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Abstract— We propose a new approach for real time 

inference of occupancy maps for self-driving cars using deep 

neural networks (DNN) named NeuralMapper. NeuralMapper 

receives LiDAR sensor data as input and generates as output the 

occupancy grid map around the car. NeuralMapper infers the 

probability of each grid map cell from one of the three following 

classes: Occupied, Free and Unknown. The system was tested 

with two datasets and achieved an average accuracy of 76.48% 

and 73.81%. We also evaluated our approach for localization 

purposes in a self-driving car and most of the localization pose 

errors were less than 0.20m with an RMSE of 0.28 which are 

close to the results in the literature for methods using other grid 

mapping approaches.       

Keywords—self-driving cars, mapping, deep neural networks. 

I. INTRODUCTION 

Self-driving cars have advanced greatly over the last twenty 
years. In 2004, the USA Defense Advanced Research Projects 
Agency (DARPA) promoted the first self-driving car 
competition, with the goal of crossing the Mojave Desert 
without human intervention [1] – in this competition none of 
the participants achieved the goal. After this first attempt, two 
other competitions were promoted by DARPA, in 2005 and 
2007, and five and six vehicles completed the proposed 
challenges, respectively. These events have ignited the self-
driving cars’ development and contributed to self-driving cars 
become reality nowadays. Companies like Google, Volvo and 
Uber are running trials in several cities around the world 
offering autonomous driving services to the public. 

Despite the great advances already made in this area, 
today’s self-driving cars still do not deal accurately with all 
situations and weather conditions encountered in everyday 
urban traffic. For this reason, universities and research centers 

worldwide are conducting research to improve this technology 
and increase the autonomy level of self-driving cars.  

The IARA (Intelligent Autonomous Robotic Automobile) 
self-driving car, shown in Figure 2, has being developed since 
2009 by the High Performance Computing Laboratory 
(Laboratório de Computação de Alto Desempenho - LCAD) of 
Federal University of Espírito Santo (Universidade Federal do 
Espírito Santo – UFES, Brazil). IARA is based on a Ford 
Escape Hybrid adapted with a variety of sensors and 
processing units. Its autonomy system follows the typical 
architecture of self-driving cars [2] and as such is composed of 
several subsystems, which includes a Mapper [3], a Localizer 
[4], a Moving Obstacle Tracker [5], a Traffic Sign Detector 
[6][7], a Route Planner, a Path Planner, a Behavior Selector, a 
Motion Planner [8], an Obstacle Avoider [9] and a Controller 
[10], among others. Maps used by IARA are built from LiDAR 
point clouds in online and offline mapping. Considering that 
LiDAR readings may be inaccurate due to environmental 
conditions (e.g. rain, falling leaves, uneven reflection surfaces) 
or due to measurement errors caused by noise from the sensor 
itself, a mapping system cannot completely rely on the 
distances and positions directly measured by LiDAR. 
Therefore, for mapping, it is necessary to use techniques that 
take into account all these uncertainties to try and filter the 
sensor errors as much as possible. 

The algorithm currently used in IARA seeks to update the 
probability of occupancy of regions with each new reading of 
the LiDAR sensor. For this, an Occupancy Grid Mapping 
(OGM) algorithm [3], based on the Bayes filter, is applied for 
gradually increase or decrease the occupancy confidence of 
each cell of the grid-map. However, this approach is not very 
accurate for objects at long distances. Furthermore, it is 
necessary to use an algorithm to infer the occupancy of cells 
that were not reached by any sensor reading, since the OGM 
used does not take into account spatial discontinuities. In 
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addition, the mapping algorithm needs to treat several special 
cases along thousands of lines of code to find the best way to 
properly extract the features of sensor readings [3].  

Motivated by these limitations of the mapping method of 
IARA, as well as the advances of deep learning, in this work, 
we propose a new approach for real time inference of 
occupancy maps based on Deep Neural Networks (DNN), 
named NeuralMapper. NeuralMapper is a subsystem of 
IARA’s autonomy software architecture that receives LiDAR 
sensor data as input and generates as output an occupancy grid 
map around the car. In NeuralMapper, every LiDAR point 
cloud is transformed from spherical to 2D Cartesian 
coordinates in the LiDAR reference frame. Then, five matrices 
are computed from the 2D LiDAR data using statistics of this 
data (the input data of NeuralMapper follows that employed by 
Caltagirone et al. [11]). Those five matrices are combined into 
a five-channel tensor that is used as input to the NeuralMapper 
DNN. The statistics considered are the number of laser rays 
that hits a cell of the grid map around the car, as well as the 
maximum, minimum, mean and standard deviation of the 
height of the obstacles hit by rays that falls into a cell. 

The output of the network is an occupancy map with the 
corresponding probability associated with each of the three 
possible classes of each grid-map cell: unknown occupancy, 
free or occupied. This map is transformed to the car reference 
frame and published to the other IARA’s subsystems (see 
Figure 2). A block diagram of NeuralMapper is shown in 
Figure 1.  

We evaluated NeuralMapper with real world data using 
IARA. The system was tested with two datasets built with 
IARA’s sensor data and achieved an average accuracy of 
76.48% in the first and 73.81% in the second dataset. We also 
evaluated the use of NeuralMapper’ maps for localization 
purposes using IARA and most of the IARA’s localization 
errors were smaller than 0.2m, with an RMSE of 0.28m. These 
results are close to those in the literature for methods using 
other grid mapping approaches. 

The following sections will be devoted to assess the 
capability of this method by both literature review and practical 
experimentation in IARA. 

 

Figure 2- Overview of the typical architecture of self-driving cars [2]. TSD 

denotes Traffic Signalization Detection and MOT, Moving Objects Tracking. 

II. RELATED WORK 

There are several techniques presented in literature that 
uses neural networks with point cloud data acquired from 
sensors such as, LiDAR, radar, sonar and others. Those 
sensor’s data are used for several purposes such as, build 
occupancy grid maps, localization and 3D point cloud 
segmentation. 

Santos et al. [12] propose a system that uses data from 
ultrasound sensors installed around a robot that serve as input 
to a feed-forward neural network that determines if the cells 
around the robot are free or occupied. This work only deals 
with the occupancy of the cells of a prior map skeleton of the 
environment. 

Gupta et al. [13] propose the creation of occupancy grid 
maps using data provided by a sonar sensor. The measurement 
of the sensor is converted into a probabilistic representation of 
the environment that describes if a grid cell is empty, occupied 
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Figure 1 – Overview of NeuralMapper architecture. The input on the left shows the LiDAR point cloud raw data. NeuralMapper projects the raw data on the 
ground as a set of 2D statistics maps. The statistics maps are neurally processed by the encoder, the context module and the decoder to produce an occupancy 

grid map as output. In the map, unknown cells are blue, free cells are white and the occupied cells are black. 
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or if is an unknown area. As changes in the environment affect 
conversions, a neural network was used to learn these 
conversions, making the sensor data more adaptable to 
changes. 

Weston et al. [14] present a technique that uses raw radar 
data and LiDAR data to create an occupancy grid map using a 
DNN. Radar sensors are able to detect long range and partial 
occluded objects and are cheaper than LiDAR but radar scans 
are notoriously difficult to interpret due to the presence of 
several pertinent noise artefacts while LiDAR systems provide 
precise, fine-grained measurements. The DNN was trained 
with partial occupancy labels generated by LiDAR data and 
was evaluated on five hours of recorded data in a dynamic 
urban environment. 

Wu et al. [15] propose the SqueezeSeg, that is a CNN 
(Convolution Neural Network) to perform semantic 
segmentation of road-objects from LiDAR point clouds, such 
as cars, pedestrians and cyclists. The CNN was trained with 
labelled LiDAR point-cloud from KITTI dataset [16] and with 
data from a simulated LiDAR of a high-fidelity game engine. 
The input of SqueezeSeg is a point cloud and the output is a 
point-wise label map that is refined by a conditional random 
field (CRF). Each point cloud is processed in 8.7ms. SalsaNet 
proposed by Aksoy et al. [17] is also a neural network that 
segments directly from LiDAR point clouds the drivable free-
space and vehicles. The training process uses KITTI dataset 
[16] but it does not provide drivable free-space labels, so they 
propose an automatic system to annotate it in the point-cloud 
using the neural network MultiNet [18]. Then the point cloud is 
represented as a 4D Bird-Eye-View image that contains 
information about maximum and minimum elevation, 
reflectivity and number of projected points. This image is used 
as input to train the DNN. SalsaNet results presented a mean 
IoU of 79.74% while SqueezeSeg results presented a mean IoU 
of 69.80%. 

Caltagirone et al. [11] present a neural network approach 
that detect roads using only LiDAR data. The input of the 
DNN is a top-view image of the LiDAR where the points are in 
grey-scale representing mean elevation and density. Then a fast 
fully convolutional neural network (FCN) was trained with 
KITTI dataset [16] and was able to detect roads with a 
precision of 94.15%. The DNN architecture adopted in this 
work was based on a fully convolutional neural network used 
in [11] but the purpose and dataset are different as will be 
shown next. 

III. A LIDAR-BASED DNN FOR OCCUPANCY GRID MAPPING 

First, it should be recalled that OGM is about inferring an 
occupation probability for each cell on the map. The 
occupation probability of each cell can assume a continuous 
value between zero and one, therefore it can be used to classify   
the cell as free or occupied cell. 

A. The NeuralMapper Subsystem 

The NeuralMapper (Figure 1) is the subsystem that receives 
IARA's LiDAR sensor data as input and generates as output the 
occupancy map around the car. The input data of 
NeuralMapper follows Caltagirone et al. [11]. First, every 
LiDAR point cloud is transformed from spherical to 2D 

Cartesian coordinates in the LiDAR reference frame. Also 
following Caltagirone et al. [11], five statistics matrices are 
computed from the 2D coordinate matrix and normalized 
between zero and one. Those five normalized statistics 
matrices are combined into a five-channel tensor used as input 
to the network. The statistics considered are the number of 
laser rays that hits the cell, max/min/mean/std height. 

In order to adapt the FCN [11] output to IARA’s map, it 
was established that the network should return a map of 
probabilities for three classes: Occupied, Free and Unknown. 
Thus, the neural network would make inferences compatible to 
the probabilistic methods widely adopted in IARA’s 
subsystems (Figure 1).  

In this way, the output of the network is an occupancy map 
with the corresponding probability associated with each of the 
three classes for each output neuron (cell). This map is 
transformed into the car reference frame and published to the 
other IARA’s subsystems. The output neuron probability is 
converted into occupancy probability as follows. If the most 
likely class is the Unknown, the map cell receives a value of -
1, otherwise the probability of the class Unknown is zeroed and 
the probabilities of the other two classes are normalized so that 
the sum of the two is equal to 1.  The code is available as an 
IARA’s module at https://github.com/LCAD-
UFES/carmen_lcad . 

B. DNN architecture 

Figure 1 shows the general architecture of the FCN which 
is divided into three large groups of layers, called Encoder, 
Context Module and Decoder. 

The Encoder receives the inputs and reduces the size of the 
inputs data trying and minimizing the loss of information. For 
this, two normal convolutional layers are used with 3x3 kernel, 
stride 1 and 32 features map with Exponential Linear Unit 
(ELU) activation function [19], followed by a max pooling 
layer of 2x2 with stride 2. 

The Context Module is mainly formed of dilated 
convolution layers. Dilated convolutions have the ability to 
increase the receptive field of the convolutional filter, in order 
to increase the ability to infer continuity between contiguous 
map cells. For mapping obstacles, there are many 
discontinuities over long distances in sensor readings. So, it 
would be interesting to apply dilation for predicting the 
continuation of obstacles to more distant places, where the 
sensor is no longer very effective. There are eight Dilated 
convolutions layers with ELU activation function, 3x3 kernel, 
and 128 features maps. These layers have a progressive 
increase in dilation, so that in the last layer there is an 
expansion of 32x64. Unlike the work proposed by Caltagirone 
et al. [11], in this work, it was determined that the output map 
would be square, with a range of 60 meters around the car. 
Therefore, the dilation used in each layer was of the same 
magnitude (e.g. the last layer has expansion of 64x64).  

The Decoder is the last part of the architecture, where the 
data processed on the network regains its original dimensions 
with unpooling operations. The implementation of the 
unpooling used [11] saves the positions of the maximum values 
extracted in the max pooling in order to insert the values again 
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in those same positions while setting the others to zero. The 
decoder continues with two more normal convolutional layers 
with 3x3 kernel, stride 1, with 32 features map and the last 
layer with 3 channels output. Finally, feature maps enter a log 
softmax layer, which returns a multidimensional map output, 
where each dimension is the logarithm probability for each 
class. Therefore, the occupancy map is built by comparing the 
probabilities of each of these three classes for each cell at the 
network output, as described in Section III.A. 

IV. EXPERIMENTAL METHODOLOGY 

This section presents the methodology employed to 
evaluate the proposed systems. First, the datasets used in the 
experiments are described and then the hyperparameters and 
procedure for training the neural network. After that, we 
present the methodology for generating the ground truth for the 
localization and the metrics for evaluating the neural network 
performance and the localization accuracy. 

A. Datasets 

Large datasets are required for training deep neural 
networks. At first, datasets could be created by manually 
labelling map cells or by using floor plans. A lower cost 
solution though is the use of IARA's offline mapping system to 
generate input and output pairs from logs of sensor data. All 
the data from the log are used for generating an OGM of the 
environment. Then, for each LiDAR point cloud, we crop a 
circle in the OGM centered at the car pose and with radius of 
60m. This cropped circle is defined as the output for the 
LiDAR point cloud.  

 Three classes are considered for each cell: unknown, 
occupied and free. Since the OGM is probabilistic, we use soft 
labels instead of one-hot encoding. The probability of each 
class is given by the occupancy probability of the cell.  Figure 
4 illustrates a point cloud and its associated output. The 
advantages of using the offline map instead of the online OGM 
are the following. First, it is more accurate due to the 
integration of several instantaneous maps. Second, it presents 
more occupation information which allows the neural network 
to learn how to fill areas that are not observed by sensors. 

Two datasets produced from logs of sensor data are used in 
the experiments. The datasets will be referred as Dataset 1 and 
Dataset 2. The datasets were recorded in the same 
environment, the 3.5km UFES beltway and split into three 
disjoint regions as presented in Figure 3. 

 

Figure 3 -UFES beltway map. In green, orange and red is shown the training, 

validation and test set region, respectively. 

  

Figure 4 - The left image is the max high statistic map, one of the five inputs 

to NeuralMapper. The right image is the corresponding ground truth. Both 

images were normalized for visualization. 

The regions from Dataset 1 are used for training, validating 
and testing the neural network, while all regions from Dataset 2 
are used for test. Note that the same regions are selected in 
both datasets and that one of the regions from Dataset 2 
corresponds to the same region used to train the neural 
network. 

The Dataset 1 was extracted from a log collected at dawn 
on 23/03/2016. Dataset 1 has 1445 scans and with data 
augmentation (details are presented in the next section) a total 
of 7228 samples, that were separated in 74% for the training 
set, 10% for the validation set, and 16% for the test set. The log 
was recorded at dawn to minimize the presence of moving 
objects. Dataset 2 is extracted from a log captured at 
03/10/2019. Since the log was captured three years after the 
one used for building the Dataset 1, it presents different 
features due to time passing such as vegetation growth, new 
buildings and changes in roads. Dataset 2 also has 1445 scans 
and 7228 samples with dataset augmentation. 

The input and output pairs were generated every two 
meters traveled by the vehicle to prevent the network from 
having unbalanced data for different regions. By doing so, the 
database no longer has information in regions where the car 
moved more slowly in the simulated log.  

B. Training 

The DNN input consists of five maps of statistics regarding 
the height of points around the car. These statistics maps are 
represented by a float tensor, where each cell represents a 
20x20cm square of the environment. The car is always in the 
center of the map. Each cell observed by the laser will store the 
maximum height, minimum height, average height, standard 
deviation of height and number of points. To do so, first the 
points in the cloud undergo a transformation of coordinates, 
from spherical to Cartesian. Then, the points that hit the same 
cell are grouped and used for computing the statistics. Finally, 
these five dimensions of statistics (maximum, minimum height, 
standard deviation and number of points) are then normalized 
between zero and one and used as input for the network.  

To normalize the maps, in case of statistic maps that use 
height, the upper bound value was the LIDAR’s height position 
(1.86 meters in our case), for the number of points, was 
calculated the max possible number of points inside one cell 
(64 points in our case).  The map's cells are initialized as -1, 
and this remains as the min value.  
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As can be seen in Figure 4, the number of pixels of obstacle 
cells in each image is much smaller than free and unknown 
cells. This phenomenon generates a tendency for the network 
to opt for the last two classes over the first. To avoid this, 
weights inversely proportional to the number of pixels of the 
classes in each batch were used, so that the loss function 
multiplies the weight when computing the error. This 
"valuation" of errors in relation to less frequent classes 
compensates for the imbalance between them [20]. 

For data augmentation [21], we applied horizontal flips and 
90 degrees rotation in each direction for all training image 
which increased the dataset 3 times. The cross-entropy loss 
function and ELU activation function were chosen in 
accordance with the work of Caltagirone et al. [11], besides a 
dropout of 25%. The neural network was trained for 50 epochs 
with an initial learning rate of 0.0005 and learning rate of 
decay of 0.5 at each 15 epochs. The training was performed on 
a 12GB Nvidia Tesla K40 GPU. 

C. Localization Ground Truth Generation 

The localization is an important task for self-driving car 
navigation. Generating a ground truth for evaluating the 
localization is quite challenging. A straightforward idea is to 
use GPS for comparison with localization estimates. However, 
although globally consistent, GPS data has significant amount 
of noise and GPS measurements are not necessarily consistent 
with the map.  

Our approach for generating the localization ground truth is 
similar to the ones employed in [4][22] and [23]. We use the 
GraphSLAM technique described in [3] for estimating the 
poses of the vehicle using data from GPS, odometry and the 
LiDAR (for handling loop closures). Then, these poses are 
used for building an offline map with the NeuralMapper and, 
after that, the localization module is used for estimating the 
localization of the vehicle in relation to the NeuralMapper. The 
ground truth poses are obtained in a second step of 
optimization using the GraphSLAM. In this second step of 
optimization, besides the data from GPS, odometry and LiDAR 
(loop closures), the localization is also used as input for the 
method. By doing so, we encourage consistency with the map 
while using the sensors data to correct local localization errors.  

D. Metrics 

A metric for evaluating the trained models is the average 
accuracy of the classes in the DNN output. The classes 
predicted for each cell are compared with the ground truth and 
are defined in Equation (1):  

𝐴 =
𝑉𝑃

𝑇𝑂𝑇𝐴𝐿
 (1) 

where VP is the total number of cells whose classes were 
correctly predicted and TOTAL is the total number of cells in 
the database, VP and TOTAL consider all images in the 
database.  

Another metric used to analyze the results during test was 
the confusion matrix. Each matrix line represents the classes 
present in the ground truth, while the columns represent the 
inferences of the network. Thus, it is possible to visually 
inspect for what classes the prediction is better or worse. The 

values of the confusion matrix are all percentages of the total 
of each class and all lines add up to 100% for each class. The 
diagonal of the matrix represents the correctness of the network 
regarding the ground truth. 

Additionally, we performed a qualitative evaluation of the 
offline map generated with the DNN with the IARA self-
driving car in a real-world environment in autonomous 
navigation mode. 

The metric for evaluating the localization was the same 
used in [22] and [23]. The poses (𝒙1:𝑛 ) estimated using the 
localization were compared to the ground truth poses (𝒈1:𝑛) 
obtained as described in Section IV.C. The metric chosen was 
the root mean squared error (RMSE) given by the Equation (2): 

𝑅𝑀𝑆𝐸 = √
∑ (𝒙𝑖

𝑥 − 𝒈𝑖
𝑥)2 + (𝒙𝑖

𝑦
− 𝒈𝑖

𝑦
)2𝑛

𝑖=1

𝑛
 

(2) 

where 𝑛  is the number of estimated poses associated with 
sensor data, and the subscripted 𝑥  and 𝑦  represent the 
respective coordinates of the poses.  

 We also present the standard deviation of the error along 
with the percentage of samples in which the localization error 
is smaller than a threshold. The thresholds considered are 
0.2m, 0.5m, 1.0m, and 2.0m.  

V. RESULTS AND DISCUSSIONS 

To evaluate the performance of the NeuralMapper, we 
trained the DNN using the Dataset 1 for 50 epochs. Our model 
achieved an accuracy of 76.5% on the validation set and a loss 
of 0.25 on the training set. Figure 5 shows the training loss and 
the validation accuracy for each training epoch. 

Using the test set from the Dataset 1, the model achieved an 
average accuracy of 76.48%. TABLE I shows the confusion 
matrix for this test set. It shows that the network is less precise 
in classifying Occupied cells, since it correctly classifies just 
62.20% of the samples. The network achieved an accuracy of 
80% for the unknown cells and 73.45% for the free cells.  

 

Figure 5 - Loss of training (in blue) and accuracy of the validation set (in 

orange) after each trained epoch. 
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TABLE II presents the confusion matrix for the test region 
of Dataset 2. Observe that the test region is the same of Dataset 
1, but in a different date. The results show an increase of 
occupied cells error, but the total average accuracy at this 
dataset was 73.81%. The test region is challenging due to its 
features such as different lanes, asphalt and cobbles, in addition 
to different elevations. That can be seen in the results presented 
at TABLE III which shows the model confusion matrix when 
considering all regions from the Dataset 2 (i.e., the training, 
validation and test regions from Dataset 1). The accuracy 
achieved was 76.90%. This also shows the model 
generalization. 

Despite the tests showing a low accuracy rate in the 
occupied class, a qualitative analysis of the predictions show 
that the network is accurate on the road and that most errors are 
in external regions. Figure 6 illustrate this fact by presenting a 
comparison between the neural network prediction and the 
ground truth. The errors in external regions are expected at 
some level since most of the laser readings are concentrated in 
the center.  

 

TABLE I  CONFUSION MATRIX OF TEST SET DATASET 1 

  Ground Truth 

  Unknown Free Occupied 

Predictions 

Unknown 80.05% 12.87% 8.66% 

Free 13.63% 73.45% 29.15% 

Occupied 6.33% 13.68% 62.20% 

 

TABLE II  CONFUSION MATRIX OF TEST SET DATASET 2 

  Ground Truth 

  Unknown Free Occupied 

Predictions 

Unknown 79.86% 16.01% 6.51% 

Free 15.01% 68.21% 41.76% 

Occupied 5.13% 15.78% 51.72% 

 

TABLE III  CONFUSION MATRIX OF TEST WITH ALL DATASET 2 

  Ground Truth 

  Unknown Free Occupied 

Predictions 

Unknown 82.05% 13.57% 7.88% 

Free 12.78%  72.24% 32.52% 

Occupied 5.17% 14.19% 59.60% 

  
It is important to notice that the ground truth considers 

various LIDAR’s scans because it is generated using the OGM. 
Which also makes it not trivial to select a good metric for the 
segmentation problem. Figure 6 and Figure 7 compare the 
output of NeuralMapper and probabilistic occupancy grid 
mapping from a single LIDAR scan. 

  
Figure 6 - The left image is the NeuralMapper’s Output while the right image 

is the corresponding ground truth. 

  
 

Figure 7 - The left image is the probabilistic Occupancy grid map from one 

LIDAR scan while the right image is the corresponding offline map also used 

as ground truth for the NeuralMapper. 

The main use of the offline map is for localization purpose. 
Therefore, we also evaluate if it is possible to use the 
NeuralMapper for estimating the localization of the self-
driving car. For this evaluation, the NeuralMapper and Dataset 
1 are used to build the OGM and the Dataset 2 is used to test 
the localization. Figure 8 shows the Cumulative Distribution 
Function (CDF) chart achieved by IARA’s localization 
technique [4]. For 92.8% of the samples, the pose error was 
smaller than 0.5m and in 40.26% of the samples the error was 
smaller than 0.2m. TABLE IV presents the metrics 
summarized. The localization achieved a RMSE of 0.28m with 
a standard deviation of 0.017m. These results are equivalent to 
the literature using other types of grid maps [4][22][23] and 
they show that the NeuralMapper can be successfully used for 
estimating the localization of a self-driving car. 

 
Figure 8 - The CDF from the localization experiment using Dataset 2. 
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TABLE IV  METRICS OF LOCALIZATION USING DATASET 2 

RMSE (m) STD (m) % < 2m % < 1m % < 0.5m % < 0.2m 

0.28 0.017 100 99.99 92.80 40.26 

 

We validate these results by using the IARA’s platform for 
navigation in autonomous mode. The video 
(http://tiny.cc/9gqejz) shows the IARA’s systems operating 
with the NeuralMapper being used by the localization and the 
planning modules. The planning module receives as input a 
map that is obtained by merging the information from the 
NeuralMapper with instantaneous data captured by the LiDAR. 
The car managed to navigate and maintain itself inside the 
correct lane during all the experiment. It also coped 
successfully with moving obstacles. This result show that the 
NeuralMapper can be used for both localization and planning.  

Some minor oscillations in the car’s trajectory can be 
observed in parts of the video. These oscillations can be 
explained by the inner workings of the motion planner module 
[8]. It depends on a precise localization to keep the car in the 
planned path it acts to compensate inconsistencies in the 
planned and executed trajectories. As shown in TABLE IV, in 
some cases the localization error is larger than a map cell (i.e., 
0.2m x 0.2m). Therefore, due to these errors, the planning 
module may act to compensate incorrectly identified 
inconsistencies in the trajectory which results in oscillations in 
the path followed by IARA.  

VI. CONCLUSIONS AND FUTURE WORK 

The main motivation of this work was to replace the 
occupancy grid mapping (OGM) algorithm with neural 
networks given their capability to learn how to handle non-
linearities direct from data, and due to its potential to reduce 
hundreds of lines of code.  

The spatial discontinuity generally presented in OGMs, 
shows the potential of the network to perform even better 
results than the probabilistic mapping. This is because the 
Bayesian mapping used today, despite temporarily filtering 
noise in the cells, does not use information from neighboring 
spaces to estimate occupation. However, it is reasonable to 
believe that for common objects, if all the cells around the one 
is occupied, that one will be occupied as well. In the other 
hand, this spatial continuity is naturally embedded in 
convolutional neural networks. 

As the results show, even though the semantic mapping 
results appear less accurate than the necessary, they are 
sufficient for localization given the preserve of local structure 
around the car and that can also be confirmed by the 
localization RMSE metric. In addition, the qualitative results 
show IARA running in autonomous mode with the 
NeuralMapper. In this way, the current OGM algorithm could 
be replaced by a deep neural network, which uses examples to 
learn the task. 

Furthermore, our approach can be used with other kinds of 
grid maps, for instance, reflectivity, color, and multi-object 
semantic grid maps, allowing, in those cases, the possibility to 
include more information on the DNN input.  

In future works, it is essential to experiment with larger 
datasets and different architectures that use geometric 
transformation and minimizes preprocessing. 
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