
Combined Online and Offline Inverse Dynamics
Learning for a Robot Manipulator
1Amrut Sekhar Panda, 2Ravi Prakash, 2Laxmidhar Behera, 1Ashish Dutta

1Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India
2Department of Electrical Engineering, Indian Institute of Technology Kanpur, India

Abstract—Due to the approximation errors in dynamic model,
changing payloads and dynamic disturbances acting on the
system, the model based tracking is not satisfactory. Hence the
application of real-time machine learning techniques in inverse
dynamics learning has gained prominence for collaborative hu-
man robot interaction. In this paper, we propose a novel com-
bined online and offline Neural Network based learning technique
in conjunction with an acceleration tracker for inverse dynamics
learning of a robot manipulator. This eliminates the need for
explicit reliance on the approximate analytical robot model
while controlling the robotic systems. The proposed approach
can even capture the system dynamics accurately at higher
acceleration where non-linear forces such as non-linear friction
and damping play a prominent role. The performance of the
proposed inverse dynamic model has been verified using extensive
simulations on control of a 6 DOF UR5 robot manipulator in an
accurate physics based Pybullet Simulator. The efficacy of the
proposed method has been validated by comparing the control
performance using model based backstepping controller. The
results show that the inverse dynamics learning based controller
outperforms significantly its counterpart in real world scenarios
where uncertainties are ubiquitous.

I. INTRODUCTION

Robot manipulators are playing an important role in various
industrial applications. Presently researchers are trying have
manipulators and human work in one common environment.
The manipulators has to be pretty safe for this purpose. To
achieve that the dynamic model of the robot must be well
known. The dynamic model of a manipulator can be modeled
using Newton-Euler recursive algorithm or from Lagrangian
method.But manipulators in the real world, experience various
kinds of dynamic forces which are difficult to model. This
renders the systems infeasible for compliant control. Learning
control is one of the approach to address this issue.

Learning control means applying algorithms that can
achieve accurate motion generation in an autonomous and safe
way. The objective is to design algorithms that can facilitate
the controllers to provide accurate tracking in multiple scenar-
ios without requirement of excessive tuning.

Inverse dynamics learning [1] [2] [3] based control has
become an active area of research towards designing of
compliant motion. If we can have a model which can cap-
ture the system dynamics reasonably well, then the torque
generation will only depend on the feedforward prediction
of the model. As the model is never accurate, it brings in
noises or perturbations. Generally these errors are rejected by
employing Proportional Derivative Integral (PID) controller.

Fig. 1: UR5 Manipulator in Pybullet Simulator

The feedback gain for both proportional and derivative terms
depend primarily on the accuracy of the model. So better
model results in less feedback gains which in turn results in
more compliant and reactive controller. But the problem lies in
finding good estimates of the inverse dynamics model because
of the reason stated above. As the degrees of freedom of the
system increases the system becomes proportionately complex
to model using traditional techniques.

The challenge in the field of learning control is to estimate
a good inverse dynamics model. From the machine learning
perspective the challenges are many. The inverse dynamics
data distribution is non-stationary during execution. In order
to collect data the workspace of the manipulator has to be well
explored. This may not be as such as problem for system with
lower degrees of freedom, but it can be infeasible for higher
dimensional systems. So for higher dimensional system it is
very difficult to obtain a global inverse dynamics model by
just exploring the workspace of the system and learning it. So
online learning becomes an attractive option. For a learning
algorithm to be suitable for online scenario it has to both
computationally efficient and robust. There has been recent
work on creating efficient approximations of Gaussian Process
Regression (GPR) [4] [5] [6]. Gaussian process Regression
provide better estimates by associating uncertainty estimates
with its predictions. Meier et al [7]have investigated drifting
gaussian process regression for learning inverse dynamics
where data is correlated and arriving during trajectory tracking.

Because of such difficulties from machine learning perspec-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

tive, recent works have focused on designing algorithms which
could be used in control loops. But having a algorithm that
can make feedforward predictions fast enough does not solve
the problem but creates new challenges. The learned model
determines what next data point it gets to see. As our model
is not perfect, the actual observed states will be different than
the desired state. So the model will have to predict the next
state from the current state which actually not a point in the
trajectory. In order to compensate such errors PID controller
is employed. The PID controller brings the system back to
the trajectory and with time the algorithm learns from the
observed states to generalize to the desired states. But this
raises the question as how to design a PID controller. All
the recent works address how to make online estimation of
inverse dynamics modeling errors. This work focuses not only
eliminating explicit requirement of PID controller to achieve
tracking but also incorporating some knowledge of the system
before deploying for feedforward prediction in online setting.
The first one can be done by modeling the inverse dynamics
error as a constant offset, which will be constantly adapted
via online gradient descent to minimize the tracking error
at the acceleration level. In other words it compensates the
torque that creates difference in the value of actual and desired
acceleration. The learning rate affects the magnitude of update
at each step.This parameter is equivalent to the feedback gains
of the PID control term.The offset term can be made variable,
but assuming it a constant simplifies the problem. The second
is done by incorporation of trained model which has been
trained with some data of the system during its operation. So
the trained model has captured some behaviour of the system
[8] [9]. Deploying such models online will make the model to
converge faster than the deploying a untrained model which in
turn not only will reduce the gains of the constant offset term
but also will require less data points to capture the inverse
dynamics. The results obtained by adopting this approach was
such that model was even able to reduce tracking error for wide
variations in end-effector mass, joint frictions and damping.

II. BACKGROUND

Accurate inverse dynamics model is the primary require-
ment for tracking desired accelerations. The dynamics of
the a manipulator according to rigid body dynamics can be
expressed as follows:

τ =M(q)q̈ + h(q, q̇) (1)

where q, q̇, q̈ represent joint angles, joint velocities and joint
accelerations respectively. M stands for the inertia matrix, h
represent the torque produced due to modeled forces. The
modeled forces are coriolis forces, centrifugal forces, gravi-
tational forces, friction forces etc.Given accurate information
of various rigid body dynamics (RBD) parameters the mass
matrix M and h can be estimated.The estimated RBD model
can be expressed as follows:

τ̂rbd = M̂(qt)q̈td + ĥ(qt, q̇t) (2)

where the M̂ and ĥ are the approximates for M and h.
But the RBD model is incapable of encompassing all the
non-linearities that arise in actual systems. So the above
estimates are only rough approximations. While tracking the
desired accelerations q̈d,generally τrbd is applied on the actual
system whose true dynamics is unknown, we obtain the actual
acceleration q̈a which differs from q̈d.We can express the
actual acceleration as:

qa
t =M(qt)−1[(M̂(qt)q̈td + ĥ(qt, q̇t))− h(q, q̇)] (3)

Now if our estimation of M̂ and ĥ are accurate then the actual
acceleration of the system and the desire acceleration will be
same. But this never occurs in actual systems. As a result
typically a feedback term τfb is required. The feedback adds
a compensating value from the measured error and ensures
tracking. This task is generally achieved using PID controllers.
The feedback gain for both proportional and derivative terms
depend primarily on accuracy of the estimated model. So better
model results in less feedback gains which in turn results in
more compliant and reactive controller

A. Learning Inverse Dynamics Models

Many approaches to learn either full inverse dynamics or an
error model has been proposed. While learning such models
the total torque input applied on the system is combination
of torque predicted by the existing approximate model (τ̂rbd),
torque predicted by an error model (fiderr) and a feedback
term (τfb).

τtotal = τ̂rbd + fiderr + τfb (4)

Prediction of torque command using the learned models
must be feasible in presence of real time system constraints.
One of key challenges for a inverse dynamics model is
computational efficiency.The model should be able to predict
the torque command in least amount time, so that it can
be applicable for real time applications.Recent advances in
technology have rendered the availability of computational
resources cheaper. But the inverse dynamics data distribution
is non-stationary in the workspace of the system.So learning
a global inverse dynamics model is very difficult. Hence,
approaches that can learn the inverse dynamics incrementally
and simultaneously computationally efficient have become a
major direction of research involving learning inverse dynam-
ics models. However learning inverse dynamics models that
are globally valid in highly correlated data streams remains a
challenge.

Some robustness can be achieved by using an analytical
rigid body dynamics model and employing a learned error
model on top of that.When the algorithm detects that pre-
diction of the error model is poor, it can revert to the prior
knowledge of the system.

Due to challenges inherent to learning globally valid inverse
dynamics models, some attention has been directed towards
learning task or context specific inverse dynamics learning
models. In such cases, the learning process can be simpli-
fied by collecting task specific data for offline learning. But

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

challenge lies in deciding the correct context during run time
such that the correct task can be chosen.

Finally the motivation for learning inverse dynamics models
is to achieve the ability to employ low feedback gains. How-
ever, traditional inverse learning models require high learning
rate in the beginning of training to ensure good tracking, such
that relevant data is generated. Little amount of work has been
done to automatically lower the feedback gain once a good
model is learned.

All these work involve learning inverse dynamics from
an approximate model which is typically derived using rigid
body dynamics. But in this work we have estimated both
the approximated model and error model together by learned
model. The data can be collected by moving the manipulator
in its workspace for certain number of times and recording
state and torque data streaming from joints. An approximate
model can be prepared by learning this data. Subsequently it
can be deployed for further learning along with the feedback
term while following the trajectory. This work shows that
such models can be computationally efficient for feedforward
prediction of torque command in real time.

B. Direct and Indirect Inverse Dynamics Learning Models

[9] [8]Recent attempts in the field of learning inverse
dynamics can be classified in the category of indirect learning.
The purpose is to optimise the following objective function:

Lindirect(w) =
∑

(xa,τtotal)∈D

‖ τtotal − f(xa;w) ‖ (5)

where the input data xa = (q, q̇, q̈a) consists of q and q̇ which
denotes joint angles and joint velocities respectively and q̈a
which is the actual acceleration. τtotal is the applied torque
on the system which produced acceleration q̈a.The function
f(x;w) maps x to torque space where w stands for the
parameter of the model.

In online setting,the robot tries to track q̈d from its states
(q,q̇).So it applies τtotal on its joint and observes the actual
acceleration q̈a. In the subsequent step xa=(q, q̇, q̈a) serve as
the input instead of desired state xd=(q, q̇, q̈d). So it will lead
to slow convergence since the data used is out of the trajectory
data distribution which we want to optimise. This is especially
difficult when q̈a = 0 because of static friction since many
torque values can map to this value.

On the otherhand it has been shown that it is possible to
measure the gradient of acceleration error of a system which
can be classified as direct online learning algorithms [10].
These approaches tries to directly minimize the error between
desired and actual accelerations by optimising the following
loss function:

Ldirect(w) = ‖q̈d − q̈a‖2M (6)

where the actual acceleration is a function of the error
model. Traditional direct adaptive control methods have quite
similar approaches- they use Lyapunov techniques to derive
controllers that adjust the dynamics offset model with respect
to some reference signal. However the feedback term cannot

map the complete structure of the error model and requires
relatively high learning rate for any change in payload. This
can be taken care of by introducing an error model which has
previously learned the model structure to some extent.

Our work is based on the above mentioned techniques.
First a learning model can be trained with torque and state
space data of the system. This learned model along with
the acceleration tracker can both predict the torque command
and learn from the new data obtained after application of
torque on the system. Also it has been shown that such an
approach can replace the necessity of analytical rigid body
dynamics model based inertia, gravity and centrifugal matrices
to determine part of the total torque command during runtime,
thus simplifying the computation. It can even track different
trajectories.Another advantage is, this approach is task inde-
pendent and theoretically applicable anywhere throughout the
state space. On the flip side, it does not retain the history
of previously learned error models,thus cannot improve over
time.

III. COMBINED OFFLINE AND ONLINE LEARNING

To comply with the state-space dependence of the inverse
dynamics modeling error, we assume that the error model
is valid in the space of x = (q, q̇, q̈). The model can be
trained with data collected by moving the manipulator in its
workspace. Furthermore,during task execution, we will treat
the current state information as a new training dataset which
can further improve and update our model. Thus our error
models are indexed by k,which means kth iteration.For k=0
the error model that exist is the previously learned model at
hand and we assume it to be f0iderr(x;w

0) = 0. Thus the total
torque applied to the system at any given instant is combined
output of both offline learned model and the feedback term
τfb.

τtotal = fkiderr + τfb (7)

Now we discuss the formulation of loss functions for both
offline and online learning.

A. Learning Offline model
We discuss the details of learning the error model in offline

setting. For any starting position and target position of the
joint angles, we plan a motion trajectory. Then we compute
the torque command based on the current state (q, q̇) and
desired accelerations q̈d , apply this torque, and then measure
actual accelerations q̈a. Now we know what torque command
achieves these measured accelerations and can use this data
point to learn an inverse dynamics model. We collect all such
data points over the course of one task execution, such that we
have T data points to learn. Similarly we can execute many
such task and collect data for the training.

In such indirect formulation our aim is to optimize the
parameters w such that the difference between the applied
torque τtotal and the inverse dynamics model fid at xa is
minimized.

Lindirect =
∑

(q,q̇,q̈a,τtotal)∈D

∥∥τtotal − f(q, q̇, q̈a;w)∥∥2 (8)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

where f(q, q̇, q̈a;w) is the learned error model.Note,optimising
this loss function can learn unknown inverse dynamics model
at the actual state and actual accelerations. Thus when online
learning is in progress,feedback term is indispensable for good
tracking of the desired acceleration -at least until the model
has learned.

B. Direct Optimisation of the Inverse Dynamics Modeling
Errors

In contrast to the above mentioned methods the above
equation proposes to augment Equation (3) with a constant
offset term w such that the actual acceleration can now be
written as:

qta =M(qt)−1[(M̂(qt)q̈td + ĥ(qt, q̇t) + w)− h(q, q̇)] (9)

The offset term w has been designed to mend any any
modeling error and perturbation which may result in inaccurate
tracking. [11]So we also propose to perform gradient descent
on inertia weighted acceleration error of the form

LDirect(w) =
1

2

∥∥q̈d − q̈a(wt)∥∥2Mt

=
1

2
(q̈d − q̈a(wt))TMt(q̈d − q̈a(wt))

(10)

to minimize the error between desired and actual accelera-
tions.Note that Mt is the true inertia matrix.The gradient of
the constant offset model can be expressed in the form of
acceleration error.

∇wLdirect(w) = −
∂q̈a(w

t)
T

∂w
Mt(q̈d − q̈a(wt))

= −M−1t Mt(q̈d − q̈a(wt))
= −(q̈d − q̈a(wt))

(11)

Analytically the above objective function and its gradient
cannot be determined because it requires prior knowledge of
the unknown dynamics function within qa(wt).But the actual
accelerations can be evaluated by finite differencing of the
state data directly obtained from the system.Given this,the
feedback torque for the next step can be computed as

wt+1I& = wt + η(q̈d − q̈a(w)) (12)

which in turn will generate the corrected torque command

τt+1 = f(qt+1.q̇t+1, q̈
t+1
d) + wt+1 (13)

It can observed that there lies a connection between online
gradient descent on the acceleration error and traditional PID
term, which allows to analyse the influence of learning from
feedback term perspective.For instance,the learning rate η
has influence over the effect of current acceleration on the
corrected torque command in the next time step. The higher
learning rate will result in larger torque adjustment in similar
way the higher gains of a PID controller. The consequence is
poor compliancy. In this current form the offset cannot be used
to make feedforward prediction about the inverse dynamics
model error.

C. Online Learning Of Inverse Dynamics Error

Our task is to predict the required torque command from
a locally valid inverse dynamics model as learning a globally
valid model is difficult especially if the robot has more degrees
of freedom. So we will utilise the data streaming from the
robot during its operation for augmenting the earlier pre-
trained offline model.

More elaborately,at time step t we want to use the current
model f(xa, w) to predict the modeling error at current actual
state and the desired accelerations. The current state data along
with the desired acceleration are supplied to the model in order
to predict the torque command. The applied torque command
will result in the actual acceleration q̈ta,which is estimated
from the measured position data using finite difference. It is to
be noted that,the current observation (xta, q̈

t
a), τ

t gives us the
information about the inverse dynamics at the current actual
state and actual information rather than current actual state
and desired acceleration.Unless we are observing the desired
accelerations well,we will loose useful information. Due to
this reason,we always have the online learning on our inverse
dynamics model running along with the feedback term on
accelerations to make sure we are tracking them.

Our data points to be included in our data window is [xt =
(xta, q̈

t
a), y

t = τapplied].Once we get this data we can use this
to update the parameters of our inverse dynamics model.In the
subsequent step we will drop the old observation by including
the new one which we get by repeating the procedure stated
above.

IV. EXPERIMENT

We have evaluated the above approach in simulated exper-
iment. We have taken a simulated universal robot’s UR5 six
degrees of freedom cobot for experimentation. We have com-
pared the our proposed learned model to track trajectory with
a backstepping controller.In this experiment we have tracked
the actual trajectory of the end-effector versus the desired
trajectory for any arbitrary random valid initial and target point
for both controller under various operating conditions. The
simulated experiment consists no.of steps such as building the
simulated model,data generation,training the inverse dynamics
model and deploying the model for control. Each step has been
discussed below.

Number of Networks 5
Number of layers of each Network 4

Activation Function tanh
Optimizer Adams

Input Dimension 17
Output Dimension 1

Number of Hidden layer Neurons 200
Learning Rate 0.001

Number of Epochs 200
Number of Training samples 100,000

TABLE I: Neural network Architecture and Hyperparameter.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

A. Simulated Robot Model

Simulations can be performed using many state of the
art simulators, e.g. Pybullet, MuJuCo [12], Robotics Toolbox
[13], Gazebo,V-rep [14] or RoboAnalyzer [15]. We have
used pybullet simulator [16] which is based on the Bullet
physics engine, for simulation.The simulation window with the
manipulator is shown in Fig. 1. The pybullet simulator has a
very to use python API’s for application of various controller.
It is fast and does not require any additional dependencies. As
our inverse dynamics model provides feedforward prediction
of applied torque, so we need to have torque controllers at each
joint.The simulator provides functionalities to imitate friction
using velocity controllers at each joint.

B. Data Generation

We obtained the data required for training our inverse
dynamics model by recording the joint states at all instant of its
motion. The plan is the move the robot from one random point
in the workspace to another random point following a certain
trajectory. It is to be noted that,the workspace that we take
should be away from singularities,so our workspace boundary
must stay at some threshold distance from the boundaries
of the actual workspace. We adopt polynomial functions to
generate our trajectory. We take the polynomial of 5th degree
for trajectory generation. From the boundary conditions we
compute all the co-efficient of the polynomial. Then we use
them to create trajectory between any two random points in
the workspace.We do not take the orientation of the end-
effector into account, although there is no such constraints
that the algorithm demands. Then,at each step the values of
joint angles,joint velocities and desired acceleration supplied
to the analytical inverse dynamics model to calculate the
torque command. When we apply the torque command the
system will have attained some state. Because of the simulated
environment the actual acceleration will be quite same as
the desired acceleration. Subsequently these procedures are
repeated at each time step until the end-effector reaches the
desired position in the workspace. In the meantime joint state
data streaming from robot along with the applied torque data at
each time step are recorded. Similarly many such trajectories
are executed and data collected. Repeating the above procedure
we collected nearly 100,000 training samples.

C. Training the Offline Inverse dynamics model

We have employed a multi-layered neural network to learn
our model. We have treated individual joint as a separate
learning problem by providing inputs of all joints . This
reduces the prediction of all joints as an extension of single
joint prediction . In our case we need to train five models.
The neural network consists of four layers with 200 neurons
in each hidden layer. The activation function is taken to be
tanh activation.The input vector is 17 dimensional which
consists of joint angles,joint velocities and joint accelerations
of all joint angles together. The acceleration values of sixth
joints in the training samples were mostly zero. So We have
excluded the acceleration value as input. The output vector

is one dimensional which consists of torque value of one
out of five joint angles as the variation in value of sixth
joint joint hardly matters for tracking cartesian positions.The
learning rate is taken to be 0.001 and Adams optimiser for
weight update. The network was trained upto 200 epochs.The
input data was processed and normalized before feeding to
the neural network.So five learning models are trained for five
joints.

D. Deploying the model and Online learning

The next step is to deploy the model in control loop.
As discussed in the previous section, the model along with
the acceleration tracker has to be employed for simultaneous
prediction and online training. During the motion of the ma-
nipulator state data was stored for evaluating the performance
of the model.

We have compared the current scheme with the a backstep-
ping controller for multiple test cases. The control law for
backstepping controller is given below.

τ =M(θ̈ +Kpė+Kd(θ̇ +Kpe− θu) + e) + C (14)

The backstepping control requires inertia, gravity and cen-
trifugal plus coriolis matrices for computing torque values,
which in turn needs approximate analytical formulation of the
system dynamics. We move the manipulator along a trajectory
employing backstepping controller and our learned inverse
dynamics model separately. In order to learn disturbances the
offline model must be trained with as many data as possible for
error minimisation.So it is essential to provide more steps in
trajectory. For experimentation we take 1540 time steps with
completion time of 5 seconds. Each network takes on average
0.001 seconds for both prediction and training. As all the five
networks are independent of each other, parallel processing is
obvious option for reduction in overall computational time.

Case Payload mass Payload status Friction Damping
1 0.2 Kg Known No No
2 2 Kg Unknown No No
3 0.4 Kg Unknown Yes No
4 2 Kg Unknown Yes Yes
5 0.2 Kg and 2 Kg Unknown Yes Yes

TABLE II: Test Cases

Five separate operating scenarios have been considered for
comparison.We have evaluated tracking performance for the
following different scenarios (a)The end-effector payload same
as the mass during the training and the payload mass is
known a priori. (b) The end-effector payload different from
the mass during the training (c) The end-effector mass is
unknown and the joints have friction force enabled (d) The
end-effector mass is unknown and the all the joints have both
damping and friction enabled. For each case we have planned
a polynomial trajectory with random initial and final points
in the workspace.The payload mass in each case is given in
the table above. Here the RMS error represents the rms error
between the final target point and end-effector position at any

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2: The above figures show the trajectory and control inputs of backstepping and learned model for random initial and final point in
the workspace :(i) First column of the figures contain the end-effector trajectories in Pybullet. (ii) Second column of the figures contain
comparison of trajectories followed by both controllers. (iii) Third column of the figures contain control input of computed by backstepping
controller.(iv) Fourth column of the figures contain the computed control employing learned inverse dynamics model controller.(v) The Fifth
column of the figures contain the RMS error between end-effector current state and trajectory end point.

time step. In the first case we keep the payload mass 0.2
Kg. We generate the trajectory and employ both controllers
separately to track the trajectory. As the mass is known, the
backstepping controller perfectly tracks the desired trajectory
with RMS error converging to zero. Because of online training
the learned model outputs fluctuate but the mean follows the
backstepping output. In the second case, the mass of payload
is unknown. The backstepping controller by default takes the
mass to be 0.2 Kg and generates control input. But the payload
mass is actually 2 Kg. As a result backstepping controller
miserably fails as the RMS error converges to a finite value
other than zero. The learned inverse dynamics model closely
follows the trajectory because of online learning and RMS
error converges to zero. In the third case friction simulation
is enabled in each joint. The friction can be modeled as
the maximum value between a threshold value and 1

3 of
the applied torque [17]. As the payload mass is close to
the backstepping default mass value, the controller is able
to track the trajectory successfully and the RMS error value

converges to zero. Both joint friction and damping are enabled
in fourth case. As the payload mass along with friction
and damping forces amplify disturbance in the system, the
backstepping controller fails to converge to zero RMS error.
In the last case we track a trajectory where the manipulator
picks a unknown mass, carries it forward and releases it
somewhere while following the trajectory. The manipulator
picks the 2Kg mass at 200th time step and releases at 1300th
time step. The backstepping controller completely fails to
track the trajectory.But because of online learning the learned
inverse dynamics model could track the trajectory reasonably
well. The backstepping controller relies on inertia matrix and
others for control input which in turn depends on mass value
directly. For small change in mass value the controller does
not require tuning of gains for successful trajectory tracking.
But large change in values will require further tuning. The
inverse dynamics learned model controller quickly learns the
system dynamics and disturbance because of both offline and
online training. The main advantages is the model can even

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

predict the torque command for high speed applications by
accurately mapping all non-linear torques arising during the
motion without any analytical inverse dynamics model.

E. Quantitative comparison

For each of the cases listed in the above table we have tested
50 trajectories for each case and computed the mean squared
error between desired trajectory and actual trajectory produced
by both backstepping controller and learned inverse dynamics
model. The result have been shown in the table below. The
entries of both second and third column in the table represent
the mean and variance of RMS error.

Case No. RMS Error Backstepping RMS error Learned model
1 0.002 ±0.001 0.0004 ±0.0003
2 0.03 ±0.035 0.0005 ±0.0005
3 0.006 ±0.002 0.0005 ±0.0004
4 0.08 ±0.04 0.0007 ±0.0004
5 0.12 ±0.03 0.0007 ±0.0002

TABLE III: RMS Error Comparison

Note the percentage improvement in the RMSE of the
proposed inverse dynamic control technique: For case 1: 60%,
For case 2: 98%, For case 3: 91.6%, For case 4: 99.12%, For
case 5: 99.41%. The results imply that our learned inverse
dynamics model performs better than backstepping controller
in presence of high system uncertainty.This is most suitable
for real world robotic applications where system experiences
many disturbances such as change in end-effector payload,
mounting camera and other other equipments which are hard
to model.Our proposed learned inverse kinematics model suits
well in such scenarios.

V. DISCUSSION AND FUTURE WORK

We have presented the online learning control approach
that combines both offline and online learning without any
requirement of analytical inverse dynamics model. It is to be
noted that in individual experiments, error models trained on
both offline and online data have better performance for certain
range of velocity and acceleration. Exploitation of structure
of data sources for determining reliable sources can be an
interesting direction for exploration. We have shown that the
pre-neural networks can learn the larger inverse dynamics error
model. Our learned model provides better prediction of model
uncertainties compared to standard backstepping controller .
For this model we do investigate how the system behaves
when it undergoes strong perturbation.This could result in
undesirable prediction because the input data excludes that
input space.

Due to hard real time constraints we cannot increase the
model size further. Adoption of better regression model can
map inverse dynamics which remains an area of further
investigation. However in our future work, we plan to learn the
error model with better accuracy with less computational cost.
Furthermore we would like compare our model with Gaussian
process Regression models in evaluate the performance in
presence of model uncertainties.

REFERENCES

[1] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control:
a survey. Cognitive processing, 12(4):319–340, 2011.

[2] B. Bcsi, L. Csat, and J. Peters. Alignment-based transfer learning for
robot models. In The 2013 International Joint Conference on Neural
Networks (IJCNN), pages 1–7, Aug 2013.

[3] Niko Sünderhauf, Oliver Brock, Walter J. Scheirer, Raia Hadsell, Dieter
Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard,
Michael Milford, and Peter Corke. The limits and potentials of deep
learning for robotics. CoRR, abs/1804.06557, 2018.

[4] Arjan Gijsberts and Giorgio Metta. Real-time model learning using
incremental sparse spectrum gaussian process regression. Neural Net-
works, 41:59 – 69, 2013. Special Issue on Autonomous Learning.

[5] Olivier Sigaud, Camille Salan, and Vincent Padois. On-line regression
algorithms for learning mechanical models of robots: A survey. Robotics
and Autonomous Systems, 59(12):1115 – 1129, 2011.

[6] Duy Nguyen-tuong, Jan R. Peters, and Matthias Seeger. Local gaussian
process regression for real time online model learning. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 1193–1200. Curran Asso-
ciates, Inc., 2009.

[7] Franziska Meier and Stefan Schaal. Drifting gaussian processes with
varying neighborhood sizes for online model learning. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages
264–269. IEEE, 2016.

[8] F. Meier, D. Kappler, N. Ratliff, and S. Schaal. Towards robust online
inverse dynamics learning. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4034–4039, Oct 2016.

[9] D. Kappler, F. Meier, N. Ratliff, and S. Schaal. A new data source for
inverse dynamics learning. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4723–4730, Sep. 2017.

[10] Franziska Meier and Stefan Schaal. Drifting gaussian processes with
varying neighborhood sizes for online model learning. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA)
2016. IEEE, May 2016.

[11] Nathan Ratliff, Franziska Meier, Daniel Kappler, and Stefan Schaal.
Doomed: Direct online optimization of modeling errors in dynamics.
arXiv preprint arXiv:1608.00309, August 2016.

[12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[13] Peter I. Corke. Robotics, Vision & Control: Fundamental Algorithms in
MATLAB. Springer, second edition, 2017. ISBN 978-3-319-54413-7.

[14] M. Freese E. Rohmer, S. P. N. Singh. Coppeliasim (formerly v-rep):
a versatile and scalable robot simulation framework. In Proc. of The
International Conference on Intelligent Robots and Systems (IROS),
2013. www.coppeliarobotics.com.

[15] Vaibhav Gupta, Rajeevlochana G. Chittawadigi, and Subir Kumar Saha.
Roboanalyzer: Robot visualization software for robot technicians. In
Proceedings of the Advances in Robotics, AIR 17, New York, NY, USA,
2017. Association for Computing Machinery.

[16] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning. http://pybullet.org,
2016–2019.

[17] 1955 Craig. Introduction to robotics : mechanics & control / John
J. Craig. Addison-Wesley Pub. Co.,, Reading, Mass., 1986. Includes
bibliographies and index.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

http://pybullet.org

