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Abstract—This paper proposes CQ-VQA, a novel two-level
hierarchical but end-to-end model to solve the task of visual
question answering (VQA). The first level of CQ-VQA, referred
to as Question Categorizer (QC), classifies questions to reduce
the potential answer search space. The QC uses attended and
fused features of the input question and image. The second
level, referred to as Answer Predictor (AP), comprises of a set
of distinct classifiers corresponding to each question category.
Depending on the question category predicted by QC, only one of
the classifiers of AP remains active. The loss functions of QC and
AP are aggregated together to make it an end-to-end model. The
proposed model (CQ-VQA) is evaluated on the TDIUC dataset
and is benchmarked against state-of-the-art approaches. Results
indicate a competitive or better performance of CQ-VQA.

Index Terms—VQA, CQ-VQA, Attention Network

I. INTRODUCTION

The objective of a Visual Question Answering (VQA)
system [1], [2] is to generate a natural language answer to a
natural language question asked about a given image. VQA has
gained wide attention for several reasons. First, it has got many
real-life applications, e.g., scene interpretation for assistance
to visually impaired persons, interactive robotic systems, etc.
Second, it is a challenging AI problem as it requires a
simultaneous understanding of two modalities – image and
text, and reasoning over the relations among the modalities.
This wide attention has naturally led to the development of a
plethora of methods.

The early approaches of VQA primarily focused on feature
fusion of two modalities, where image- and text-based features
are fused using simple techniques like addition, concatenation,
or element-wise products [1], [3]. Later, improved feature
fusion mechanisms such as bilinear pooling [4] and its variants
MCB [4], MFB [5], MLB [6] and MUTAN [7] were proposed.

Another class of methods focus on identifying ‘relevant’
image regions for answering the given question. Attention-
based methods [8]–[12] fall into this category. These meth-
ods aim to assign higher weights (attention scores) to the
image regions pertinent to answer the given question while
providing relatively negligible attention to other regions. It is
noteworthy to mention that such methods do fuse features of
the different modalities. However, performance improvement
significantly depends on the extent of the information obtained
by exploiting attention in different modalities. For example,
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Fig. 1: An overview of the proposed framework of CQ-VQA.
Features extracted from input question about an image are
fused with image features obtained through an attention mech-
anism. The hierarchical structure of CQ-VQA first categorizes
the input question (level 1 classifier) and accordingly selects
an answer predictor for identifying the output answer.

studies in [11], [13] have shown that along with question
guided attention on image, attention from image to questions
allow better information flow and interaction between the two
modalities, resulting in improved performance.

This paper proposes a hierarchical model, referred to as
CQ-VQA. CQ-VQA hierarchically solves the VQA task by
breaking it into two sub-problems. Figure 1 illustrates the mo-
tivation and working principle of the CQ-VQA. As illustrated,
a question “What is the color of fire-hydrant in picture?” is
asked about the given image. As a human, we immediately
understand that the question is about the color of an object,
and the answer must be one of the colors. CQ-VQA mimics
this intuition in a two-level hierarchical classification model.
At the first level, a single classifier identifies the question
category based on the fused features of the given question
and image. Based on the selected question category by the
first level classifier, the CQ-VQA model sends fused features
to the corresponding classifiers of the second level. The second
level contains a set of distinct classifiers, one for each question
category and output of each classifier is a set of answers
belongs to that category. In contrast to the existing VQA
models, where they need to explore the entire search space of
answers, CQ-VQA focuses on smaller answer search spaces
in the final classification stage.

The performance of CQ-VQA is evaluated on the TDIUC
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dataset [14] containing 12 explicitly defined question cate-
gories. The other commonly used VQA datasets do not have
question categories explicitly available. Compared to state-of-
the-art models, the experimental results on this dataset have
shown the competitive or better performance of CQ-VQA. The
primary contributions of this work are as follows:
• A novel hierarchical model for decomposing the VQA

task into two sub-problems – question categorization and
answer prediction.

• End-to-end model training model by combining the two
loss functions of the two sub-problems.

• Comprehensive overall and question category-wise per-
formance analysis and comparison with state-of-art VQA
models.

The rest of the paper is organized as follows. A brief review
of VQA literature is presented in Section II. Section III dis-
cusses the necessary details of the proposed approach. The ex-
perimental results are presented and discussed in Sections IV
and V respectively. Finally, we conclude in Section VI and
sketch the extensions of the present proposal.

II. RELATED WORK

Existing works in VQA can be broadly divided into three
categories. These are (a) feature fusion-based approaches,
(b) attention-based methods, (c) reasoning based techniques.
This proposal uses attention models for visual and question
feature fusion. Accordingly, the existing works in the first two
categories are briefly reviewed next.

A. VQA: Feature Fusion

These approaches project both visual and question em-
beddings to a common space to predict the answer. The
embeddings of the visual modality are obtained using pre-
trained CNNs. These networks are learned from large image
data sets dealing with different classification problems [15]–
[17]. The questions are represented in two ways. The first
class of approaches have used Bag-of-Words (BoW) rep-
resentations for questions [1], [3], [18]. The second group
of methods represent questions as sequences of pre-trained
word embeddings [19], [20]. These embedding sequences
are further input to Recurrent Neural Networks (RNNs) for
obtaining question embeddings [19], [20]. The third group of
approaches represent questions using pre-trained CNN features
[21], [22]. However, most existing works use the second
method involving pre-trained word embedding sequence and
RNN.

The Neural-Image-QA [23] system uses VGG-Net image
features [24] and one-hot-encoded word representations are
given as input to Long short term memory (LSTM) network
for generating question features. Authors in [1], [2] have
fused extracted image features (VGG-Net) and LSTM encoded
question vector by element-wise multiplication. The 4096-
dimensional image features in [25] are transformed into a
vector (of same size as word embedding dimension). The
modified and combined embeddings are given as input to
LSTM for generating an answer. In [4], authors have proposed

the fusion of multi-modal features through the outer product
(Bilinear pooling) as it provides multiplicative interaction (rich
representation) between all elements of modalities. Bilinear
pooling based fusion achieves superior performance, but seems
to be a less efficient solution as a large number of parameters
are needed for the projection of outer product to obtain a
joint representation of both modalities. However, later works in
[6], [26] have proposed Multimodal Compact Bilinear Pooling
(MCB) and Multimodal Low-rank Bilinear (MLB) pooling,
respectively for efficient use of bilinear pooling.

B. Attended Feature Fusion

Attention-based models [8]–[12] focus on the image re-
gion(s) that is (are) most relevant to the task (question). In
VQA, attention models aim to interpret “where to look” in the
image for answering the question. Existing works have used
attention in different ways. The attention can be on image [9],
on question [12], or on both (Co-attention) [11]. For example,
[8] proposed a model that predicts the answer by selecting an
image region which is most relevant to question text.

A multi-step attention based method is proposed in [9]
that allows reasoning over fine-grained information asked in
a question. Question embeddings used to generate attention
distribution over image regions. The attention score obtained
from the weighted sum of image region embeddings is used
as a visual feature for the next step. The attention mechanism
is used with outer product based fusion of image and question
embeddings [26]. Multimodal Factorized Bilinear (MFB) [5]
pooling has been introduced to efficiently and effectively
combine multi-modal features on top of low-rank bilinear
pooling technique [6]. The usage of a stack of dense co-
attention layers is proposed in [13]. Here, each word of a
question interacts with each region proposal in an image
and vice-versa. A combination of top-down and bottom-up
attention models is proposed in [27]. The bottom-up model
detects salient regions extracted using Faster-RCNN [28],
while the top-down mechanism uses task-specific context to
predict attention score of the salient image regions.

A Question-Conditioned Graph (QCG) is processed for
VQA in [29]. Here, the objects proposed from faster-RCNN
act as nodes and edges define the interaction between regions
conditioned on the question. For each node, a set of nodes is
chosen from the neighborhood using the strongest connection
criterion. This leads to a question specific graph structure. Bi-
linear Attention Network (BAN) [30] fuses both the modalities
by the interaction of each region proposal with each word of
the question and uses residual connections to provide multiple
attention glimpses. In Relation Network (RN) [31], every pair
of object proposal embeddings are aggregated (summed up)
and it is found that the resulting vector encodes the relationship
between different regions, thereby enabling compositional
reasoning. In Question Type guided Attention (QTA) [32], the
semantics of question category are used with both bottom-
up, top-down and residual features. A recurrent deep neural
network with an attention mechanism is proposed in [33],
where each network is capable of predicting the answer.
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Dynamic Fusion With intra-and inter-modality Attention Flow
(DFAF) [34] is a stacked network that uses inter-modality
and intra-modality information for fusing features. Here, the
use of average pooled features can dynamically change intra-
modality information flow. The Multimodal Latent Interaction
(MLIN) is proposed in [35] that realizes multi-modal rea-
soning through the process of summarization, interaction and
aggregation. A generalized algorithm RAMEN is proposed in
[36] to deal with VQA datasets containing either only synthetic
or real-world images.

This proposal uses attention score obtained from top-down
attention mechanism for fusing image and question embed-
dings. The answer space is decomposed into smaller sub-
spaces based on specific question categories. A two-stage
hierarchical process is followed to predict answers (stage-2)
based on predicted question category (stage-1). Our proposal
is discussed next.

III. PROPOSED APPROACH

A visual question answering (VQA) system SV QA aims
to estimate probabilities of answers a (a ∈ A) to an input
(natural language) question q (q ∈ Q) about an image I
(I ∈ I). Such a system is trained on the set of all images I, set
of questions Q associated with images and set of all answers
A. This is generally achieved by using representative vector
space embeddings of questions (f(q)) and images (g(I))
computed using deep neural networks. The most probable
answer â is predicted by SV QA as

â = argmax
a∈A

P ( a | SV QA( f(q) , g(I) ) ) (1)

This proposal approaches VQA using a hierarchical archi-
tecture (Figure 2) involving different answer prediction sub-
systems corresponding to distinct question categories. This
requires suitable deep networks for computing question and
image features (vector space embeddings). These features of
different modalities are fused using attention information. The
process of feature extraction (Subsections III-A and III-B) and
attention score guided feature fusion (Subsection III-C) are
described next.

A. Visual Feature Extraction

The Visual Features of images are extracted as embeddings
by using a pre-trained deep network. Existing works [27],
[30], [36] in VQA have mostly used Faster-RCNN [28] for
visual feature extraction. This model employs ResNet-101
[16] as its base network and uses top-k region proposals
(Ri; i = 1, . . . k) for visual feature extraction. Let vi

(vi ∈ Rdv ) be the ResNet-101 feature extracted from Ri.
The image I is represented by the set of visual features
G(I) = {vi; i = 1, . . . k}. Experimental results have shown
that a higher value of k leads to a better representation at the
expense of significantly higher computations. This proposal
also uses the Faster-RCNN model with k = 36 [27], [36].
This is followed by question feature extraction and is described
next.

B. Question Feature Extraction

The Question Features are computed by using word embed-
dings obtained from pre-trained deep netwroks. All questions
are padded or truncated to obtain word sequences of a fixed
length (nw, say). The pre-trained GloVe embedding [20] is
used to convert a question q to an ordered sequence of word
embeddings Ew(q) = {ewj : ewj ∈ Rdw ; j = 1, . . . nw}.
This obtained sequence of word embeddings are fed to a
LSTM network QLSTM to generate the question embedding
f(q). The jth hidden state embedding of QLSTM is obtained
for each input word embedding ewj . The question embedding
is obtained as the output of the final hidden state of QLSTM

as f(q) = QLSTM(q) (f(q) ∈ Rdq ). The architecture of
QLSTM is adopted from the LSTM network used in [37].

The features extracted from visual (image) and text (ques-
tion) modalities are fused using scores obtained from a top-
down attention model. This attention mechanism is described
next.

C. Attention Mechanism

Attention plays a key role in fusing visual and question
features. Attention guided fusion of visual and textual features
is well explored in several existing works (Sub-section II-B).
Only a few among top-k region proposals (identified during
visual extraction) are relevant with respect to an input question
q. An attention network provides different scores to these
region proposals using f(q) and G(I). Attention score guided
feature fusion is performed to obtain the embedding ha(q, I).
This process is described next.

The visual and question features are of different dimensions.
Two fully connected networks VQfcn (VQfcn : Rdv → Rdf )
and QQfcn (QQfcn : Rdq → Rdf ) are used to map both
visual and question features to vectors of size df . Both VQfcn

and QQfcn are fully connected networks where the input and
output layers are directly connected without any intermediate
hidden layer. These two networks are used to map both visual
and question embeddings to Rdf as:

ṽi = VQfcn(vi) (2)
f̃q = QQfcn(f(q)) (3)

These networks (VQfcn and QQfcn) provide us with
G̃(I) = {ṽi; i = 1, . . . k} and f̃q respectively. Let ui = ṽi⊗f̃q
be the element-wise product of ṽi and f̃q. The vector ui

(ui ∈ Rdf ) is input to the attention network NNatt to
obtain the attention score si corresponding to region proposal
Ri (i = 1, . . . k). The attention network NNatt is a fully
connected network (NNatt : Rdf → (0, 1)) that directly
connects the input to a single-valued output without any
intermediate hidden layer. Finally, the attention score weighted
feature fusion is performed to obtain ha(q, I) as:

ha(q, I) = f̃q ⊗

(
k∑

i=1

siṽi

)
(4)

where ha(q, I) ∈ Rdf . The process of attention score guided
feature fusion is illustrated in Figure 3. The value of ha(q, I)
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Fig. 3: The functional block diagram of top-down attention
network score guided fusion of visual and question features.

depends on the parameters of QLSTM, NNatt, VQfcn and
QQfcn. The parameters of aforementioned networks are tuned
by minimizing the net loss (equation 9) defined for the pro-
posed hierarchical model CQ-VQA. The upcoming subsection
presents the CQ-VQA model and the associated loss functions.

D. CQ-VQA: Learning the Model

This work proposes a hierarchical model for visual question
answering. This hierarchical model has two levels. The first
level, takes the attention guided fused feature ha(q, I) to
classify into one of nc question categories. Note that nc

depends on the dataset under consideration. For example
TDIUC (Section IV-A) has nc = 12 question categories. The
first level uses a single hidden layer feedforward network
NNCQ (NNCQ : Rdq → (0, 1)nc ) to perform the task of
question category classification.

Let tq be the one-hot-encoded target vector representing
the ground truth question category qc. Let pq be the output
of NNCQ. The question classification loss is defined as:

LQ(q, I,qc) = −
nc∑
r=1

tq[r] log(pq[r]) (5)

The second level of the hierarchy in CQ-VQA predicts the
answers based on input question and image. Generally, the
answer search space is large. This proposal decomposes the
answer set A into nc subsets Ar according to the question
categories. Thus, Ar ⊂ A (r = 1, . . . nc) and ∪nc

r=1Ar = A.
The question classification network NNCQ acts as a switch
for selecting one of nc answer prediction sub-systems. Each
answer prediction sub-system is a VQA system capable of pre-
dicting one from a subset of A based on the question category.
We believe that this answer search space decomposition makes
the task of VQA easier by reducing the number of outputs for
each answer predictor. For example, questions of the form “Is
there a bird in the image?” are of the binary answer (yes/no)
category and the corresponding answer prediction sub-system
has only two outputs. Similarly, questions asking for “What
color is the bird?” has only a small number of answers (colors)
to choose from a small subset of A.
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Let n(r)a be the number of possible answers for the rth ques-
tion category. The target answer a is one-hot-encoded through
the n(r)a dimensional vector t

(r)
a . The attention guided fused

feature ha(q, I) is input to the rth answer prediction sub-
system NN

(r)
AP for predicting the answer probability vector

pa
(r), (pa

(r) ∈ (0, 1)n
(r)
a ). The answer prediction networks

are fully connected networks with single hidden layer. The
loss L(r)

A for training NN
(r)
AP is defined as:

L(r)
A (q, I,a) = −

n(r)
a∑

j=1

ta
(r)[j] log(pa

(r)[j]) (6)

The net loss at the second level is defined as

LAA(q, I,a) =

nc∑
r=1

δ[r − ρ]L(r)
A (q, I,a) (7)

ρ = argmax
l=1,...nc

pq[l] (8)

where δ[i−j] is the Kronecker delta function. The overall loss
of CQ-VQA for input question q, its category qc, associated
image I and ground-truth answer a is given by:

LCQVQA(q,qc, I,a) = LQ(q, I,qc) + LAA(q, I,a) (9)

This proposal minimizes the loss LCQVQA(q,qc, I,a) for
all question-image-answer combinations (q, I,a) ∈ Q×I×A.
The gradients computed by using this net loss (equation 9) are
back-propagated for end-to-end training of QLSTM, VQfcn,
QQfcn, NNatt, NNCQ and NN

(r)
AP (r = 1, . . . nc).

IV. EXPERIMENTS

This section briefly discusses the dataset, evaluation metrics,
and implementation details.

A. Dataset: TDIUC

We select Task-Directed Image Understanding Challenge
(TDIUC) dataset [14] in our experiments. The TDIUC dataset
provides categories of questions associated with images ex-
plicitly and is ideal for evaluation of the CQ-VQA. The other
VQA datasets do not explicitly provide such information, so
this paper does not consider them for evaluation.

TDIUC [14] is the largest available VQA dataset of real
images. TDIUC consists of 16, 54, 167 open-ended questions
of 12 categories associated with 1, 67, 437 images. The ques-
tions in TDIUC are acquired from the following three sources:
questions imported from existing datasets, questions generated
from image annotations, and the questions generated through
manual annotations. Figure 4 shows the category-wise sample
distribution of questions. The largest number of questions
(approximately 0.65 million) are in the ‘Object Presence’
(with Yes/No answers) category. On the other hand, the least
number of questions (only 521) lies in the ‘Utility Affordance’
category. The ‘Absurd’ is an exceptional category consisting
of questions having no semantic relation with an associated
image input. Such questions have a single answer, and that
is ‘Does-Not-Apply’ [14]. Researchers have observed the

Fig. 4: Distribution of 12 Categories of TDIUC Questions [14].

phenomenon of VQA model bias towards language priors. The
introduction of the ‘Absurd’ forces the model to learn proper
relations between the question(s) and the visual contents of
the image(s).

B. Evaluation Metrics

This proposal employs three commonly used evaluation
metrics for the VQA task. These are Overall accuracy,
Arithmetic-Mean Per Type (MPT) and Harmonic-Mean Per
Type (MPT). The Overall accuracy is the ratio of the number
of correctly answered questions to the total number of ques-
tions. VQA datasets are highly imbalanced as a few question
categories are more frequent than others. Overall accuracy
is not a good evaluation metric for such cases. The other
two metrics Arithmetic-Mean Per Type (MPT) and Harmonic-
Mean Per Type (MPT) [14] are generally used to achieve
unbiased evaluation. Arithmetic-MPT computes the arithmetic
mean of the individual accuracies of each question category.
This evaluation metric assigns uniform weight to each question
category. Harmonic-MPT reports the harmonic mean of indi-
vidual question category accuracies. Unlike Arithmetic-MPT,
the Harmonic-MPT measures the ability of a model to have a
high score across all question categories.

C. Implementation Details

The top-36 (k = 36) region proposals of ResNet-101
are used to compute dv = 2048 dimensional visual feature
vectors. The length of each question is set to nw = 14 words.
Questions with more than 14 words are truncated and lesser
than that are padded with zero embedding vectors. The pre-
trained GloVe network is used to generate word embeddings
of size dw = 300. A sequence of these word embeddings
are input to a LSTM (QLSTM, Subsection III-B) for question
embedding generation. The sizes of hidden and output layer of
QLSTM are both set to 1024. Thus, the question embeddings
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TABLE I: Category-wise performance comparison with state-of-the-art methods on TDIUC dataset

Question Type NMN RAU MCB QTA CQ-VQA
[38] [33] [4] [32]

Scene Recognition 91.88 93.96 93.06 93.80 94.05
Sport Recognition 89.99 93.47 92.77 95.55 95.39
Color Attributes 54.91 66.86 68.54 60.16 73.35
Other Attributes 47.66 56.49 56.72 54.36 59.24
Activity Recognition 44.26 51.60 52.35 60.10 61.19
Positional Reasoning 27.92 35.26 35.40 34.71 40.40
Object Recognition 82.02 86.11 85.54 86.98 88.13
Absurd 87.51 96.08 84.82 100.0 100.0
Utility & Affordance 25.15 31.58 35.09 31.48 34.50
Object Presence 92.50 94.38 93.64 94.55 95.41
Counting 49.21 48.43 51.01 53.25 56.78
Sentiment Und. 58.04 60.09 66.25 64.38 66.56
Overall Accuracy 79.56 84.26 81.86 85.03 87.52
Arithmetic-MPT 62.59 67.81 67.90 69.11 72.08
Harmonic-MPT 51.87 59.00 60.47 60.08 64.45

TABLE II: Comparing Overall Accurary of CQ-VQA and
other state-of-art models. CQ-VQA outperforms all models
except MLIN. The higher accuracy of MLIN (marked with
?) can be attributed to its usage of top 100 region proposals
for visual feature extraction, while all other models (including
CQ-VQA) have used only top-36 regions.

Model Overall Accuracy
BTUP [27] 82.91
QCG [29] 82.05
BAN [30] 84.81
RN [31] 84.61
DFAF [34] 85.55
RAMEN [36] 86.86
MLIN? [35] 87.60
CQ-VQA 87.52

are of size dq = 1024. For attention module, both visual
features vi (i = 1, . . . k) and question features f(q)) are
projected to 1024 dimensional space. These df = 1024
dimensional vectors are further processed for attention score
weighted feature fusion (Subsection III-C).

The TDIUC dataset contains 12 question categories. Thus,
the question categorization network NNCQ predicts the vector
pq of size nc = 12. Accordingly, one network NNAP

(r)

(from nc = 12) is selected to predict the answer a using
df = 1024 dimensional fused feature ha(q, I). The complete
model is trained in an end-to-end manner for 17 epochs with
a batch size of 512. The Adamax optimizer [39] is used with
a decaying step learning rate. The initial learning rate is set
to 0.002. with a decay factor of 0.1 after 5 epochs.

V. RESULTS & DISCUSSION

This section discusses a comparative performance analysis
of CQ-VQA and other state-of-art methods (Subsection V-A).
We perform an ablation analysis to understand the effec-
tiveness of the proposed model (CQ-VQA). Subsection V-B
discusses the results of this analysis.

A. Comparison with State-of-Art Methods

The performances of different VQA methods are compared
under two settings. The first setting compares the overall
accuracy of all models. There are VQA approaches for which,
we do not have access to question category-wise results
(not available in the literature). Such models are primarily
compared in the first setting. Table II presents the accuracy
of different methods. Results shown in bold represents the
best performance among all models. The overall accuracy
obtained by MLIN [35] and proposed CQ-VQA is comparable.
However, it is noteworthy to mention that MLIN (marked with
?) has used top-100 regions to extract visual features, while
all other models (including CQ-VQA) have used only top-
36 regions. As discussed earlier (Subsection III-A), a higher
number of region proposals (k) leads to improved performance
at the cost of significantly higher computation.

Question category-wise VQA performance of models are
compared in the second setting. Here, only those VQA ap-
proaches are considered for which such results are available
in the literature. Table I shows the question category-wise
accuracy of all methods compared in the study. The last three
rows represent the comparisons of the three evaluation metrics
for all VQA models under consideration.

Table I shows that CQ-VQA is the best performer on all
three evaluation metrics. Further, at the category-wise perfor-
mance, CQ-VQA is the best performer for 10 out of 12 classes.
In the other two categories, sport recognition and utility and
affordance, CQ-VQA is the second-best performer. For some
question categories, significant performance improvement is
obtained by CQ-VQA. For example, CQ-VQA obtains an
improvement of 7% and 14% for ‘color’ and ‘Positional
Reasoning’ categories, respectively.

B. Ablation Studies

The proposed approach leverages on question categories to
solve the VQA problem. An ablation analysis is conducted to
show the efficacy of the hierarchical approach of CQ-VQA.
In this analysis, a baseline model is constructed by removing
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Question Categorization and Answer Predictor components of
CQ-VQA. However, the baseline uses the same set of attended
and fused features as CQ-VQA. Results shown in Table-III
shows a relative improvement of 1.45% by CQ-VQA in terms
of overall accuracy. CQ-VQA shows improved performance
on the other two evaluation metrics as well.

The effect of language bias prior is commonly observed in
VQA. This is analyzed next. In TDIUC dataset, the ‘Absurd’
category is introduced to test the effect of language prior
biases in model performance. Our experiment compares the
performance of CQ-VQA under two settings – with and
without the ‘Absurd’ category of questions. Table IV shows
a significant drop in performance, indicating that CQ-VQA is
also affected by language prior biases.

TABLE III: Ablation analysis: Effect of removing hierarchy
from CQ-VQA

Metrics Baseline CQ-VQA
Overall Accuracy 86.26 87.52
Arithmetic-MPT 70.71 72.08
Harmonic-MPT 63.37 64.45

TABLE IV: Ablation analysis: Performance of CQ-VQA on
the data (except Absurd category samples) trained using with
and without ‘Absurd’ Category samples

Without Absurd
Metrics MCB QTA CQ-VQA
Overall Accuracy 78.06 80.95 83.46
Arithmetic-MPT 66.07 66.88 68.69
Harmonic-MPT 55.43 58.82 61.44

VI. CONCLUSION & FUTURE WORK

This work presents a novel hierarchical end-to-end model
CQ-VQA for the VQA task. CQ-VQA leverages over question
categorization to reduce the potential answer search space.
Empirical results on the TDIUC dataset indicate that the
performance of CQ-VQA is competitive to state-of-art VQA
methods.

One of the limitations of the proposed approach is the
requirement of explicit question categories. We plan to
extend the CQ-VQA model for datasets where ground-truths
of question categories are not available. Furthermore, the
performance of the CQ-VQA model can be enhanced by
using better feature extractors, attention mechanisms, and
complex question/answer prediction networks.
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