architectures trained alternately for for 7" iterations
and then evaluated on B batchs of validation data. Assuming
the average training and inference time for a architecture on
one batch of data is T}, and Tj, ¢, respectively. Total time for
a tournament is Ty,,, = 2X(T'xT}, + BxT;, ). Compared to
tournament time, time spent on calculating the information
entropy and deriving the universal genom can be ignored.
What’s more, when BT, T, ;<<1},. Since there are C
generations, the total time T},+,; for deriving the final genome
iS Tiotar = 2XCXT XTy,.



Algorithm 1 Efficent Evolution for Neural Architecture
Search(EENas)
Input: S(supernet), C(generation num), 7'(training iteration
num), trainSet, valSet, B(batch num for evaluation).
1: Initionalize population P and excellent genomes set W;
2: for generation = 1 to C' do
3:  Sample two architectures from P;
4:  Train two architectures in strict fairness way for T
iterations on trainSet;
5.  Evaluate two architectures on the same B batchs of
valSet data;
6: Add the winning genome to W or remove the poor
genome from W,
7:  Overwrite the loser genome with winner genome and
then mutate it;

8:  if generation > (1-a)xC then

9: Record both the universal genome G and the infor-
mation entropy E of W;

10:  end if

11: end for

Output: The universal genome G with the minimum infor-
mation entropy F.

IV. EXPERIMENTS

In this section, we test our method on CIFAR-10 image
classification task and evaluate the transferability of the dis-
covered architecture on CIFAR-100 dataset. Lastly, we try to
verify whether our method is able to deal with the accuracy
gap caused by approachs which speed up evaluation procedure.
All experiments were performed using NVIDIA GTX 1080Ti
GPUs.

A. Results on CIFAR-10 Classification

1) Dataset: We test our method on CIFAR-10 [39] image
classification task.There are 50,000 training images and 10,000
testing images in the dataset. The size of images is 32x32
and the number of classes of the dataset is 10. We use 45,000
training images to form the training set, and use the remaining
training images to form the validation set. The original testing
images are used to form the test set.

2) Seaching and evaluation Details: In searching stage, we
build a small supernet with 16 initial channels and set the cell
repeatly stack time N to two and the number K of nodes in
the cell is set to 7 as done in Darts [23]. The generation C' is
set to 800 and the threshold « is set to 1/5. In the tournament,
the iteration num 7' for training a architecture is set to 50,
and the batch num B for evaluating is set to 4. The batch size
is set to 128 both for training and validation sets. We adopt
Label Smoothing method [40] to avoid overfitting since small
architectures usually abtain better accuracyies than large ones
in early training stage and use SGD to optimize the weights
of the supernet, with weight deacy 3%x10~%, momentum 0.9,
initial learning rate 0.025 reduced to zero following cosine
annealing schedule.
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Fig. 3. Generational information entropy and accuracies of the excellent
genome set.

To evalute the final genome, we decode the final genome
into cells and expand the stacked architecture by setting N
and the number of initial channels to 6 and 36, respectively.
The abtained architecture will be trained for 600 epochs from
scratch using all training images and test performance on the
test set, with batch size of 96. Label Smoothing method is
not used again. Other hyperparameters follow the ones used
in search stage. For fair comparison with other methods [16],
[20], [23], we adopt the enhancements including scheduled
path dropout [22], auxiliary towers [5] and cutout [41].

3) Results Analysis: We first represent the generational
information entropy and accuracies of the excellent genome
set W as indicated in Fig.3. As W is continuously updated in
each generation, the information entripy of W drops sharply
in the early stages of evolution and has been fluctuating since
then. It is not wise to choose the universal genome of W
with the smallest information entropy in the entire evolution
process, because this may occur early in the evolution. We
evaluate the universal genome of W and all genomes in W to
abtain the average accuracy of W by evaluating corresponding
architectures with weights inherited from supernet on whole
validation set. It’s obvious that the performance of the uni-
versal genome is slightly better than average performance of
W.

The final genome is selected according to the universal
choice strategy and decoded into both normal cell and re-
duction cell architecture as shown in Fig.4. We note that the
displayed cells are the best of the ten independent search
results and the standard variance of results is 0.15.

We compare the searched cells of our method with other
state-of-the-art methods which adopt similar search space in
Table I. Notely, EENas achieves the better results with model
size around 3.7M, compared to those methods with the state
of art. Despite competitive results, EENas reduces the number
of GPU-hours by more than 6,000x compared to AmobaNet-
A [20] which evolves architecture too. According to efficien-
tion analysis and hyperparameters above, the searching time
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Fig. 4. The searched convolutional cells.

approximately equals to the average time of training a sub-
architecture in supernet for about 205 epochs. Our experiments
are performed on a single NVIDIA GTX 1080Ti GPU and the
searching time is less than 0.4 GPU days.

B. Transferring the discovered architecture to CIFAR-100

We evaluate the transferability of the discovered architecture
on CIFAR-100 dataset. Training setup remains the same as
those on CIFAR-10 dataset. Results are summaried in Table
II.The network architecture stacked by the searched cells
abtain better results compared to other state-of-the-art NAS
methods with only 3.7M parameters. It suggests that the
searched cells are transferable to CIFAR-100.

C. Facing Inaccurate Evaluation

1) Comparison: As discussed in the previous sections,
there exists the gap between the accuracies of an architecture
using inherited weights of supernet and optimized weights.
Apart from weights sharing strategy, other strategies that speed
up evaluation can cause such gap. The gap makes evaluation
inaccurate. Searching for the best architectures based on inac-
curate performance may miss the real one. UCS is designed
to deal with inaccurate evaluation. And here we try to verify
the validity of UCS.

For the same search space and supernet S as discribed
above, we train S following single path one-shot(SPON)
training strategy. Then we search for one architecture with
highest accuracy following the SPON-EA algorithm [29] and
one architecture corresponding to the universal genome fol-
lowing EENas algorithm from the trained supernet S. The
evaluation results of two architectures is shown in Table III.
The model with small size is abtained by SPON-EA, since
small architectures’s weights updates faster to a appropriate
state during training of supernet than larger ones and generally
get better evaluation results [28]. However, our method does

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

not rely on evaluation values and abtain better architecture
based on knowledge of population.

2) Why Does Universal Choice Strategy work?:
UCS(universal choice strategy) updates a winning genomes
set W. At the last stage of evolution, W contains excellent
genomes. Each excellent genome owns the knowlodeg for
the partial data set that it has experienced. So W owns the
knowlodeg for the entire data set and can help to derive a
universal genome adapting to the entire data set.

V. CONCLUSION

We have proposed EENas, an efficient evolutionary algo-
rithm for searching neural network architectures. EENas builds
a supernet that subsume all architectures and adopts weight
sharing strategy to speed up architectures evaluation. The
architecture search can be completed during the training phase
of the supernet. Apart from this, we design a universal choice
strategy to deal with the incourate evaluation caused by those
fast evaluation methods. The universal choice strategy helps
to derive a universal architecture based on the knowlodge of
a excellent genome set for the entire data set. Experiments on
CIFAR-10 and CIFAR-100 show that EENas is able to find
the architecture with the state of art in less than 0.4 GPU days
on GTX 1080Ti and the transfer ability.
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