
Monoceros: A New Approach for Training an
Agent to Play FPS Games

Ruiyang Yang, Hongyin Tang, Beihong Jin∗
State Key Laboratory of Computer Sciences, Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences, Beijing, China
Email: ∗beihong@iscas.ac.cn

Abstract—In the deep reinforcement learning, the sparse re-
ward problem directly impacts the quality of agent training.
Existing methods have not been satisfactory, especially for the
scenarios with high-dimensional state information. In this paper,
we propose a new approach Monoceros to training a game agent.
Monoceros can work for the scenarios with high-dimensional
state information and alleviate the sparse reward problem during
the agent training. Specifically, we present a composite reward
function which combines both the knowledge implied in expert
trajectories and manually-set reward functions. Moreover, we
design a specific policy network to adapt to the high-dimensional
information scenarios, and adopt the behavior clone as a pre-
training strategy to accelerate the training process. Technically,
Monoceros can be applied to train the agents to play First Person
Shooter (FPS) games. We conduct extensive experiments on
three scenarios in the VIZDoom platform. Experimental results
show that in all the scenarios, the agent trained by Monoceros
outperforms the agents trained by Arnold and GAIL, which are
representative methods in the deep reinforcement learning and
the imitation learning, respectively.

I. INTRODUCTION

Deep reinforcement learning is usually used to train an agent
so that the agent can achieve a given task in an optimal way.
Specifically, while facing the task, deep neural networks are
responsible for generating high-level representations for states
in the environment, and by a reinforcement learning process,
which can maximize the cumulative reward value obtained by
the interactions between the agent and the environment, the
agent can learn the best policy to complete the task. Because
deep reinforcement learning requires continuous interactions
with the environment and constant trials, it is not suitable to
apply deep reinforcement learning directly to real living envi-
ronments. Recently, computer games have become alternative
environments, and corresponding platforms are developed for
studying deep reinforcement learning methods. For example,
for Doom, a first-person shooter game, the VIZDoom platform
has been developed, where a variety of incomplete information
in 3D scenarios is provided, to allow researchers to train and
test agents.

However, although with the help of computer games, a
lot of low-cost data can be obtained for training the agents
by deep reinforcement learning approaches, the problem of
“sparse reward” still emerges during the training, that is,
only a small amount of actions can make the agent get
rewards or punishments. This problem will negatively affect
the effectiveness of the trained agent.

Currently, there are four ways to solve the “sparse reward”
problem, that is, the reward shaping, the curriculum training,
the hierarchical reinforcement learning and the inverse rein-
forcement learning. However, all these methods have short-
comings. Firstly, the reward shaping refers to modifying the
reward settings in the game scenarios to achieve the goal
of setting a reward for every action. Considering different
complexities of different scenarios, setting proper reward
functions is very difficult. If rewards were set unreasonably,
then it would be difficult to drive the agent to learn along
the direction of the better policy. Secondly, as the name
implies, the curriculum training refers to training the agent
in simple scenarios in the beginning, when the agent to be
trained reaches a certain level, it will be put into complex
scenarios to go on training. For the curriculum training, its
most important thing is to get the well-designed curriculum.
Therefore, similar to the reward shaping, it also suffers the
disadvantage of unsatisfactory generalization. Thirdly, in the
hierarchical reinforcement learning, tasks are generally divided
into two levels. On the top level, the whole task is divided
into parts, then each part is implemented on the bottom level.
Currently, the hierarchical decomposition stays in the fashion
of manual design, automated hierarchical decomposition and
combination with domain prior knowledge are still under
preliminary research. Fourthly, as for the inverse reinforcement
learning, its core idea is to learn the reward functions from
the expert trajectories with the expectation that the best policy
generated by training the agent through reward functions is
distributed near the expert policy. But for scenarios with high-
dimensional state information, since they usually have com-
plex structures, it is difficult to obtain complete information
from these scenarios. Only relying on reward functions learned
from expert trajectories is still difficult to train the agent to
complete tasks with the best policy.

Aiming at the shortcomings of existing methods to solve
“sparse reward”, this paper proposes the Monoceros approach,
which is an agent training approach for the scenarios with
high-dimensional state information. The main contributions of
this paper are summarized as follows.

• We combine the reward functions constructed by expert
trajectories with manually-set reward functions to obtain
the reward values that can understand the scenarios with
high-dimensional state information. In addition, we de-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

vise the internal structure of the distillation network and
random network to adapt to the high-dimensional state
information.

• We design the specific internal structure of policy network
so as to improve the ability of perceiving and representing
the scenarios with high-dimensional state information.
In particular, for training the policy network from a
reasonable starting point, we adopt the behavior clone
instead of random initialization for the parameters in the
policy network.

• We conduct a lot of experiments on the VIZDoom plat-
form, the results show that agent trained by Monoceros
outperforms ones by GAIL or Arnold in terms of survive
duration and kill/death rate. Moreover, as a general so-
lution, Monoceros can be applied to train the agents to
play other FPS games, besides Doom.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III gives the problem
formulation. Section IV describes the Monoceros approach
in detail. Section V evaluates the Monoceros approach by
experiments. Finally, the paper is concluded in Section VI.

II. RELATED WORK

Our work is broadly related to the research under two
nonorthogonal topics: deep reinforcement learning, imitation
learning.

Early reinforcement learning methods cannot deal with the
tasks in the complex high-dimensional state space, because
the features that these methods need are extracted manually.
The combination of abstract representations obtained from
deep learning and reinforcement learning is expected to solve
complex tasks in real life. Such desires push the research on
deep reinforcement learning [1], [2]. The deep Q network
(DQN) [3], [4] proposed by Google DeepMind team is a
success example. DQN combines a deep convolutional neural
network with Q learning of reinforcement learning. Taking the
original images of the game as input, it reaches the level of
human players playing Atari game. Further, the deep recurrent
Q learning (DRQN) [5] is proposed to deal with the partial
observation in some games.

However, it is difficult for these 2D games with a third-
person perspective to imitate the scenes in real life. Re-
searchers need a platform for trying different reinforcement
learning methods. In particular, such a platform should obtain
raw visual information from a semi-realistic 3D world with a
first-person perspective. VIZDoom platform [6] for the classic
FPS game named Doom is precisely the platform which meets
the above requirements. Depending on ViZDoom, the Arnold
agent [7], [8], which developed by the Terminators team of
CMU, is an excellent one. Arnold has two neural networks,
one of which is a DQN-based network for exploring the map to
collect items and find enemies, and the other is a DRQN-based
network for deciding actions. Meanwhile, the AI research
team from Facebook combines A3C (Asynchronous Advan-
tage Actor-Critic) with the curriculum training to train the F1
agent [9], [10]. They build a policy network which is based

on the actor-critic model, and design various scenarios from
simple to complex and train F1 according to the curriculum
training method.

Imitation learning is to obtain optimal policies from expert
trajectories. A well-known imitation learning is behavior clone
[11]. It just records the expert trajectory and trains the agent
by trajectory data. In general, for pursuing good experimental
results, a large number of expert trajectory data are needed,
which is not feasible in reality. The inverse reinforcement
learning is to learn the reward function from expert trajectory
data and uses the reward function to obtain the policy near the
policy in expert trajectory data. The apprenticeship learning
[12], proposed by Andrew Ng and Abbeel, is in this category.
They apply the maximum margin algorithm to solve the reward
function. Unfortunately, this algorithm not only has heavy
calculation, but also brings the ambiguity, that is, same expert
trajectory data will lead to different reward functions. In order
to overcome the above disadvantages, maximum entropy based
inverse reinforcement learning is proposed [13]. This method
builds probabilistic models which fit the distribution of the
expert trajectory data, and then chooses the model with the
highest entropy (i.e., the least predicted risk) so as to avoid
ambiguity.

But the inverse reinforcement learning is often not very
applicable in actual training. There are two problems. Firstly,
learning the reward function may require selecting features
manually. Secondly, in the inverse reinforcement learning,
some sub-loops contain the step of reinforcement learning.
It introduces not only heavy calculation, but also convergence
difficulties. For the first problem, a deep neural network can
be used to approximate the reward function, which leads
to the deep inverse reinforcement learning [14]. But using
neural networks to approximate the reward function further
increases the computational complexity. In order to solve
the inapplicability of inverse reinforcement learning, GAIL
(Generative Adversarial Imitation Learning) algorithm [15]
directly extracts the policy from expert trajectory data, thus
bypassing many intermediate steps of inverse reinforcement
learning.

GAIL draws on the idea of the zero-sum game from GAN
(Generative Adversarial Network) [16] and the two players
of the game are a generator and a discriminator, respectively.
The generator is used to generate the action sequence, and
the discriminator is used to distinguish whether this action
sequence is an expert one. Thus, the output of discriminator
is actually equivalent to the reward function. The generator
is trained by a deep reinforcement learning algorithm TRPO
(Trust Region Policy Optimization) [17]. Using TRPO, the
value of reward function will be monotone increasing or
monotone nondecreasing when the policy is updated. However,
TRPO needs to compute the conjugate gradient, which also
produces heavy calculation and is difficult to implement. PPO
(Proximal Policy Optimization) algorithm [18] is an improved
version of TRPO algorithm. It can use gradient descent and
has less computation in comparison with TRPO. Because the
GAIL algorithm borrows the idea of GAN, it inherits training

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

instability and “mode collapse” problem. In order to solve the
above problems, a new imitation learning framework named
RED (Random Expert Distillation) [19] is proposed. RED
treats the expert trajectory data as a support and solves support
estimation by RND (Random Network Distillation) algorithm
[20] and finally gets a fixed reward function.

Compared with the existing methods, Monoceros proposed
in this paper gives a new way to construct the reward function.
Specifically, the reward function learned from expert trajectory
data is linearly combined with the manually-set reward func-
tion. Thus, during the training, the agent can obtain effective
bonuses and penalties under the guidance of the new reward
function. The resulting agent can be rather smart.

III. PROBLEM FORMULATION

In this section, we give the problem to be addressed
formally.

For a task needed to be performed by an agent (i.e.,
playing a game), we denote a set of high-dimensional states
of scenarios that an agent faces by S and a set of actions that
the agent can perform by A. Let trajectory τ be a sequence
of (s, a) pairs, where s ∈ S, a ∈ A. Further, we denote the
expert trajectory and the sampling trajectory by τE and τS ,
respectively.

Taking the Doom game as an example, each state in
S is a three-dimensional tensor which represents the RGB
information of the image, and the actions in A refer to the
actions that a game player can perform. In the health gathering
scenario, there are eight actions, that is, turn left, turn right,
move forward, move backward, move forward and turn left,
move forward and turn right, move backward and turn left,
move backward and turn right. Each action can be represented
by a one-hot encoding.

Policy π is actually a mapping between a state s ∈ S and
an action a ∈ A , denoted as a = π(s). Our goal is to train the
agent so that it can perform the task using the optimal policy
π∗. Here, the optimal policy refers to the policy that maximizes
the cumulative reward expectation, as shown in Equation (1).

π∗ = argmax
π

E

[
T∑
t=0

γtr(s, a, t)

]
(1)

In Eq. (1), r : S × A × T → R is a reward function that
changes over time t ∈ T, γ ∈ [0, 1] denotes a discount factor,
T denotes the training duration for tasks (i.e., games).

Policy π can be implemented by a neural network. It means
that the optimal policy can be obtained through optimizing the
policy network. We denote the policy network as πθ, where θ
denotes all the parameters in the policy network.

Finally, we define a state value function to represent the
expected reward under state s at time t, that is, V (st) =
V̂ (s, t, θ) where V can be estimated through a neural network,
which is called the value network, and θ denotes neural
network parameters.

IV. MONOCEROS APPROACH

In order to achieve desirable training results in high-
dimensional information scenarios, we propose the Monoceros
approach. As shown in Figure 1, Monoceros contains two
parts: constructing rewards and training the policy network.

Following Monoceros, we first construct a reward function
using the expert trajectory data. Next, we get a reward by
combining the output of this reward function with the output
of a manually set reward function. Besides, we initialize the
parameters in the policy network by behavior clone. Then we
train the policy network, Finally, the trained policy network is
the agent that we need.

In particular, considering that the policy network can have
a similar structure as the value network, we combine them
into one network sharing parameters. Given a state, the policy
network and the value network generate the action and the
value, respectively.

A. Policy Network

We hope the trained policy network can learn the optimal
policy, i.e., every time the policy is updated, the new policy
ensures that the expectation of the cumulative rewards increase
monotonously. In this subsection, we in turn present the
composite loss function, the internal design and the pre-
training strategy of the policy network.

In the policy network πθ, let θ denote the current parameters
and θold denote the parameters in last training iteration.
qt(θ) = Pr(at|st; θ)/Pr(at|st; θold) is the ratio of the prob-
ability of a same state-action pair produced by the network
with current parameters and the network with old parameters.

To compare the strategies, we introduce an advantage func-
tion which is shown in Eqs. (2)-(3) where λ ∈ [0, 1] is a
hyperparameter. The advantage function Ât is an estimation
of the advantage value from t-th step. We estimate Ât by GAE
(generalized advantage estimation).

Ât = δt + (γλ)δt+1 + ...+ (γλ)T−t+1δT−1 (2)
δt = rt + γV (st+1)− V (st) (3)

Following PPO, the loss function of the policy network is
defined as follows.

Lt(θ) = −Ê
[
LCt (θ)− c1LV Ft (θ) + c2S[πθ](st)

]
(4)

LCt (θ) = Ê
[
min

(
qt(θ)Ât, clip(qt(θ), 1− ε, 1 + ε)Ât

)]
(5)

LV Ft (θ) = (V (st)− V (targett))
2 |πθ (6)

In Eq. (4) , LCt (θ) is the difference of the probability
distributions between the new and old policies after updated.
LV Ft (θ) is the loss function of the value network. S[πθ](st)
is the entropy of the policy network and c1,c2 are coefficients.
LV Ft (θ) is introduced because the policy network and value
network are sharing same parameters. S[πθ](st) is added to
ensure fully exploration.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1: Monoceros architecture

In Eq. (5), ε is a hyperparameter which is generally set to
0.2. qt(θ) is usually limited to [1−ε, 1+ε] to ensure that each
update does not have much fluctuation. Function clip is for
truncation, whose definition is as follows.

clip(value, 1− ε, 1 + ε) =

{
1− ε, if value < 1− ε
1 + ε, if value > 1 + ε

(7)

In Eq. (6), V (targett) = rt + γV (st+1)
Since we are aiming at the scenarios with high-dimensional

state information, we design the specific structure for the
policy network, partially referring to the typical network
structure in DQN and A3C. As shown in Fig. 2, different from
the typical structure which takes stacked grayscale images
(4 frames as a unit usually) as input, our network receives
single RGB image. According to the difference of inputs, our
network consists of three convolutional layers at first, a fully-
connected layer in the middle and two fully-connected layer
at last. Specifically, the first convolutional layer has an 8*8
kernel, 4 stride and 32 filters. The second convolutional layer
has a 4*4 kernel, 2 stride and 64 filters. The third convolutional
layer has 3*3 kernel, 1 stride and 64 filters. The size of middle
fully-connected layers is 512. Last two fully-connected layers
output the action and the value, respectively.

B. Reward Function

Besides a composite loss function of the policy network, a
reasonable reward needs to be designed.

We firstly train a reward function R reward using the expert
trajectory data. Details of the training procedure are given as
follows. Referring to the RED algorithm, we build a distillation
network fθ̂(s, a) and a random network fθ(s, a). Note that the
parameters of fθ(s, a) are randomly initialized and remained

fixed in the following steps. The distillation network and the
random network are fed with same expert trajectory data
and trained, with a goal that the output of fθ̂(s, a) is to
approximate to the output of fθ(s, a). It is emphasized that
the trained network is only the distillation network. Therefore,
given a new state-action pair, the difference of the output
between fθ̂(s, a) and fθ(s, a) measures the similarity of the
current pair to the expert data ever seen during training. Large
difference means that the current pair is not compatible with
the expert policy πE . So, we set the negation of the difference
as a reward, which means the proximity to the expert policy.
Eq. (8) gives the definition of R reward, where σ1 is a
hyperparameter. As shown in Fig.1, RD Reward represents
the calculation module that gets the R reward.

R reward(s, a) = exp
(
−σ1(fθ̂(s, a)− fθ(s, a))

2
)

(8)

Next, the final reward function is shown in Eq. (9), where
α, β ∈ (0, 1) and A reward is the reward that is manually
set according to different scenarios with reference to reward
shaping of Arnold Model.

Rewardm = α× R reward + β × A reward (9)

Rewardm combines the reward function reconstructed
through expert trajectory and the reward function set by
manual. Rewardm is consistent with our observation. We find
that with limited expert trajectory data, the reward function
reconstructed with limited iteration do not necessarily produce
an appropriate reward. Meanwhile, the reward set by manual
possibly has biases in the understanding of the scenarios
which leads to an unreasonable setting. Therefore, we naturally
combine them linearly to form a new reward function with

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2: Policy network structure

Fig. 3: Distillation network

Fig. 4: Random network

certain ratios. The specific ratios can be determined through
experiments on different scenarios.

Finally, for the high-dimensional information scenarios,
we design the structures of distillation network and random
network which are shown in Fig. 3 and Fig. 4, respectively.

V. EXPERIMENTS

In this section, we conduct experiments to evaluate the
“smartness” of the agent trained by different approaches.

A. Experimental Scenarios

We select three Doom game scenarios in the VIZDoom
platform as experimental scenarios, that is, health gathering,
health gathering (supreme) and limited death match (shotgun).
Figure 5 shows the screen shots of three experimental scenar-
ios. These scenarios consist of 35 frames per second images.

In the health gathering scenario, the agent needs to move in
lava, losing health points all the time. In order to survive as
long as possible in a round, the agent has to keep collecting
health packs scattering in lava. The initial health point is set
to 101. Each round has 2 minutes. Therefore, the maximum
survival duration in one round is 35 × 120 = 4200 frames. In
the health gathering (supreme) scenario, more wall obstacles
are added to increase the difficulty of game. For these two
scenarios, we measure the “smartness” of an agent by the

survival duration per round. The longer the agent survives,
the smarter it is.

However, in the limited death match (shotgun) scenario, the
agent needs to kill the enemies it encounters while moving in
the field. The agent can gather health packs and ammos but
it can only hold the weapons given at the beginning of the
game. The initial values of health packs and ammos are set to
101 and 301, respectively. There are eight enemies when the
scenario is initialized. Note both the enemies and agent will
be resurrected once being killed within a round. At the end
of each round (35fps × 900s = 31500 frames), we adopt the
K/D (kill/death) rate, i.e., the number of killed enemies (kill)
divided by the number of deaths (death), to measure how smart
an agent is. The higher the K/D rate reaches, the smarter the
agent is.

In addition, the VIZDoom platform provides several game
resolutions. We adopt the 440*225 resolution which is 16:9.
Such 16:9 resolutions provide a 108 degree field of view which
are wider than 90 degree in 4:3. Therefore, the agent can
receipt more visual information.

B. Experimental Setup

We select the Arnold model as the expert model to extract
expert trajectory data since the model won the championship
in the Visual Doom AI Competition 2017.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

(a) Health gathering (b) Health gathering (supreme) (c) Limited death match (shotgun)

Fig. 5: Screen shots of three experimental scenarios

Hyperparameter Description Value
Policy Network

γ Cumulating reward discount ratio 0.95
c1 Coefficient of the value function in the target function 1
c2 Coefficient of the entropy loss function in the target function 0.01

pn step Training steps in each epoch 10
pn minibatch Mini-batch size in each training step 256

pn learning rate Adam learning rate 5e-5
Reward Function

rf iter Training steps 200
rf minibatch Mini-batch size in each training step of distillation network and random network 256

rf learning rate Adam learning rate 1e-3
σ1 Coefficient in R reward 250000

TABLE I: Hyperparameters.

For both health gathering and health gathering (supreme)
scenarios, we extract 50 rounds game data from Arnold as the
expert trajectory data. The Arnold agent can survive until the
end (i.e., it gets 4200 points) in each of the 50 rounds. For the
limited death match (shotgun) scenario, we extract 20 rounds
game data and select top-10 rounds with the highest K/D rate
as the expert trajectory data.

Note that Arnold resizes the original color images of
440*225 to the ones of 108*60, and takes the resized ones
as the training input. For the sake of fairness, we also adopt
the images with the same size as input in our approach.

Table I lists the values of hyperparameters in Monoceros
which keep the same in all three experimental scenarios.
Some other hyperparameters are not the same since they are
sensitive to different experimental scenarios. For example,
“frame skips” is set to 4 for both health gathering and health
gathering (supreme) scenarios, and set to 3 for the limited
death match (shotgun) scenario.

Moreover, for the health gathering, health gathering
(supreme) and limited death match(shotgun) scenarios, the re-
ward parameters are set as α = 0.4/0.1/0.3, β = 0.6/0.9/0.7,
respectively.

C. Experimental Results
We first compare the behaviors of agents trained by Mono-

ceros, GAIL and Arnold in the experimental scenarios men-
tioned above.

Table II shows the survive durations and standard deviations
averaged by 20 round results in the health gathering and health

Fig. 6: Survive duration vs. round in the health gathering
scenario

gathering(supreme) scenarios. Table III shows the average K/D
rates among 10 rounds as well as the standard deviations
in the limited death match(shotgun) scenario. The percent-
ages in parentheses in Tables II-III are the ratios relative
to Monoceros. Obviously, the agent trained by Monoceros
outperforms the other agents. We also note that in limited
death match(shotgun) scenario, the K/D rate of Monoceros
is only slightly better than Arnold. It may contribute to the
fact that Monoceros does not use game internal data during
training but Arnold does, that is, Arnold knows whether there
are enemies in the current game screen. Besides, as shown in
Figs. 6-8, Monoceros performs better than the others in nearly

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Scenario Game Episode Arnold GAIL(PPO) Monoceros

Health gathering 20 2835.8(72.5%) ±1550.16 3788.2(96.9%) ±1045.46 3908.6 ±815.38
Health gathering (supreme) 20 2438.7(79.45%) ±1101.46 1791.6(58.37%) ±995.19 3069.4 ±1032.03

TABLE II: Survive duration.

Scenario Game Episode Arnold GAIL(PPO) Monoceros

Limited Death Match (shotgun) 10 3.429(99.73%) ±0.087 2.562(74.52%) ±0.126 3.438 ±0.192

TABLE III: Kill/death rate.

Fig. 7: Survive duration vs. round in the health gathering
(supreme) scenario

Fig. 8: Kill/death rate vs. round in the limited death match
scenario

every round.
Then we conduct an ablation study for the proposed Mono-

ceros. To observe the effects of individual components, we
compare Monoceros with the methods using only the policy
network (PN) and PN + Behavior Clone (BC). As shown in
Tables IV-V, PN+BC outperforms PN (only) and Monoceros
performs better than PN+BC, which indicates that the behavior
clone and the proposed reward function in our approach can
benefit the performance in all of the experimental scenarios.
In addition, Figs. 9-11 shows the detailed performance in each
round.

Finally, in order to demonstrate the performance intuitively,

Fig. 9: Survive duration vs. round in the health gathering
scenario

Fig. 10: Survive duration vs. round in the health gathering
(supreme) scenario

we record the live gaming videos of the agents trained by
Monoceros in the three scenarios which can be viewed on-
line (health gathering & health gathering (supreme): https:
//www.youtube.com/watch?v=dZMbR8AWMIY. limited death
match (shotgun): https://www.youtube.com/watch?v=xxeJaE
HKg0M).

VI. CONCLUSION

As the research on deep reinforcement learning goes deeper,
the sparse reward problem starts to trouble the agent training,
particularly in some high-dimensional information scenarios.
Existing methods, e.g., reward shaping, curriculum training,
and hierarchical reinforcement learning, have to rely hugely on

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Scenario Game Episode Monoceros PN(only) PN+BC

Health gathering 20 3908.6 ±815.38 2626.6 ±1479.83 3336.2 ±1388.77
Health gathering (superme) 20 3069.4 ±1032.03 1933.05 ±968.84 2188.25 ±972.57

TABLE IV: Survive duration.

Scenario Episode Monoceros PN(only) PN+BC

Limited death match (shotgun) 10 3.438 ±0.192 2.409 ±0.08 3.088 ±0.112

TABLE V: Kill/death rate.

Fig. 11: Kill/death rate vs. round in the limited death match
scenario

human factors. The methods from the inverse reinforcement
learning can avoid human factors but only depend on the
reward function learnt from expert trajectory data.

To overcome these deficiencies of existing methods, this
paper proposes a new approach named Monoceros to training
a game agent. Monoceros can deal with game scenarios
with high-dimensional state information, and alleviate the
sparse reward problem by presenting a new reward function.
Experimental results show that the agent trained by Monoceros
outperforms the ones trained by other state-of-the-art methods.

In the next research, we will further explore the other new
design of the reward function to improve the generalization
capacity of Monoceros.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No. 61472408).

REFERENCES

[1] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol.
abs/1701.07274, 2017.

[2] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” CoRR, vol.
abs/1811.12560, 2018.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, pp. 529–533, 02 2015.

[5] M. J. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” CoRR, vol. abs/1507.06527, 2015.

[6] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
“Vizdoom: A doom-based ai research platform for visual reinforcement
learning,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), 09 2016, pp. 1–8.

[7] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforce-
ment learning,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, ser. AAAI’17, 2017, p. 2140–2146.

[8] D. S. Chaplot and G. Lample, “Arnold: An autonomous agent to play fps
games,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, ser. AAAI’17, 2017, p. 5085–8086.

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lil-
licrap, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for
deep reinforcement learning,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume
48, 2016, p. 1928–1937.

[10] Y. Wu and Y. Tian, “Training agent for first-person shooter game with
actor-critic curriculum learning,” in 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

[11] D. Pomerleau, “Efficient training of artificial neural networks for au-
tonomous navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97,
1991.

[12] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Machine Learning, Proceedings of the Twenty-first
International Conference (ICML 2004), Banff, Alberta, Canada, July
4-8, 2004, 2004.

[13] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 3, ser. AAAI’08,
2008, p. 1433–1438.

[14] C. Xia and A. E. Kamel, “Neural inverse reinforcement learning in
autonomous navigation,” Robotics and Autonomous Systems, vol. 84,
pp. 1 – 14, 2016.

[15] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems 29, 2016, pp. 4565–
4573.

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’14, Cambridge, MA, USA,
2014, p. 2672–2680.

[17] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume
37, ser. ICML’15, 2015, p. 1889–1897.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[19] R. Wang, C. Ciliberto, P. V. Amadori, and Y. Demiris, “Random expert
distillation: Imitation learning via expert policy support estimation,” in
Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, 2019, pp.
6536–6544.

[20] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration by
random network distillation,” CoRR, vol. abs/1810.12894, 2018.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

