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Abstract—Stability and optimality are the two foremost re-
quirements for robotic systems that are deployed in critical
operations and are to work for long hours or under limited energy
resources. To address these, in this work we present a novel
Lyapunov stability based discrete-time optimal kinematic control
of a robot manipulator using actor-critic (AC) framework. The
robot is actuated using optimal joint-space velocity control input
to track a time-varying end-effector trajectory in its task space.
In comparison to the existing near-optimal kinematic control
solutions for robot manipulator under AC framework, proposed
controller exhibits guaranteed analytical stability. We derive a
novel critic weight update law based on Lyapunov stability, thus
ensuring that the weights are updated along the negative gradient
of Lyapunov function. This eventually ensures closed-loop system
stability and convergence to the optimal control in discrete-time.
Extensive simulations are performed on a 3D model of 6-DoF
Universal Robot (UR) 10 in Gazebo, followed by implementation
on real UR 10 robot manipulator to show the efficacy of the
proposed scheme.

Index Terms—Robot Manipulator, Discrete-Time Kinematic
Control, Actor-Critic, Lyapunov Stability

I. INTRODUCTION

As the robotics industry grows, the robots are expected to
deal with a variety of complex tasks. The increasing complex-
ity of tasks for robot manipulators employed in fields such as
warehouse automation, production lines, medical applications,
defense, underwater surveys, etc. [1] combined with their
inherent non-linear dynamics and high Degrees of Freedom
(DoF) makes their dynamic control [2] a rather challenging
task. An analytical solution to the inverse kinematics of such
high-order non-linear systems is not possible [3]. Therefore
learning-based strategies such as neural and fuzzy neural
network play an increasingly significant role in kinematic
control of manipulators as compared to traditional model-
based strategies [4], [5]. For most of the works in the literature,
stability is a major concern in designing these learning-
based controllers for robot manipulator systems. But for the
aforementioned applications where a robot has to work round
the clock, the controller needs to be optimal in terms of input

actuation cost so as to save resources. Thus, learning-based
controllers for robot manipulator systems should take into
account minimization of a global cost function while learning
the inverse kinematics. Optimization can be performed by
several techniques as has been discussed in the literature.

Kinematic control using numerical techniques for robot
manipulator are based on numerical formulations like the
Newton-Raphson iteration [6], predictor-corrector integration
[7], gradient based [8], and Euler and trapezoid method [9].
These solutions have stability issues and are inefficient, thus
aren’t very reliable; though an exact cause cannot be implied
from failure of such algorithms (whether the solution failed
or there are other undesirable numerical phenomena such
as ’large step’ divergence or ’curvature reversals’ [10]). An
interesting kinematic control scheme was suggested in [11] to
avoid such problems by an extension of sampling-based RRT
algorithm.

Instantaneous optimal solutions have been previously
achieved by local optimization using convex optimization
based kinematic control. These methods rely on existing effi-
cient convex optimization packages and moreover, are versatile
(they can, for example, trade-off different parameters such as
actuator input or error). [12] presents an analysis on convex
optimization framework being used to achieved kinematic con-
trol of robot manipulator using closed-loop inverse kinematics
algorithm. In this, based on the pseudo-inverse of Jacobian
and null-space, authors achieved the solution using gradient
projection based methods. Kinematic control is formulated
using nonlinear optimization framework base on Quadratic
Programming in [13] and using Neural Network (NN) based
optimization framework in [14].

However, optimization based on optimal control theory for
non-linear robot systems requires solution of Discrete-Time
HJB (DTHJB) equation, and is, as opposed to previous meth-
ods, a necessary and sufficient condition for global optimality
in non-linear systems. But this is a notoriously hard non-linear
partial difference equation to solve analytically [15]. While
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employing dynamic programming to solve this, the infamous
’curse of dimensionality’, and infeasibility of an online solu-
tion are the major limitations to this approach. This gave rise
to Adaptive Dynamic Programming (ADP) [16]. ADP uses
approximations of value function and develops approximation
adjustment laws, to obtain the optimal value function as well
as an optimal control to solve the DTHJB equation optimally.
Model-based ADP solutions employ different variations of AC
algorithms [17].
Now, one of the major challenges in ADP is guaranteeing
closed-loop stability of the robot system [18]. Lyapunov
stability based methods have been very popular within the
control community owing to the strong stability guarantees it
conclusively draws [19], [20]. The existing works in discrete-
time literature such as [21], [22] have achieved kinematic
control using Single Network Adaptive Critic, but without any
analytical stability proof. Thus, the solution, though is optimal,
but a lack of conclusive stability could have serious impacts
if robot is employed in critical operations. Unlike previous
works, we derive a novel critic weight update law based on
Lyapunov stability. This is advantageous as weight update
takes place along the negative gradient of the first difference
of Lyapunov function, thus eliminating the dependence of
robot system stability on initialized values of network weights.
To the best of authors’ knowledge, there exists no work in
robotics literature which explicitly takes system stability into
account when deriving update laws for discrete-time AC based
optimal kinematic control of robot. The results have been
further discussed to prove the efficacy of the proposed scheme.
Rest of the paper is organized as follows. Formulation of robot
forward kinematics and actor-critic framework is presented
in the next section. Section III contains the derivation of
novel critic weight update law. The simulation and real-time
experimental results are discussed in Section IV, followed by
conclusion in Section V.

II. PROBLEM FORMULATION

This section undertakes the discrete time formulation of
forward kinematics giving us the state and the output equations
of robot system, and then succinctly formulating the actor-
critic based optimal kinematic control framework.

A. Discrete Time Kinematic Model

The forward kinematics of manipulator is a non-linear
mapping from the joint-space to the Cartesian-space [23],
x(t) = f(q(t)), where x(t) ∈Rn is the position and orientation
vector of end effector in task-space, f(.) is the non-linear
mapping, and q(t) ∈Rm is the vector of joint angles at time t.
On the contrary, mapping of velocity from joint to task-space
is an affine one,
ẋ(t) = J(q(t))q̇(t), where J(q(t)) = ∂ f(q(t))/∂q(t) is the ma-
nipulator Jacobian matrix ∈Rn×m associated with f(q(t)). The
angular speed of robot joints is taken as the control input
for the tracking control in this paper. Thus we get our state
equation as, q̇(t) = u(t).
Also, we re-write the robot manipulator forward kinematics as

the output equation, ẋ(t) = J(q(t))u(t) (ẋ(t) being the output
vector). Using Euler approximation to discretize, state and
output equations are as under,

q(k+1) = q(k)+Tu(k)

x(k+1) = f(q(k))+g(k)u(k) = x(k)+T J(k)u(k) (1)

where, we write J(q(k)) as J(k), and T = Sampling/ Dis-
cretization time step. Also, x(k) ∈ Rn and u(k) ∈ Rm.
The desired output is,

xd(k+1) = fd(q(k))+gd(k)ud(k) = xd(k)+G(k) (2)

which are written in terms of xd(k) ∈ Rn, which denotes the
desired end effector position and orientation in task space,
ud ∈ Rm denotes the desired joint angular velocity input, and
G(k) = gd(k)ud(k) ∈ Rn.

B. Optimal Control Formulation
The kinematic control problem is formulated as tracking

problem for optimal control formulation. Using (1) and (2)
we write the output error and its dynamics for our system as,

e(k) = xd(k)− x(k) (3)
e(k+1) = e(k)−g(k)ue(k) = e(k)+G(k)−T J(k)u(k) (4)

where, ue(k) = ud(k)− u(k). To solve for the optimal kine-
matic control of the robot manipulator, it is required to find
the control policy ue(k) that minimizes the infinite horizon
Discrete-Time HJB (DTHJB) cost function,

J(q(k),ue(k)) =
∞

∑
i=k

ψ(q(i),ue(i)) (5)

where, ψ is the utility function, or one step cost (ψ(0,0) = 0,
and ψ(q(i),ue(i))≥ 0 ∀ q(i), ue(i)). The utility function
ψ(q(i),ue(i)) = 1/2

(
e(q(i))T Qe(q(i))+ue(i)T Rue(i)

)
,

where, Q > 0 ∈ Rn×n and R > 0 ∈ Rm×m are constant sym-
metric weighting matrices. The positive definite DTHJB cost-
function can also be written as,

J(q(k),ue(k)) = J(k)

= ψ(q(k),ue(k))+J(q(k+1),ue(k+1)) (6)

=
1
2

(
e(k)T Qe(k)+ue(k)T Rue(k)

)
+

(
∞

∑
i=k+1

ψ(e(i),ue(i))

)
Here, we write e(q(k)) as e(k) for ease of representation.

Co-State Equation: The co-state equation is defined as,
∂J(k)
∂q(k)

= λ (k)⇒ λ (k) =−JT (k)Qe(k)+ IT
mλ (k+1) (7)

where, λ (k) = ∂J(k)/∂q(k) is the co-state vector in Rm.
Optimal Control Equation: The optimal control policy is

given by stationary condition, ∂J(k)/∂ue(k) = 0, so that

u∗e(k) = arg min
ue(k)

(
J(k)

)
= R−1T λ

∗(k+1) (8)

or, u∗(k) = ud(k)−R−1T λ
∗(k+1) (9)

The optimal tracking control input consists of a feedback term
that is a function of co-state (7) and a feed-forward term, ud(k)
(ud(k) = gd(k)−1∆xd(k), where ∆xd(k) = xd(k + 1)− xd(k)).
Next, the AC framework will be discussed.
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C. Optimal Solution using Actor-Critic Framework

In the actor-critic structure employed in this paper, the con-
trol policies are approximated by an actor NN û(Ŵa(k),e(k))
and the critic NN approximates the co-state λ (k) given by
λ̂ (Ŵc(k),e(k)) such that,

λ̂ (k) = Ŵc
o
(k)T

σ
(
Zc(k)

)
= Ŵc(k)T

σ(k) (10)

û(k) = Ŵa
o
(k)T

ρ
(
Za(k)

)
= Ŵa(k)T

ρ(k) (11)

where, Zc(k) = Ŵ i
c(k)

T e(k) and Za(k) = Ŵ i
a(k)

T e(k),
Ŵ i

c(k) ∈ Rn×h and Ŵ o
c (k) ∈ Rh×m are the actual critic

weights, and Ŵ i
a(k) ∈ Rn×h and Ŵ o

a (k) ∈ Rh×m are the ac-
tual/approximated actor weights of input and output layer
(denoted by the superscripts i and o) respectively (h is the
number of hidden layer neurons); σ(.) and ρ(.) are activation
functions of the hidden layer. The NNs are constructed with
non-linear activation functions and single hidden layer.
Writing control policy (9) in terms of ideal NN parameters as

u(k) = ud(k)−R−1T λ̂ (k+1) =Wa(k)T
ρ(k)+ εa (12)

Also, (7) can be written in terms of ideal NN parameters as,

λ (k) =−JT (k)Qe(k)+ IT
mλ (k+1) =Wc(k)T

σ(k)+ εc (13)

where, Wc(k) and Wa(k) are target/ideal weights, and εc and
εa are bounded NN approximation errors of critic and actor
NN respectively. Above equations give the desired optimal
control input generated by actor NN, and the desired optimal
co-state generated by the critic NN. These desired values are
then fed back to the networks for weight updation through a
novel Lyapunov based weight update algorithm as presented
in the next section.
Before proposing the critic weight update algorithm, following
assumptions need to be made:

Assumption 1: The Jacobian matrix is bounded as
∥∥J(k)

∥∥≤
λJ ∀ k > 0 , where λJ is a known positive constant.

Assumption 2: The upper bounds for ideal weights are taken
as ‖Wc‖ ≤ φcM , ‖Wa‖ ≤ φaM , whereas the NN approximation
errors are upper bounded such that ‖εc‖≤ εcM , and ‖εa‖≤ εaM
hold, where φcM, φaM, εcM, εaM are known positive constants.
Additionally, the activation function of NNs are bounded
above as,

∥∥σ(.)
∥∥≤ σM , and

∥∥ρ(.)
∥∥≤ ρM for known positive

constants σM , and ρM [24].

III. PROPOSED CRITIC WEIGHT UPDATE ALGORITHM

We have our error dynamics as given by (4). In the AC ar-
chitecture, the optimal control/control input u(k) is computed
at every iteration step by the actor NN, as given by (12). So
the error dynamics can be written as,

e(k+1) = e(k)+G(k)−Gd(k)+D(k)λ̂ (k+1) (14)

where, D(k) = T 2J(k)R−1 and Gd(k) = T J(k)ud(k) is written
for ease of representation.

From the critic NN equations, we define critic error as

ec(k) = λ̂ (x(k))−λ (x(k)) = λ̂ (k)−λ (k) (15)

We now choose our Lyapunov candidate function as,

Lc(k) = e(k)T e(k)+2ΓJ(k)+ tr(ec(k)ΞeT
c (k))/2 (16)

where, e(k) is the system error as defined above; Ξ(> 0) ∈ R
represents the critic error gain, i.e., the contribution of critic
error (ec) to the energy of the system (given by Lc); Γ > 0 is
a design parameter; J(k) is the positive definite DTHJB cost-
function. Clearly, Lc is positive-definite.
Now, the first difference of Lyapunov candidate function is,

∆Lc(k) = Lc(k+1)−Lc(k) (17)

Using (16), ∆Lc(k) becomes

∆Lc(k) = e(k+1)T e(k+1)+ tr
(

ec(k+1)ΞeT
c (k+1)

)
/2

− e(k)T e(k)− tr
(

ec(k)ΞeT
c (k)

)
/2+2Γ∆J(k) (18)

The weight update laws for output critic weight vector (Ŵ o
c (k))

and input critic weight vector (Ŵ i
c(k)) are proposed as,

vec(Ŵ o
c (k+1)) =vec(Ŵ o

c (k))−ℑ
−1
o

(
∇Ŵ o

c
λ̂ (k)

)T
Ξ
−1

e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)
∥∥2 (19)

vec(Ŵ i
c(k+1)) =vec(Ŵ i

c(k))−ℑ
−1
i

(
∇Ŵ i

c
λ̂ (k)

)T
Ξ
−1

e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)
∥∥2 (20)

where, ℑ−1
o and ℑ

−1
i are as defined in Appendix. Applying

these update laws, ∆Lc(k) becomes (refer (26) in Appendix),

∆Lc(k)≤−2
∥∥e(k)

∥∥2
[
Γ‖Q‖−2−2‖Q‖2∥∥D(k)

∥∥2∥∥J(k)
∥∥2
]

+4
∥∥D(k)

∥∥2
[
φ

2
cMσ

2
M + ε

2
cM

]
−2Γ‖R‖

∥∥ue(k)
∥∥2 (21)

The first term of (21) is less than zero if the design parameter
is selected as, Γ > 2(1+‖Q‖2 K2

J λ 2
J )/‖Q‖.

We finally observe that (21) is less than zero if design
parameter is selected as above and the following inequalities
hold, ∥∥e(k)

∥∥≥√√√√ 2K2
J

[
φ 2

cMσ2
M + ε2

cM

]
Γ‖Q‖−2

(
1+‖Q‖2 K2

J λ 2
J

)
or,
∥∥ue(k)

∥∥≥
√

2K2
J

[
φ 2

cMσ2
M + ε2

cM

]
Γ‖R‖

(22)

where, KJ = T 2λJ

∥∥∥R−1
∥∥∥. Thus the standard Lyapunov ex-

tensions conclude ∆Lc(k) is less than zero outside of a
compact set, implying the output error to be UUB. Further,
the computed optimal control input(11) also converges to the
neighbourhood of the optimal feedback control (9) with a finite
bound given by (22).

IV. RESULTS AND DISCUSSION

To test the effectiveness of the proposed kinematic control,
it is validated by simulations followed by experimental vali-
dation on UR10 (6 DoF) robot manipulator.
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Fig. 1: Gazebo Simulation Results for Optimal Time Varying
Trajectory Tracking

A. Simulation Studies

Firstly, simulations are performed on real 3D model of
UR10 in Gazebo under realistic scenarios (such as gravity,
joint angle constraints, etc.) wherein the forward kinematics
of UR10 is derived using DH parameters.

System Parameters: The discretization time step is taken
to be very fine at 2ms. The reference time varying trajectory
initializes at [0,−0.3,0.75]m and is taken to be ellipse centered
at [0,0,1.0075]m, radius 0.3m moving at an angular speed of
0.2 rad/s.

Controller Parameters: h (for actor and critic NN)= 6;
activation function: sigmoid; actor learning rate: 0.01; Ξ = 10;
R = 0.1I6; Q = 10I3. The actor and critic NN weights are
initialised randomly in a range.
To show the effectiveness of the proposed controller, the initial
end-effector position of the manipulator is taken to be as far
as possible in its task space, at [1.18,0.16,0.05]m. This is
followed by real-time implementation on a UR10.

B. Real-Time Implementation

Experimental Setup: The experimental setup with a 6 DoF
UR10 robot manipulator alongwith its external computer/ host
PC and internal computer/controller box shown in Fig 2. It
can follow both traditional position commands, as well as
joint velocity commands to move the end effector around a
specified trajectory. Either a teach pendant or a (C++/Python)
TCP communication can used to send and receive commands
to the low-level controller. This low-level controller runs on
robot’s internal computer, controls the arm, interprets and
receive the commands, and broadcasts robot joint states. The
host PC streams joint commands are streamed by the host PC
via URScript at 125Hz over Ethernet to the UR10 real-time

interface. To implement our proposed velocity based kinematic
control scheme, we configured UrDriver when starting the
controller (which is an open source driver class based on
python on the host PC running ROS) with parameters such
as IP address of the robot, etc.

UR10 Robot Manipulator

Host PC

UR10 Internal Computer

Fig. 2: Hardware Setup

System and Controller Parameters: For experiments, vari-
ous parameters chosen were: h (for actor and critic NN)= 15;
R = I6; Q = 5I3. All the other parameters remaining same, the
initial end effector position is chosen to be another farthest
point in task space, [0.8,−0.9,0.01]m.

0 5 10 15 20

Time (s)

-2

0

2

4

J
o
in

t 
A

n
g
le

s
 (

ra
d
)

Time History of Joint Angles
Joint 1 Angle

Joint 2 Angle

Joint 3 Angle

Joint 4 Angle

Joint 5 Angle

Joint 6 Angle

(a)

0 5 10 15 20

Time (s)

-2

-1

0

C
o
n
tr

o
l 
In

p
u
t 
(r

a
d
/s

) Control Input

Joint 1 Velocity

Joint 2 Velocity

Joint 3 Velocity

Joint 4 Velocity

Joint 5 Velocity

Joint 6 Velocity

(b)

0 5 10 15 20

Time (s)

-1

0

1

E
rr

o
r 

(m
)

Error Trajectories

Error in x (m)

Error in y (m)

Error in z (m)

(c) (d)

(e)

0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

E
rr

o
r 

(m
)

Root-Mean-Square Error

(f)

Fig. 3: Experimental Results for Optimal Time Varying Tra-
jectory Tracking

C. Observations

It is apparent from the result fig. 1(c), 1(f), 3(c), and 3(f)
that the error and thus the RMS error converges to zero after
a short transient period (less than 5 s). Fig. 1(a) and 3(a)
shows the time history of joint angles which initialize from
[0,0,0,0,0,0]rad for simulation, and [2π/3,0,0,0,0,0]rad for
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experiments (farthest possible positions). Fig. 1(d), 1(e), 3(d),
and 3(e) exhibit actor and critic weights’ convergence under
the proposed update laws. Also, fig. 1(b) and 3(b) show that
despite large initial system error, joint velocities don’t exceed
system joint velocity limits. This shows the efficacy of our
controller in optimally tracking a time-varying trajectory in
Gazebo simulation as well as in real-time on UR10.

V. CONCLUSION

This paper was concerned with the discrete-time kinematic
control of robot manipulators using AC framework. The
forward kinematics of an m-DoF robot manipulator were
presented in a control-affine form, and then AC based optimal
control formulation was done. The proof of stability was
shown using Lyapunov stability analysis and critic weight
update laws were derived based on it. Thus desired optimal
cost as well as system stability was proved analytically. The
proposed scheme was then verified by simulations on 3D
model of UR10 robot manipulator in Gazebo, followed by
experimental validation on a real 6-DoF UR10 robot arm.

APPENDIX: DERIVATION OF LYAPUNOV BASED CRITIC
WEIGHT UPDATE LAW

Using (14) in (18) and writing λ̂ (k+1) from (13), we get

∆Lc(k) =
[
e(k)+G(k)−Gd(k)+D(k)(Wc(k)T

σ(k)+ εc+

JT (k)Qe(k))
]T [

e(k)+G(k)−Gd(k)+D(k)(Wc(k)T
σ(k)+

εc +JT (k)Qe(k))
]
+2Γ∆J(k)+

(
tr(ec(k+1)ΞeT

c (k+1)

−tr(ec(k)ΞeT
c (k))

)
/2 (23)

In discrete time, ec(k + 1) = ec(k) +∆ec(k), where, ∆ec is
incremental change in the error fed to critic NN (depending
on change in dependent parameters). Assuming fine discretiza-
tion, ∆ec is very small. So, we get

∆Lc(k) =
[
e(k)(1+D(k)JT (k)Q)+G(k)−Gd(k)+D(k)

(Wc(k)T
σ(k)+ εc)

]T [
e(k)(1+D(k)JT (k)Q)+D(k)(Wc(k)T

σ(k)+ εc)+G(k)−Gd(k)
]
+ tr(∆ec(k)ΞeT

c (k))+2Γ∆J(k)

Using the properties of trace, we have,

∆Lc(k) =
[
e(k)(1+D(k)JT (k)Q)+D(k)(Wc(k)T

σ(k)+ εc)
]T[

e(k)(1+D(k)JT (k)Q)+D(k)(Wc(k)T
σ(k)+ εc)

]
+ tr

(
∆ec(k)

ΞeT
c (k)+2e(k+1)(G(k)−Gd(k))T

)
−2Γ(ψ(k)) (24)

We set the term in the trace equal to zero. Using Triangle
Inequality and Completing the Squares (cts), we get,

∆Lc(k)≤ 2
∥∥e(k)

∥∥2
(∥∥∥1+D(k)JT (k)Q

∥∥∥2
)
+2
∥∥D(k)

∥∥2(∥∥∥Wc(k)T
σ(k)+ εc

∥∥∥2
)
−2Γ(‖Q‖

∥∥e(k)
∥∥2

+‖R‖
∥∥ue(k)

∥∥2
)

(25)

Applying cts, Cauchy-Schwarz Inequality, and Assumption 2
gives us,

∆Lc(k)≤−2
∥∥e(k)

∥∥2
[
Γ‖Q‖−2−2‖Q‖2∥∥D(k)

∥∥2∥∥J(k)
∥∥2
]

+4
∥∥D(k)

∥∥2
[
φ

2
cMσ

2
M + ε

2
cM

]
−2Γ‖R‖

∥∥ue(k)
∥∥2

(26)

and upon setting the term in trace equal to zero we get,

∆ec(k)ΞeT
c (k) =−2e(k+1)(G(k)−Gd(k))T (27)

In (27), we post multiplication by ec(k) to get,

∆ec(k) =−2Ξ
−1e(k+1)(G(k)−Gd(k))T ec(k)/

∥∥ec(k)
∥∥2

(28)

Now, to introduce the critic NN parameters, we represent the
small change in ec(k), i.e., ∆ec(k) as (assuming small T ),

∆ec(k) =
∂ec(k)
∂Ŵc(k)

∆Ŵc(k) (29)

where, ∆Ŵc(k)→ 0 as limk→∞

A. For Output Weight Vector
(

Ŵ o
c (k)

)
We now aim to find out the partial derivative of ec(k) wrt the

output weight vector in order to calculate ∆ec(k). We introduce
a lemma for obtaining the results,

Lemma 1: Let a vector f = AT B, where, f ∈ Rm×1, and
matrices A ∈ Rh×m and B ∈ Rh×1 respectively, then

f = AT B =
(

Im⊗BT
)

vec (A) (30)

Proof: We have f = AT B = ImAT B.
Now, invoking the property of vectorization and it’s compati-
bility with Kronecker products [26], we get

vec(AT B) = vec(ImAT B) =
(

BT ⊗ Im

)
vec(AT ) (31)

Now, according to [27], vec(AT ) =K(h,m)vec(A) where, K(h,m)

is the commutation matrix for A.
And, K(1,1) (BT ⊗ Im

)
K(h,m) =

(
Im⊗BT

)
Substituting in (31), we prove our lemma. q.e.d.

Since ∂ λ̂ (k)/∂Ŵ o
c (k) is a 3rd order tensor, we use vector-

ization, and from Lemma 1, this partial derivative is,

∂ λ̂ (k)
∂vec(Ŵ o

c (k))
= ∇Ŵ o

c
λ̂ (k) =

[
Im⊗σ

T
(

Ŵ i
c(k)

T e(k)
)]

(32)

Equation (29) thus becomes,

∆ec(k) =
∂ec(k)

∂vec(Ŵ o
c (k))

∆vec(Ŵ o
c (k)) (33)

Now, for output weight vector Ŵ o
c (k), we have

∂ec(k)
∂vec(Ŵ o

c (k))
=

∂ec(k)

∂ λ̂ (k)
× ∂ λ̂ (k)

∂vec(Ŵ o
c (k))

(34)

And from (15), above equation becomes,

∂ec(k)
∂vec(Ŵ o

c (k))
= In×

∂ λ̂ (k)
∂vec(Ŵ o

c (k))
=

∂ λ̂ (k)
∂vec(Ŵ o

c (k))
(35)
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Therefore, (28) now is,
∂ec(k)

∂vec(Ŵ o
c (k))

∆vec(Ŵ o
c (k)) = ∇Ŵ o

c
λ̂ (k)∆vec(Ŵ o

c (k))

=−2Ξ
−1e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)

∥∥2 (36)

Now, pre-multiplying by ∇Ŵ o
c

λ̂ T (k), we have

∆vec(Ŵ o
c (k)) =−ℑ

−1
o

(
∇Ŵ o

c
λ̂ (k)

)T
Ξ
−1

e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)
∥∥2 (37)

where, ℑo = 2
(

∇Ŵ o
c

λ̂ (k)
)T

∇Ŵ o
c

λ̂ (k).
Therefore, weight update for output critic weight vector takes
place as given by,

vec(Ŵ o
c (k+1)) =vec(Ŵ o

c (k))−ℑ
−1
o

(
∇Ŵ o

c
λ̂ (k)

)T
Ξ
−1

e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)
∥∥2 (38)

B. For Input Weight Vector
(

Ŵ i
c(k)

)
The partial derivative of ec(k) wrt the input weight vector

is computed in order to calculate ∆ec(k). We have

∂ λ̂ (k)
∂vec(Ŵ i

c(k))
=∇Ŵ i

c
λ̂ (k) =

∂

∂vec(Ŵ i
c(k))

(Ŵ o
c (k)

T
σ(Zc(k)))

∇Ŵ i
c
λ̂ (k) =Ŵ o

c (k)
T diag

(
σ(Zc(k)).∗

(
11h−σ(Zc(k))

))
∂Zc(k)

∂vec(Ŵ i
c(k))

(39)

where, ().∗() is element wise multiplication. Now, using
Lemma 1, and the property of vectorization, we get

∇Ŵ i
c
λ̂ (k) = Ŵ o

c (k)
T

σ(Zc(k))
(

11h−σ(Zc(k))
)[

Ih⊗ e(k)T
]

Now, for input weight vector Ŵ i
c(k), (29) becomes,

∆ec(k) =
∂ec(k)

∂vec(Ŵ i
c(k))

∆vec(Ŵ i
c(k)) (40)

and thus,
∂ec(k)

∂vec(Ŵ i
c(k))

=
∂ec(k)

∂ λ̂ (k)
× ∂ λ̂ (k)

∂vec(Ŵ i
c(k))

(41)

Plugging (15) into above, (28) now is,
∂ec(k)

∂vec(Ŵ i
c(k))

∆vec(Ŵ i
c(k)) = ∇Ŵ i

c
λ̂ (k)∆vec(Ŵ i

c(k))

=−2Ξ
−1e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)

∥∥2 (42)

Proceeding the same as in Appendix: A., we obtain the weight
update for input critic weight vector as,

vec(Ŵ i
c(k+1)) =vec(Ŵ i

c(k))−ℑ
−1
i

(
∇Ŵ i

c
λ̂ (k)

)T
Ξ
−1

e(k+1)(G(k)−Gd(k))T ec(k)∥∥ec(k)
∥∥2 (43)

where, ℑi = 2
(

∇Ŵ i
c
λ̂ (k)

)T
∇Ŵ i

c
λ̂ (k).
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