

A Large-Scale Mapping Method Based on

Deep Neural Networks Applied to

Self-Driving Car Localization

Vinicius B. Cardoso

Departamento de Informática

Universidade Federal do

Espírito Santo

Vitória, Brazil

vinicius@lcad.inf.ufes.br

André Seidel Oliveira

Departamento de Engenharia

Elétrica

Universidade Federal do

Espírito Santo

Vitória, Brazil

aseideloliveira@gmail.com

Avelino Forechi

Coordenadoria de Engenharia

Mecânica

Instituto Federal do Espírito

Santo

Aracruz, Brazil

avelino.forechi@ifes.edu.br

Pedro Azevedo

Departamento de Informática

Universidade Federal do

Espírito Santo

Vitória, Brazil

pedro@lcad.inf.ufes.br

Filipe Mutz

Coordenadoria de Informática

Instituto Federal do Espírito

Santo

Serra, Brazil

filipe.mutz@ifes.edu.br

Thiago Oliveira-Santos

Departamento de Informática

Universidade Federal do

Espírito Santo

Vitória, Brazil

todsantos@lcad.inf.ufes.br

Claudine Badue

Departamento de Informática

Universidade Federal do

Espírito Santo

Vitória, Brazil

claudine@lcad.inf.ufes.br

Alberto F. De Souza, Senior

Member, IEEE

Departamento de Informática

Universidade Federal do

Espírito Santo

Vitória, Brazil

alberto@lcad.inf.ufes.br

Abstract— We propose a new approach for real time

inference of occupancy maps for self-driving cars using deep

neural networks (DNN) named NeuralMapper. NeuralMapper

receives LiDAR sensor data as input and generates as output the

occupancy grid map around the car. NeuralMapper infers the

probability of each grid map cell from one of the three following

classes: Occupied, Free and Unknown. The system was tested

with two datasets and achieved an average accuracy of 76.48%

and 73.81%. We also evaluated our approach for localization

purposes in a self-driving car and most of the localization pose

errors were less than 0.20m with an RMSE of 0.28 which are

close to the results in the literature for methods using other grid

mapping approaches.

Keywords—self-driving cars, mapping, deep neural networks.

I. INTRODUCTION

Self-driving cars have advanced greatly over the last twenty
years. In 2004, the USA Defense Advanced Research Projects
Agency (DARPA) promoted the first self-driving car
competition, with the goal of crossing the Mojave Desert
without human intervention [1] – in this competition none of
the participants achieved the goal. After this first attempt, two
other competitions were promoted by DARPA, in 2005 and
2007, and five and six vehicles completed the proposed
challenges, respectively. These events have ignited the self-
driving cars’ development and contributed to self-driving cars
become reality nowadays. Companies like Google, Volvo and
Uber are running trials in several cities around the world
offering autonomous driving services to the public.

Despite the great advances already made in this area,
today’s self-driving cars still do not deal accurately with all
situations and weather conditions encountered in everyday
urban traffic. For this reason, universities and research centers

worldwide are conducting research to improve this technology
and increase the autonomy level of self-driving cars.

The IARA (Intelligent Autonomous Robotic Automobile)
self-driving car, shown in Figure 2, has being developed since
2009 by the High Performance Computing Laboratory
(Laboratório de Computação de Alto Desempenho - LCAD) of
Federal University of Espírito Santo (Universidade Federal do
Espírito Santo – UFES, Brazil). IARA is based on a Ford
Escape Hybrid adapted with a variety of sensors and
processing units. Its autonomy system follows the typical
architecture of self-driving cars [2] and as such is composed of
several subsystems, which includes a Mapper [3], a Localizer
[4], a Moving Obstacle Tracker [5], a Traffic Sign Detector
[6][7], a Route Planner, a Path Planner, a Behavior Selector, a
Motion Planner [8], an Obstacle Avoider [9] and a Controller
[10], among others. Maps used by IARA are built from LiDAR
point clouds in online and offline mapping. Considering that
LiDAR readings may be inaccurate due to environmental
conditions (e.g. rain, falling leaves, uneven reflection surfaces)
or due to measurement errors caused by noise from the sensor
itself, a mapping system cannot completely rely on the
distances and positions directly measured by LiDAR.
Therefore, for mapping, it is necessary to use techniques that
take into account all these uncertainties to try and filter the
sensor errors as much as possible.

The algorithm currently used in IARA seeks to update the
probability of occupancy of regions with each new reading of
the LiDAR sensor. For this, an Occupancy Grid Mapping
(OGM) algorithm [3], based on the Bayes filter, is applied for
gradually increase or decrease the occupancy confidence of
each cell of the grid-map. However, this approach is not very
accurate for objects at long distances. Furthermore, it is
necessary to use an algorithm to infer the occupancy of cells
that were not reached by any sensor reading, since the OGM
used does not take into account spatial discontinuities. In

This study was financed in part by Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001; Conselho

Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq) -

grants 311654/2019-3, 200864/2019-0 and 311504/2017-5; and Fundação de

Amparo à Pesquisa do Espírito Santo - Brasil (FAPES) – grant 84412844. 978-1-7281-6926-2/20/$31.00 ©2020 IEEE

addition, the mapping algorithm needs to treat several special
cases along thousands of lines of code to find the best way to
properly extract the features of sensor readings [3].

Motivated by these limitations of the mapping method of
IARA, as well as the advances of deep learning, in this work,
we propose a new approach for real time inference of
occupancy maps based on Deep Neural Networks (DNN),
named NeuralMapper. NeuralMapper is a subsystem of
IARA’s autonomy software architecture that receives LiDAR
sensor data as input and generates as output an occupancy grid
map around the car. In NeuralMapper, every LiDAR point
cloud is transformed from spherical to 2D Cartesian
coordinates in the LiDAR reference frame. Then, five matrices
are computed from the 2D LiDAR data using statistics of this
data (the input data of NeuralMapper follows that employed by
Caltagirone et al. [11]). Those five matrices are combined into
a five-channel tensor that is used as input to the NeuralMapper
DNN. The statistics considered are the number of laser rays
that hits a cell of the grid map around the car, as well as the
maximum, minimum, mean and standard deviation of the
height of the obstacles hit by rays that falls into a cell.

The output of the network is an occupancy map with the
corresponding probability associated with each of the three
possible classes of each grid-map cell: unknown occupancy,
free or occupied. This map is transformed to the car reference
frame and published to the other IARA’s subsystems (see
Figure 2). A block diagram of NeuralMapper is shown in
Figure 1.

We evaluated NeuralMapper with real world data using
IARA. The system was tested with two datasets built with
IARA’s sensor data and achieved an average accuracy of
76.48% in the first and 73.81% in the second dataset. We also
evaluated the use of NeuralMapper’ maps for localization
purposes using IARA and most of the IARA’s localization
errors were smaller than 0.2m, with an RMSE of 0.28m. These
results are close to those in the literature for methods using
other grid mapping approaches.

The following sections will be devoted to assess the
capability of this method by both literature review and practical
experimentation in IARA.

Figure 2- Overview of the typical architecture of self-driving cars [2]. TSD

denotes Traffic Signalization Detection and MOT, Moving Objects Tracking.

II. RELATED WORK

There are several techniques presented in literature that
uses neural networks with point cloud data acquired from
sensors such as, LiDAR, radar, sonar and others. Those
sensor’s data are used for several purposes such as, build
occupancy grid maps, localization and 3D point cloud
segmentation.

Santos et al. [12] propose a system that uses data from
ultrasound sensors installed around a robot that serve as input
to a feed-forward neural network that determines if the cells
around the robot are free or occupied. This work only deals
with the occupancy of the cells of a prior map skeleton of the
environment.

Gupta et al. [13] propose the creation of occupancy grid
maps using data provided by a sonar sensor. The measurement
of the sensor is converted into a probabilistic representation of
the environment that describes if a grid cell is empty, occupied

Controller

Obstacle

Avoider

Localizer

Motion

Planner
State

Modified Trajectory

Odometry

Behavior

Selector

Path & Goal

Path

Planner

Mapper

Sensors

Perception System

Decision Making

System

Trajectory

Efforts

Offline Maps

Paths

Route

Planner

Route

MOT

TSD

Internal representation

of the environment

Figure 1 – Overview of NeuralMapper architecture. The input on the left shows the LiDAR point cloud raw data. NeuralMapper projects the raw data on the
ground as a set of 2D statistics maps. The statistics maps are neurally processed by the encoder, the context module and the decoder to produce an occupancy

grid map as output. In the map, unknown cells are blue, free cells are white and the occupied cells are black.

E
N
C
O
D
E
R

D
E
C
O
D
E
R

CONTEXT
MODULE

OutputInput

Neural MapperLiDAR Raw Data

Max View Mean View Min View

Numb View Std View

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

or if is an unknown area. As changes in the environment affect
conversions, a neural network was used to learn these
conversions, making the sensor data more adaptable to
changes.

Weston et al. [14] present a technique that uses raw radar
data and LiDAR data to create an occupancy grid map using a
DNN. Radar sensors are able to detect long range and partial
occluded objects and are cheaper than LiDAR but radar scans
are notoriously difficult to interpret due to the presence of
several pertinent noise artefacts while LiDAR systems provide
precise, fine-grained measurements. The DNN was trained
with partial occupancy labels generated by LiDAR data and
was evaluated on five hours of recorded data in a dynamic
urban environment.

Wu et al. [15] propose the SqueezeSeg, that is a CNN
(Convolution Neural Network) to perform semantic
segmentation of road-objects from LiDAR point clouds, such
as cars, pedestrians and cyclists. The CNN was trained with
labelled LiDAR point-cloud from KITTI dataset [16] and with
data from a simulated LiDAR of a high-fidelity game engine.
The input of SqueezeSeg is a point cloud and the output is a
point-wise label map that is refined by a conditional random
field (CRF). Each point cloud is processed in 8.7ms. SalsaNet
proposed by Aksoy et al. [17] is also a neural network that
segments directly from LiDAR point clouds the drivable free-
space and vehicles. The training process uses KITTI dataset
[16] but it does not provide drivable free-space labels, so they
propose an automatic system to annotate it in the point-cloud
using the neural network MultiNet [18]. Then the point cloud is
represented as a 4D Bird-Eye-View image that contains
information about maximum and minimum elevation,
reflectivity and number of projected points. This image is used
as input to train the DNN. SalsaNet results presented a mean
IoU of 79.74% while SqueezeSeg results presented a mean IoU
of 69.80%.

Caltagirone et al. [11] present a neural network approach
that detect roads using only LiDAR data. The input of the
DNN is a top-view image of the LiDAR where the points are in
grey-scale representing mean elevation and density. Then a fast
fully convolutional neural network (FCN) was trained with
KITTI dataset [16] and was able to detect roads with a
precision of 94.15%. The DNN architecture adopted in this
work was based on a fully convolutional neural network used
in [11] but the purpose and dataset are different as will be
shown next.

III. A LIDAR-BASED DNN FOR OCCUPANCY GRID MAPPING

First, it should be recalled that OGM is about inferring an
occupation probability for each cell on the map. The
occupation probability of each cell can assume a continuous
value between zero and one, therefore it can be used to classify
the cell as free or occupied cell.

A. The NeuralMapper Subsystem

The NeuralMapper (Figure 1) is the subsystem that receives
IARA's LiDAR sensor data as input and generates as output the
occupancy map around the car. The input data of
NeuralMapper follows Caltagirone et al. [11]. First, every
LiDAR point cloud is transformed from spherical to 2D

Cartesian coordinates in the LiDAR reference frame. Also
following Caltagirone et al. [11], five statistics matrices are
computed from the 2D coordinate matrix and normalized
between zero and one. Those five normalized statistics
matrices are combined into a five-channel tensor used as input
to the network. The statistics considered are the number of
laser rays that hits the cell, max/min/mean/std height.

In order to adapt the FCN [11] output to IARA’s map, it
was established that the network should return a map of
probabilities for three classes: Occupied, Free and Unknown.
Thus, the neural network would make inferences compatible to
the probabilistic methods widely adopted in IARA’s
subsystems (Figure 1).

In this way, the output of the network is an occupancy map
with the corresponding probability associated with each of the
three classes for each output neuron (cell). This map is
transformed into the car reference frame and published to the
other IARA’s subsystems. The output neuron probability is
converted into occupancy probability as follows. If the most
likely class is the Unknown, the map cell receives a value of -
1, otherwise the probability of the class Unknown is zeroed and
the probabilities of the other two classes are normalized so that
the sum of the two is equal to 1. The code is available as an
IARA’s module at https://github.com/LCAD-
UFES/carmen_lcad .

B. DNN architecture

Figure 1 shows the general architecture of the FCN which
is divided into three large groups of layers, called Encoder,
Context Module and Decoder.

The Encoder receives the inputs and reduces the size of the
inputs data trying and minimizing the loss of information. For
this, two normal convolutional layers are used with 3x3 kernel,
stride 1 and 32 features map with Exponential Linear Unit
(ELU) activation function [19], followed by a max pooling
layer of 2x2 with stride 2.

The Context Module is mainly formed of dilated
convolution layers. Dilated convolutions have the ability to
increase the receptive field of the convolutional filter, in order
to increase the ability to infer continuity between contiguous
map cells. For mapping obstacles, there are many
discontinuities over long distances in sensor readings. So, it
would be interesting to apply dilation for predicting the
continuation of obstacles to more distant places, where the
sensor is no longer very effective. There are eight Dilated
convolutions layers with ELU activation function, 3x3 kernel,
and 128 features maps. These layers have a progressive
increase in dilation, so that in the last layer there is an
expansion of 32x64. Unlike the work proposed by Caltagirone
et al. [11], in this work, it was determined that the output map
would be square, with a range of 60 meters around the car.
Therefore, the dilation used in each layer was of the same
magnitude (e.g. the last layer has expansion of 64x64).

The Decoder is the last part of the architecture, where the
data processed on the network regains its original dimensions
with unpooling operations. The implementation of the
unpooling used [11] saves the positions of the maximum values
extracted in the max pooling in order to insert the values again

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

in those same positions while setting the others to zero. The
decoder continues with two more normal convolutional layers
with 3x3 kernel, stride 1, with 32 features map and the last
layer with 3 channels output. Finally, feature maps enter a log
softmax layer, which returns a multidimensional map output,
where each dimension is the logarithm probability for each
class. Therefore, the occupancy map is built by comparing the
probabilities of each of these three classes for each cell at the
network output, as described in Section III.A.

IV. EXPERIMENTAL METHODOLOGY

This section presents the methodology employed to
evaluate the proposed systems. First, the datasets used in the
experiments are described and then the hyperparameters and
procedure for training the neural network. After that, we
present the methodology for generating the ground truth for the
localization and the metrics for evaluating the neural network
performance and the localization accuracy.

A. Datasets

Large datasets are required for training deep neural
networks. At first, datasets could be created by manually
labelling map cells or by using floor plans. A lower cost
solution though is the use of IARA's offline mapping system to
generate input and output pairs from logs of sensor data. All
the data from the log are used for generating an OGM of the
environment. Then, for each LiDAR point cloud, we crop a
circle in the OGM centered at the car pose and with radius of
60m. This cropped circle is defined as the output for the
LiDAR point cloud.

 Three classes are considered for each cell: unknown,
occupied and free. Since the OGM is probabilistic, we use soft
labels instead of one-hot encoding. The probability of each
class is given by the occupancy probability of the cell. Figure
4 illustrates a point cloud and its associated output. The
advantages of using the offline map instead of the online OGM
are the following. First, it is more accurate due to the
integration of several instantaneous maps. Second, it presents
more occupation information which allows the neural network
to learn how to fill areas that are not observed by sensors.

Two datasets produced from logs of sensor data are used in
the experiments. The datasets will be referred as Dataset 1 and
Dataset 2. The datasets were recorded in the same
environment, the 3.5km UFES beltway and split into three
disjoint regions as presented in Figure 3.

Figure 3 -UFES beltway map. In green, orange and red is shown the training,

validation and test set region, respectively.

Figure 4 - The left image is the max high statistic map, one of the five inputs

to NeuralMapper. The right image is the corresponding ground truth. Both

images were normalized for visualization.

The regions from Dataset 1 are used for training, validating
and testing the neural network, while all regions from Dataset 2
are used for test. Note that the same regions are selected in
both datasets and that one of the regions from Dataset 2
corresponds to the same region used to train the neural
network.

The Dataset 1 was extracted from a log collected at dawn
on 23/03/2016. Dataset 1 has 1445 scans and with data
augmentation (details are presented in the next section) a total
of 7228 samples, that were separated in 74% for the training
set, 10% for the validation set, and 16% for the test set. The log
was recorded at dawn to minimize the presence of moving
objects. Dataset 2 is extracted from a log captured at
03/10/2019. Since the log was captured three years after the
one used for building the Dataset 1, it presents different
features due to time passing such as vegetation growth, new
buildings and changes in roads. Dataset 2 also has 1445 scans
and 7228 samples with dataset augmentation.

The input and output pairs were generated every two
meters traveled by the vehicle to prevent the network from
having unbalanced data for different regions. By doing so, the
database no longer has information in regions where the car
moved more slowly in the simulated log.

B. Training

The DNN input consists of five maps of statistics regarding
the height of points around the car. These statistics maps are
represented by a float tensor, where each cell represents a
20x20cm square of the environment. The car is always in the
center of the map. Each cell observed by the laser will store the
maximum height, minimum height, average height, standard
deviation of height and number of points. To do so, first the
points in the cloud undergo a transformation of coordinates,
from spherical to Cartesian. Then, the points that hit the same
cell are grouped and used for computing the statistics. Finally,
these five dimensions of statistics (maximum, minimum height,
standard deviation and number of points) are then normalized
between zero and one and used as input for the network.

To normalize the maps, in case of statistic maps that use
height, the upper bound value was the LIDAR’s height position
(1.86 meters in our case), for the number of points, was
calculated the max possible number of points inside one cell
(64 points in our case). The map's cells are initialized as -1,
and this remains as the min value.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

As can be seen in Figure 4, the number of pixels of obstacle
cells in each image is much smaller than free and unknown
cells. This phenomenon generates a tendency for the network
to opt for the last two classes over the first. To avoid this,
weights inversely proportional to the number of pixels of the
classes in each batch were used, so that the loss function
multiplies the weight when computing the error. This
"valuation" of errors in relation to less frequent classes
compensates for the imbalance between them [20].

For data augmentation [21], we applied horizontal flips and
90 degrees rotation in each direction for all training image
which increased the dataset 3 times. The cross-entropy loss
function and ELU activation function were chosen in
accordance with the work of Caltagirone et al. [11], besides a
dropout of 25%. The neural network was trained for 50 epochs
with an initial learning rate of 0.0005 and learning rate of
decay of 0.5 at each 15 epochs. The training was performed on
a 12GB Nvidia Tesla K40 GPU.

C. Localization Ground Truth Generation

The localization is an important task for self-driving car
navigation. Generating a ground truth for evaluating the
localization is quite challenging. A straightforward idea is to
use GPS for comparison with localization estimates. However,
although globally consistent, GPS data has significant amount
of noise and GPS measurements are not necessarily consistent
with the map.

Our approach for generating the localization ground truth is
similar to the ones employed in [4][22] and [23]. We use the
GraphSLAM technique described in [3] for estimating the
poses of the vehicle using data from GPS, odometry and the
LiDAR (for handling loop closures). Then, these poses are
used for building an offline map with the NeuralMapper and,
after that, the localization module is used for estimating the
localization of the vehicle in relation to the NeuralMapper. The
ground truth poses are obtained in a second step of
optimization using the GraphSLAM. In this second step of
optimization, besides the data from GPS, odometry and LiDAR
(loop closures), the localization is also used as input for the
method. By doing so, we encourage consistency with the map
while using the sensors data to correct local localization errors.

D. Metrics

A metric for evaluating the trained models is the average
accuracy of the classes in the DNN output. The classes
predicted for each cell are compared with the ground truth and
are defined in Equation (1):

𝐴 =
𝑉𝑃

𝑇𝑂𝑇𝐴𝐿
 (1)

where VP is the total number of cells whose classes were
correctly predicted and TOTAL is the total number of cells in
the database, VP and TOTAL consider all images in the
database.

Another metric used to analyze the results during test was
the confusion matrix. Each matrix line represents the classes
present in the ground truth, while the columns represent the
inferences of the network. Thus, it is possible to visually
inspect for what classes the prediction is better or worse. The

values of the confusion matrix are all percentages of the total
of each class and all lines add up to 100% for each class. The
diagonal of the matrix represents the correctness of the network
regarding the ground truth.

Additionally, we performed a qualitative evaluation of the
offline map generated with the DNN with the IARA self-
driving car in a real-world environment in autonomous
navigation mode.

The metric for evaluating the localization was the same
used in [22] and [23]. The poses (𝒙1:𝑛) estimated using the
localization were compared to the ground truth poses (𝒈1:𝑛)
obtained as described in Section IV.C. The metric chosen was
the root mean squared error (RMSE) given by the Equation (2):

𝑅𝑀𝑆𝐸 = √
∑ (𝒙𝑖

𝑥 − 𝒈𝑖
𝑥)2 + (𝒙𝑖

𝑦
− 𝒈𝑖

𝑦
)2𝑛

𝑖=1

𝑛

(2)

where 𝑛 is the number of estimated poses associated with
sensor data, and the subscripted 𝑥 and 𝑦 represent the
respective coordinates of the poses.

 We also present the standard deviation of the error along
with the percentage of samples in which the localization error
is smaller than a threshold. The thresholds considered are
0.2m, 0.5m, 1.0m, and 2.0m.

V. RESULTS AND DISCUSSIONS

To evaluate the performance of the NeuralMapper, we
trained the DNN using the Dataset 1 for 50 epochs. Our model
achieved an accuracy of 76.5% on the validation set and a loss
of 0.25 on the training set. Figure 5 shows the training loss and
the validation accuracy for each training epoch.

Using the test set from the Dataset 1, the model achieved an
average accuracy of 76.48%. TABLE I shows the confusion
matrix for this test set. It shows that the network is less precise
in classifying Occupied cells, since it correctly classifies just
62.20% of the samples. The network achieved an accuracy of
80% for the unknown cells and 73.45% for the free cells.

Figure 5 - Loss of training (in blue) and accuracy of the validation set (in

orange) after each trained epoch.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE II presents the confusion matrix for the test region
of Dataset 2. Observe that the test region is the same of Dataset
1, but in a different date. The results show an increase of
occupied cells error, but the total average accuracy at this
dataset was 73.81%. The test region is challenging due to its
features such as different lanes, asphalt and cobbles, in addition
to different elevations. That can be seen in the results presented
at TABLE III which shows the model confusion matrix when
considering all regions from the Dataset 2 (i.e., the training,
validation and test regions from Dataset 1). The accuracy
achieved was 76.90%. This also shows the model
generalization.

Despite the tests showing a low accuracy rate in the
occupied class, a qualitative analysis of the predictions show
that the network is accurate on the road and that most errors are
in external regions. Figure 6 illustrate this fact by presenting a
comparison between the neural network prediction and the
ground truth. The errors in external regions are expected at
some level since most of the laser readings are concentrated in
the center.

TABLE I CONFUSION MATRIX OF TEST SET DATASET 1

 Ground Truth

 Unknown Free Occupied

Predictions

Unknown 80.05% 12.87% 8.66%

Free 13.63% 73.45% 29.15%

Occupied 6.33% 13.68% 62.20%

TABLE II CONFUSION MATRIX OF TEST SET DATASET 2

 Ground Truth

 Unknown Free Occupied

Predictions

Unknown 79.86% 16.01% 6.51%

Free 15.01% 68.21% 41.76%

Occupied 5.13% 15.78% 51.72%

TABLE III CONFUSION MATRIX OF TEST WITH ALL DATASET 2

 Ground Truth

 Unknown Free Occupied

Predictions

Unknown 82.05% 13.57% 7.88%

Free 12.78% 72.24% 32.52%

Occupied 5.17% 14.19% 59.60%

It is important to notice that the ground truth considers

various LIDAR’s scans because it is generated using the OGM.
Which also makes it not trivial to select a good metric for the
segmentation problem. Figure 6 and Figure 7 compare the
output of NeuralMapper and probabilistic occupancy grid
mapping from a single LIDAR scan.

Figure 6 - The left image is the NeuralMapper’s Output while the right image

is the corresponding ground truth.

Figure 7 - The left image is the probabilistic Occupancy grid map from one

LIDAR scan while the right image is the corresponding offline map also used

as ground truth for the NeuralMapper.

The main use of the offline map is for localization purpose.
Therefore, we also evaluate if it is possible to use the
NeuralMapper for estimating the localization of the self-
driving car. For this evaluation, the NeuralMapper and Dataset
1 are used to build the OGM and the Dataset 2 is used to test
the localization. Figure 8 shows the Cumulative Distribution
Function (CDF) chart achieved by IARA’s localization
technique [4]. For 92.8% of the samples, the pose error was
smaller than 0.5m and in 40.26% of the samples the error was
smaller than 0.2m. TABLE IV presents the metrics
summarized. The localization achieved a RMSE of 0.28m with
a standard deviation of 0.017m. These results are equivalent to
the literature using other types of grid maps [4][22][23] and
they show that the NeuralMapper can be successfully used for
estimating the localization of a self-driving car.

Figure 8 - The CDF from the localization experiment using Dataset 2.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE IV METRICS OF LOCALIZATION USING DATASET 2

RMSE (m) STD (m) % < 2m % < 1m % < 0.5m % < 0.2m

0.28 0.017 100 99.99 92.80 40.26

We validate these results by using the IARA’s platform for
navigation in autonomous mode. The video
(http://tiny.cc/9gqejz) shows the IARA’s systems operating
with the NeuralMapper being used by the localization and the
planning modules. The planning module receives as input a
map that is obtained by merging the information from the
NeuralMapper with instantaneous data captured by the LiDAR.
The car managed to navigate and maintain itself inside the
correct lane during all the experiment. It also coped
successfully with moving obstacles. This result show that the
NeuralMapper can be used for both localization and planning.

Some minor oscillations in the car’s trajectory can be
observed in parts of the video. These oscillations can be
explained by the inner workings of the motion planner module
[8]. It depends on a precise localization to keep the car in the
planned path it acts to compensate inconsistencies in the
planned and executed trajectories. As shown in TABLE IV, in
some cases the localization error is larger than a map cell (i.e.,
0.2m x 0.2m). Therefore, due to these errors, the planning
module may act to compensate incorrectly identified
inconsistencies in the trajectory which results in oscillations in
the path followed by IARA.

VI. CONCLUSIONS AND FUTURE WORK

The main motivation of this work was to replace the
occupancy grid mapping (OGM) algorithm with neural
networks given their capability to learn how to handle non-
linearities direct from data, and due to its potential to reduce
hundreds of lines of code.

The spatial discontinuity generally presented in OGMs,
shows the potential of the network to perform even better
results than the probabilistic mapping. This is because the
Bayesian mapping used today, despite temporarily filtering
noise in the cells, does not use information from neighboring
spaces to estimate occupation. However, it is reasonable to
believe that for common objects, if all the cells around the one
is occupied, that one will be occupied as well. In the other
hand, this spatial continuity is naturally embedded in
convolutional neural networks.

As the results show, even though the semantic mapping
results appear less accurate than the necessary, they are
sufficient for localization given the preserve of local structure
around the car and that can also be confirmed by the
localization RMSE metric. In addition, the qualitative results
show IARA running in autonomous mode with the
NeuralMapper. In this way, the current OGM algorithm could
be replaced by a deep neural network, which uses examples to
learn the task.

Furthermore, our approach can be used with other kinds of
grid maps, for instance, reflectivity, color, and multi-object
semantic grid maps, allowing, in those cases, the possibility to
include more information on the DNN input.

In future works, it is essential to experiment with larger
datasets and different architectures that use geometric
transformation and minimizes preprocessing.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the GPUs used for this
research.

REFERENCES

[1] C. D. Crane, The 2005 DARPA Grand Challenge, vol. 36. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007.

[2] C. Badue et al., “Self-Driving Cars: A Survey,” arXiv preprint
arXiv:1901.04407v2. 2019.

[3] F. Mutz, L. P. Veronese, T. Oliveira-Santos, E. de Aguiar, F. A. Auat
Cheein, and A. Ferreira De Souza, “Large-Scale Mapping in Complex
Field Scenarios Using an Autonomous Car,” Expert System and
Applications, vol. 46, pp. 439–462, Mar. 2016.

[4] L. de P. Veronese et al., “A light-weight yet accurate localization system
for autonomous cars in large-scale and complex environments,” in 2016
IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), pp. 520–525, 2016.

[5] R. Sarcinelli et al., “Handling pedestrians in self-driving cars using
image tracking and alternative path generation with Frenét frames,”
Comput. Graph., vol. 84, pp. 173–184, Nov. 2019.

[6] L. C. Possatti, R. Guidolini, V. B. Cardoso, R. F. Berriel, T. M. Paixão,
C. Badue, A. F. De Souza, and T. Oliveira-Santos, “Traffic Light
Recognition Using Deep Learning and Prior Maps for Autonomous
Cars”, in IEEE International Joint Conference on Neural Networks
(IJCNN), 2019.

[7] L. T. Torres, T. M. Paixão, R. F. Berriel, A. F. De Souza, C. Badue, N.
Sebe, and T. Oliveira-Santos, “Effortless Deep Training for Traffic Sign
Detection Using Templates and Arbitrary Natural Images”, in IEEE
International Joint Conference on Neural Networks (IJCNN), 2019.

[8] V. Cardoso et al., “A Model-Predictive Motion Planner for the IARA
Autonomous Car,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 225–230.

[9] R. Guidolini, C. Badue, M. Berger, L. de P. Veronese, and A. F. De
Souza, “A Simple Yet Effective Obstacle Avoider for the IARA
Autonomous Car,” in 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), 2016, pp. 1914–1919.

[10] R. Guidolini, A. F. De Souza, F. Mutz, and C. Badue, “Neural-based
model predictive control for tackling steering delays of autonomous
cars,” in 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, vol. 2017-May, pp. 4324–4331.

[11] L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, “Fast
LIDAR-based road detection using fully convolutional neural
networks,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017,
no. Iv, pp. 1019–1024.

[12] V. Santos, J. G. M. Goncalves, and F. Vaz, “Perception maps for the
local navigation of a mobile robot: a neural network approach,” in
Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, 1994, no. pt 3, pp. 2193–2198.

[13] V. Gupta, G. Singh, A. Gupta, and A. Singh, “Occupancy grid mapping
using artificial neural networks,” in 2010 International Conference on
Industrial Electronics, Control and Robotics, 2010, pp. 247–250.

[14] R. Weston, S. Cen, P. Newman, and I. Posner, “Probably Unknown:
Deep Inverse Sensor Modelling Radar,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, vol. 2019-May,
pp. 5446–5452.

[15] B. Wu, A. Wan, X. Yue, and K. Keutzer, “SqueezeSeg: Convolutional
Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 1887–1893.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.

[17] E. E. Aksoy, S. Baci, and S. Cavdar, “SalsaNet: Fast Road and Vehicle
Segmentation in LiDAR Point Clouds for Autonomous Driving,” Sep.
2019.

[18] M. Teichmann, M. Weber, M. Zollner, R. Cipolla, and R. Urtasun,
“MultiNet: Real-time Joint Semantic Reasoning for Autonomous
Driving,” in 2018 IEEE Intelligent Vehicles Symposium (IV), vol. 2018-
June, no. Iv, pp. 1013–1020, 2018.

[19] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” in 4th International
Conference on Learning Representations (ICLR), arXiv preprint
arXiv:1511.07289, 2016.

[20] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for
convolutional neural networks applied to visual document analysis.” In

Seventh International Conference on Document Analysis and
Recognition, pp. 958, 2003.

[21] J. Wang, and L. Perez, “The effectiveness of data augmentation in image
classification using deep learning”. in Convolutional Neural Networks
Vis. Recognit, pp. 11, 2017.

[22] J. Levinson, and S. Thrun, “Robust vehicle localization in urban
environments using probabilistic maps”. In 2010 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4372-4378, 2010.

[23] R. W. Wolcott, and R. M. Eustice, “Robust LIDAR localization using
multiresolution Gaussian mixture maps for autonomous driving”. The
International Journal of Robotics Research, Vol. 36, Num. 3, pp. 292-
319. 2017.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

