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Abstract—The scalability and complexity of deep learning
models remains a key issue in many of visual recognition
applications. For instance, in video surveillance, fine tuning of
a model with labeled image data from each new camera is
required to reduce the domain shift between videos captured
from the source domain (laboratory setting) and the target
domain (operational environment). In many video surveillance
applications, like face recognition and person re-identification, a
pair-wise matcher is typically employed to assign a query image
captured using a video camera to the corresponding reference
images in a gallery. The different configuration, viewpoint, and
operational conditions of each camera can introduce significant
shifts in pair-wise distance distributions, resulting in a decline in
recognition performance for new cameras. In this paper, a new
deep domain adaptation (DA) method is proposed to adapt the
CNN embedding of a Siamese network using unlabeled tracklets
captured with a new video camera. To this end, a dual-triplet
loss is introduced for metric learning, where two triplets are
constructed using video data from a source camera, and a new
target camera. In order to constitute the dual triplets, a mutual-
supervised learning approach is introduced where the source
camera acts as a teacher, providing the target camera with
an initial embedding. Then, the student relies on the teacher
to iteratively label the positive and negative pairs collected
during, e.g., initial camera calibration. Both source and target
embeddings continue to simultaneously learn such that their pair-
wise distance distributions become aligned. For validation, the
proposed metric learning technique is used to train deep Siamese
networks under different training scenarios, and is compared
to state-of-the-art techniques for still-to-video FR on the COX-
S2V and a private video-based FR dataset. Results indicate that
the proposed method can provide a level of accuracy that is
comparable to the upper bound performance, in training scenario
where labeled target data is employed to fine-tune the Siamese
network.

Index Terms—Video Surveillance, Face Recognition, Unsuper-
vised Domain Adaptation, Triplet Loss, Deep Learning.

I. INTRODUCTION

Learning discriminant representations from facial images,

and efficiently calibrating the resulting embeddings to new

capturing devices, conditions, and operational environments is

required in a wide range of video analytics and surveillance

applications, such as watch-list screening, biometric authen-

tication, video captioning, and web-base search and retrieval.

§Equal contribution

Representation learning methods from still facial images have

been studied extensively, where availability of extremely large

public datasets facilitates the design of deep learning models

that can achieve human-level performance [15].

Video-based face representations, on the other hand, are

harder to learn for two main reasons. First, facial images

are extracted from videos under unconstrained capture con-

ditions, which can introduce significant variability in facial

appearances according to pose, illumination, scale, resolution,

expression, etc. Second, there are fewer publicly-available

datasets for video FR, and these are smaller in size compared

datasets for still FR. This can limit the ability to train reliable

deep representations. For instance, large-scale labeled video

database publicly available to date, such as YouTube face

dataset [21], contains 3.4K videos in total from 1.5K different

subjects, as apposed to the still VGG face2 dataset with 3.3M

faces from 9K subjects [14].

To address the above challenges, one can reduce the vari-

ability of facial images captured so with video cameras prior to

matching, and hence exploit powerful still-based face represen-

tations. For instance, auto-encoder networks may be employed

to learn discriminant face embedding, and to reconstruct high-

quality canonical face images (frontal, well-illuminated, less

blurred faces with neutral expression) from faces captured

under various video conditions [13]. This approach can be

challenging for real-time applications, and may require data

from the target domain, and can be impractical to calibrate

new video sources using low-shot calibration data. Another

approach to address the challenges of video-based face rep-

resentation learning is to generate video-based data from a

large still data (i.e., integrate the effects of video capturing

conditions to still images), and then use this generated data

to design new representations for the video-based face appli-

cations. For instance, one can artificially blur training data to

account for capture conditions in real-world video surveillance

applications. By using training data composed of both still

images and artificially blurred data, a deep CNN is encouraged

to learn blur insensitive features [3]. Domain-Specific Face

Synthesis methods have been proposed where the domain

specific variations, e.g., pose, illumination, etc., are projected

onto the reference still faces of each individual of interest
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in the gallery, so that they resemble these individuals under

the capture conditions relevant to the operational domain [10]

[6]. These methods can be complex to calibrate for new video

cameras, and may fail to cover the complete range of capturing

conditions that can occur during operations.

Recently, the representation learning of video-based faces

has been approached from the domain adaptation (DA) per-

spective. High quality still images that are considered as the

source data, and images captured in video under different

environment and capturing conditions are considered as the

target data. Some methods used labeled target datasets to

fine tune a model initially trained on source data [20]. More

practical methods employed unsupervised domain adaptation

(UDA) to align the discriminant source model to the target

data using unlabeled target data [4], [9], [20]. There models

are either based on adversarial, discrepancy, or reconstruc-

tion approaches [19]. They mostly apply to classical ”single

stream” face classification models, and they are not designed

specifically for the multiple-stream networks trained through

metric learning. These models include deep Siamese networks

employed for pair-wise face matching still-to-video FR [2].

Some UDA models for deep distance metric learning were

recently proposed [8] [18]. These method are either not appli-

cable to face representation learning since they are designed

for closed-set and small-set problems, such as handwritten

digit recognition [8]. Moreover, they would require a mixture

of techniques for automatic calibration of surveillance cam-

eras, at the expense of higher computational complexity that

might hinder practical real-time video surveillance applications

[17] [6]. More recently, self-supervised learning approaches

have been proposed to automatically label target data by

leveraging temporal and contextual information in videos

tracklets [16] [22] [1]. These methods require abundance of

unlabeled target data,and availability of co-occurring tracklets

(i.e., tracklets from different subjects in the same scene that

are produced by accurate face detectors and trackers).

This paper addresses the aforementioned limitations of

adapting video-based face representation of data from new

video capture conditions and environments. UDA is possible

given unlabeled target data or where the detection and tracking

information are not accurate or informative to produce labeled

tracklets. The contributions of this paper are as follows:

• A new domain adaptation framework – called Dual-

Triplet Metric Learning (DTML) – is introduced that

applies a novel dual-triplet loss function and a mutual

supervised learning approach. The proposed framework

allows for adapting deep pair-wise matchers to different

domains by aligning their distance distributions.

• A mutual-supervised learning approach is proposed,

where the source (teacher) iteratively labels the unlabeled

target (student) data.

• The proposed dual-triplet loss and mutual-supervised

learning approach is applied to the still-to-video FR,

and provided a level of accuracy that is comparable to

the state-of-the-art methods for video face representation

learning, but with a capability for UDA.

It is important to mention that the proposed framework can

be applied to different modalities, while in this paper we assess

the method using the video-based FR as a specific use case.

II. RELATED WORK

This section provides some background on UDA methods

for deep metric learning, video-based representation and self-

supervised learning. The relation of our proposed approach

with existing methods are also discussed.

A. UDA with Deep Metric Learning:

The distance metric learning approach has been extensively

applied to the computer vision area, so that examples be-

longing to the same label (within-class samples) are close as

possible in some embedding space, and samples from different

labels (between-class samples) are as far from one another

as possible. Recently, triplet and Siamese networks were

employed for metric learning which have been successfully

applied for few-shot learning [5] [8]. Designing a discriminant

and robust distance metric requires abundant of labeled data,

and accordingly, UDA methods are required to adapt an

existing metric to a new domain where data are unlabeled

or scarce (or both cases, as for the applications discussed in

this current work).

There are a few works on UDA for deep distance metric

learning are recently proposed [8] [18]. In [8], the adversarial

learning approach [4] is applied to decrease the domain

discrepancy between the datasets and simultaneously a magnet

loss is applied to align the class centers for the source and

target embedding. This method works only for closed-set

problems (where the source and target share the label space).

In [18], on the other hand, open-set problems can be tackled

by introducing a separation loss so that different source and

target sets are separated in the embedding space.

We argue that, for such specific case of UDA (i.e., where

the adapted model is a distance metric rather than feature-

based model), the embedding should be optimized in the

distance space rather than in the feature space. In other words,

the straight forward objective function (when designing an

UDA algorithm for adapting a distance metric) should help

to distinguish between the different ”distance” types (i.e.,

within-class and between class distances), and simultaneously

it should be hard to identify the source of a distance sample

(i.e., being constituted from samples coming from the source

or the target domain). With such objective, the produced

distance metrics can be employed for both close- and open-

set problems, since it is concerned with the ultimate pairwise

distances (rather than with absolute feature representations like

that with the existing methods [8] [18]). This new concept is

followed to design our proposed method.

B. Video-based Face Representation Learning:

Face representations, based on still images, are usually

designed by training deep CNNs, in general, and Siamese

CNNs, in particular. Such techniques, however, can provide

unreliable performance when applied to design video-based
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Fig. 1: Dual-Triplet Metric Learning for Unsupervised Domain Adaptation.

face representations. Accordingly, more complex models were

proposed to provide improved performance, with the expense

of decreased efficiency, and that can hinder the real-time

applicability of the designed representations. More impor-

tantly, state-of-the-art methods require information that can

be unavailable during operation (or they can be expensive

to obtain) and that can make these methods impractical,

especially to efficiently calibrate existing models for new video

sources (i.e., cameras) using a few unlabeled data from new

target subjects.

For instance, in [3], reliable detection of facial landmarks

is required and that may fail due to occlusion. Also, besides

the complex ensemble structure that can hinder the real-time

processing, the method involves a fine tuning step that requires

large amount of data from the operational target domain. In

[12], Haar-like features are extracted so that facial landmark

extraction is no longer required, and in [11] a lighter network

structure is proposed for improved efficiency. These methods,

however, still require synthetic generation of video-like face

images and fine tuning using considerable amount of data from

the target domain. Some methods like in [20], require labeled

data from the target domain for tuning.

A more recent trend is to employ self-supervised learning

to automatically label the target data by levering temporal and

contextual information exist in videos, e.g., tracklets [16] [22]

[1]. Although provide reasonable performance, these methods

mostly require large unlabeled data to train representations

from scratch. Importantly, these methods require availability

of co-occurring tracklets (tracklets from different subjects in

the same scene) so that negative samples can be obtained

to constitute triplets. The proposed method works even with

singleton tracklets (only tracklets from a single subject appear

in a scene), or where the face detector and tracker are not

reliable to produce labeled tracklets.

III. DUAL-TRIPLET METRIC LEARNING

Figure 1 illustrates the proposed Dual-Triplet Metric Learn-

ing (DTML) framework for Unsupervised Domain Adaptation.

This framework facilitates the calibration of a new video

source (camera) when added to an existing operational video-

based face system (e.g., a video surveillance Network). More-

over, the proposed framework can be employed to adapt an

existing model that works for a specific surveillance network

to be operational in a different environment or even within a

completely new or a different network.

The calibration data consist of some Regions of Interest

(ROIs) with faces of unknown people extracted from videos

captured by the new camera. The capturing conditions of

the environment and the capturing device are represented in

the extracted ROIs and used to calibrate a video-based face

representation of an existing video source. The Source can

be considered as a teacher as it provides the target (student)

with the initial knowledge (embedding) it acquires through

supervised learning, and also they (the teacher and the student)

continue to learn a shared knowledge (embedding) using

their different data (labeled data of the source and unlabeled

calibration data of the target).

To this end, the source labeled data are used to learn an

initial representation with employing the ordinary triplet-loss

approach [15]. For each new (target) camera or environment,

the initial source embedding is loaded to the target and gets

improved with minimizing a dual-triplet loss. In order to

constitute the target part of the dual-triplet loss, a ”mutual-

supervised” process is employed, where pairwise distances

between target calibration samples are computed and statistics

of the pairwise source distances are used to label the target
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(a) Source: represented by the initial source embedding (b) Target: represented by the initial source embedding

(c) Source: represented by a shared embedding through DTML (d) Target: represented by a shared embedding through DTML

Fig. 2: Illustration of the Mutual Supervision learning using the distributions of distances between samples from same-person

(within-class (WC) samples) and distances between samples from different-persons (between-class (BC) samples). Left column

(Fig.a,c) show the distance distributions for the source data (teacher) and right column (Fig.b,d) show the distributions for

the target data (student). Upper row (Fig.a,b) show the distance distributions for the initial source representation, while the

bottom row (Fig.c,d) show the distributions where a shared target representation is learned using the proposed dual-triplet and

mutual-supervision learning method.

distances (as being within-class or between-class distances).

During training, the source and target pairwise distance dis-

tributions become more similar over time and that implies the

following: 1) a distance metric that works for the source also

works for the target, and 2) the resulting metric can label

pairwise distances from the target as accurate as for the source

distances.

A. Dual-Triplet Loss:

The dual-triplet loss L consists of two terms: a source term

Ls and a target term Lt:

L = Ls + λ · Lt. (1)

where λ is the parameter that balancing the two objectives.

A source triplet Ls is constituted from labeled source data,

using an anchor a, a positive sample p, a negative sample n,

and a margin α:

Ls = max(||f(a)− f(p)|| − ||f(a)− f(n)||+ α, 0) (2)

To constitute a target triplet, it can be impossible to use

the absolute representation of anchor, positive and negative

samples, since the target data can be unlabeled. To resolve

this limitation, we are only interested in labeling the pairwise

distances as being either within-class (wc) or between-class
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(bc). Once the distances are labeled, the target triplet is

constituted as follows:

Lt = max(||wc|| − ||bc||+ α, 0) (3)

The source triplet aims at designing a discriminant distance

metric since it is based on labeled data from the source

domain. The target triplet aims at separating the within-class

and between-class target distances with the same margin as

that for the source distances, so that the pairwise distance

distributions of both domains are similar (and hence, the

resulting distance metric is valid for both domains).

It is important to mention that the proposed DTML method

can be applied when a few labeled samples are available

from the target domain (e.g., where co-occurring tracklets

are available or when some calibration data are manually

annotated). In that case, the target triplets can be constituted

directly from the labeled samples as that with the source

triplets. In case no labeled data are available from the target

domain or when only singleton tarcklets data are available

(i.e., frames belong to a single person appear in the scene, so

no dissimilar pairwise labels are provided by tracklets), the

following mutual-supervised method is required.

B. Mutual Supervision:

The objective of the mutual-supervised learning method is

to leverage the labeled samples of the source to extract positive

(within-class) and negative (between-class) pairwise distance

samples from the unlabeled target samples.

Figure 2 illustrates the proposes mutual-supervised learning

method. Firstly, both source and target training samples are

represented using the initial embedding trained using the la-

beled source data in supervised mode. Then, pairwise distances

from both datasets are generated by computing the Euclidean

distance between the feature vectors of each pair. Since the

source dataset is labeled, it is straightforward to label the

source pairwise distances as within-class (WC) or between-

class (BC) if they belong to same-person or different persons,

respectively. Distributions of the WC and BC pairwise distance

samples are generated (see Figure 2.a). Statistics of these

distributions are used to identify two mining windows: 1)

within-class mining window (WCmw) and 2) between-class

mining window (BCmw):

WCmw = [µwc − σwc, µwc]. (4)

BCmw = [µbc, µbc + σbc]. (5)

where µwc, σwc and µbc, σbc are the mean and standard

deviation of the WC and BC pairwise distances, respectively.

These mining windows are computed to achieve a trade-off

between confidence of labeling (picking distance samples that

are close enough to the center of the distributions and far from

the confusion areas where WC and BC distances can overlap)

and also to avoid picking too much easy samples (samples

that exist towards the tail of the distributions as these samples

most likely lie beyond the margin so they do not contribute to

the loss function).

Once the mining windows are computed based on the source

pairwise distance distributions, they are used to locate (label)

the target distance samples (see Figure 2.b). Initially, the

source and target distributions are not aligned (as a result of

the domain shift), so using the source mining windows maybe

not accurate enough and also may locate a small number

of samples. These samples are used to constitute the target

triplet loss term, then dual triplet is used to train a new target

representation.

The above process is repeated for each training batch and

eventually the source and target pairwise distance distributions

become more aligned as WC and BC samples from both

domains are enforced to be separated by the same margin,

and a shared representation is used to represent samples from

both domains.

Figure 2 (c and d) illustrate how the source and target

distributions are getting aligned through the DTML with

mutual-supervised training. When better aligned, the source

mining Windows produce more accurate pseudo-labels of the

target pairwise distance and also locate larger number of

samples from each bucket (the WC and BC buckets). Also,

it is important to note that the inaccuracies of the target loss

term (as a result of the imperfect pseudo-labeling) can be

compensated by the existence of the perfect source loss term.

IV. EXPERIMENTAL METHODOLOGY

Although the proposed DTML framework and mutual-

supervised learning approach may be applied for different

modalities, we assess the methods here for the specific still-

to-video (S2V) face recognition (FR) application. To this end,

face ROIs are captured by video cameras and matched against

high quality frontal still face images of some users enrolled

to the system.

Two video-based face FR datasets are used for the exper-

imentation: 1) the public COX face dataset and 2) a private

video-based dataset that we created internally for performance

assessment.

The COX dataset is used to assess the proposed approach

ability to adapt a model that works for an existing camera

in a surveillance network to be operational for a new camera

added to the network. On the other hand, the private dataset

is utilized to simulate the case where a model designed for

am exiting surveillance network is leveraged and adapted for

a different network or operational environment.

For the COX dataset, the standard experimental protocol

described in [7] is followed in this experimental study, so

results can be compared to the state-of-the-art methods. The

dataset consists of 1000 subjects with still images are captured

for each subject and then each person is captured by 3 video

cameras with different views. As described in [7], samples

from 300 subjects are considered a training set, and the

remaining 700 subjects are used for the testing. To simulate

the camera calibration scenario, we split the training set to 200
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subjects for training the initial source models, and 100 subjects

for calibrate the new camera. This split is important to simulate

the case where subjects used during developing the initial

solution (i.e., in the lab) are different than the subjects who

appear in the operational field during a calibration session.

This setup also simulates the ”open-set” scenario, where

subjects appear during operation are not seen during the design

and calibration phases.

The private video-based FR dataset consists of 100 subjects

where only video-based face images are captured by a com-

mercial IP video surveillance camera during real operational

setup. Since there is no still templates are collected during

operation, we manually selected best face image from each

subject (i.e., nearly frontal, best size and quality, etc) and used

them as a still images gallery. The training set consists of

30 subjects and the testing set consists of the remaining 70

subjects. Since we simulate the case where a model from an

existing network is leveraged and adapted for a new network

or environment, so here we use a model tuned for Cam 1

from the COX dataset as a source, and employ the proposed

approach to adapt this model to the camera that we used to

create our private dataset. Accordingly, the whole training set

(30 subjects) are used for calibration.

For all experiments, samples are firstly represented using

the VGG Face representation [14]. Then, a source embedding

is trained using the ordinary triplet loss. This embedding is

used to test the case where only source models are leveraged

without any domain adaptation step. To this end, the S2V

performance for the subjects of the testing set is computed

and considered as a lower-bound performance.

To simulate the case where labeled data are available from

the calibrated camera (e.g., through expensive manual anno-

tation), the DTML is employed but the target labels are taken

directly from the dataset (instead of the labels produced by

the mutual-supervised method) and consisedred as an upper-

bound performance.

To simulate the camera calibration process using our pro-

posed UDA approach, the calibration and training data (from

source and target cameras, respectively) are represented by

the learned source representation and used to constitute the

dual-triplet terms. Then, the DTML algorithm runs to learn

an embedding for the calibrated camera. For such case, three

variants of the DTML method are employed to test the impact

of the dual-triplet loss terms, three scenarios are implemented:

1) Ls: where only data from the source camera are used and

only the the source triplet is used to tune the network.

This scenario simulates the case where we don’t use

calibration data and only keep improving the source

representation.

2) Lt: where only data from the target camera are used and

only the the target triplet is used to tune the network.

This scenario simulates the case where we only rely on

calibration data to adapt the source model for the new

camera.

3) Ls+Lt: where data from both the source and calibrated

cameras are used for adaptation, which is the exact

Cam1 → Cam3 Cam3 → Cam2

Methods AUC Acc AUC Acc

VGG-Face [14] - 68.1 - 76.0

Source model: without DA 0.90 81.7 0.94 87.2

Proposed UDA: DTML-A 0.95 88.7 0.97 91.0

Upper-bound: supervised DA 0.98 93.3 0.99 95.3

TBE-CNN [3] - 88.2 - 95.7

CCM-CNN [11] - 88.6 - 92.1

HaarNet [12] - 89.3 - 97.0

TABLE I: AUC and accuracy of the proposed DTML with

mutual supervision and baseline methods on the COX dataset.

DTML proposed method.

For all experiments, the batch size is set to 100 (5 persons

per batch, 20 images per person). The source labels are used

to load training images from five different persons per batch,

while the proposed mutual-supervision method is employed

to pseudo-label pair-wise image distances so that equivalent

number of similar and dissimilar images are loaded from

the target dataset. Then, DTML runs for 40 epochs, and

performance is tested using rank 1 accuracy and the Area

Under ROC Curves (AUC). Parameter λ (see Eq. 1) is used to

balance the contributions of the source and target triplet terms

to the overall loss function. Extensive experimentation show

that equal contributions lead to best results, so we set λ = 1
in all reported results.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Table I shows the S2V FR results using the COX dataset. It

is obvious that tuning the basic feature representation (VGG-

Face) using the source data only provides improved accuracy,

even without applying any domain adaptation step. This ob-

servation is expected, as cameras within same network have

some similarities, and accordingly training for one camera can

help for the other cameras.

Applying the proposed DTML algorithm with mutual-

supervision achieved a significant improvement for both do-

main shift problems (around 5% increase in AUC for both

cases). While the source model performance is very low

compared to the upper-bound performance (in case that labels

of the calibration data are available, e.g., through expensive

manually annotation, perfect co-occurring tracklets, etc.), the

proposed method could perform a reliable domain adaptation

in an unsupervised fashion (i.e., UDA) and achieved a perfor-

mance close to the upper-bound.

Comparing with the performance of state-of-the-art meth-

ods, the proposed method achieves comparable results (for

the Cam3 → Cam2 case), and somewhat less performing

(for the Cam1 → Cam3 case). Noting that these methods

are either less efficient (e.g., because they involve complex

ensembles of CNNs, expensive generation of synthetic video-

like ROIs, etc.), or they rely on information that can be

unavailable during camera calibration (e.g., facial marks that

can be unavailable due to occlusion, abundant of calibration

data, etc.). On the other hand, the proposed DTML with

mutual-supervision approach employs simple CNN structures,
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Fig. 3: AUC performance on COX dataset: Cam3 → Cam2.

Fig. 4: AUC performance on COX dataset: Cam1 → Cam3.

and only uses a small amount of unlabeled calibration data

without the need to generate synthetic captures or extract facial

landmarks.

Figures 3 and 4 illustrates the impact of the dual triplet

terms. In Figure 3, it is clear that using the source data only

(i.e., using loss triplet term Ls only) is not helpful to classify

samples from the target camera. Also, using the target loss (Lt)

alone, although gained performance increase during the initial

training iteration, the performance is dramatically decreased

afterwards due to model overfitting. Having both the source

and target triplets (Ls+Lt) guarantee continuous performance

increase over the training period.

In Fig 4, it is clear that source data alone provides a limited

performance gain. Similar to the above observation, the best

performance is achieved when triplets from both domains are

optimized. Although using triplets from only the target domain

provided adequate performance for this domain shift problem,

this result wouldn’t be achieved without having the help of

the source as the target data are initially unlabeled and they

are labeled using the source embedding (in order to constitute

the target triplets).

Fig 5 illustrates the impact of applying the proposed UDA

method to adapting a model designed for an existing camera

to a new camera so that surveillance networks are extensible.

Fig 5.a shows the TSNE representation of the testing samples

from the first ten subjects captured by Cam 2 (target camera,

newly added to the network) of the COX dataset, where

the embedding is generated using a model tuned for Cam 3

(source camera, already exist in the network). It is clear that

the source embedding is not suitable enough for the target

camera. Fig 5.b shows the the TSNE representation of the

target camera after adapting the model using the proposed

UDA approach. It is clear that the adapted model provides

discriminant representation.

Fig 6 illustrates the impact of applying the proposed method

to leveraging a model of an existing network to be functional

for a new network or environment (e.g., where collecting

and labeling enough data from the new network to train a

model from scratch is infeasible). Fig 6.a shows the TSNE

representation of the testing samples from the first ten subjects

captured by the target camera (a commercial IP camera used

to capture video-based face image in a realistic operation

conditions in an uncontrolled environment). The embedding

is generated using a model that is fine tuned for Cam 1 from

the COX dataset. Although we have chosen the source camera

from the COX dataset (that is closest to the target camera as

it has the least domain shift between source and target), it is

obvious most clusters (subjects representation) are split into

two separate sets and there is a significant overlap between

subjects (see the top part of Fig 6.a). When we applied the

proposed UDA approach, using unlabeled samples from the

target camera, the clusters are well separated (see 6.b) and

accordingly the FR accuracy has significantly improved (True

positive rate at False Alarm rate (FAR=1%) increased from

52% from 73%).

Figure 2 (that is used to illustrate the proposed mutual-

supervised learning method in in Section III.B; where distance

distribution plots are generated using Cam 1 from the COX

dataset as a source and our private video-face dataset as a

target) shows the separability of WC and BC distance distri-

butions of the target data where the source initial embedding

is adapted using the proposed UDA approach. With UDA,

the source and target distributions are well aligned. More

specifically, after adaptation, a simple threshold, e.g., 0.9

provides a good trade-off between false positives and false

negatives for both of the source and target domains, as apposed

to to initial state (Figures 2 (a and b) where the source and

target distance distributions are not aligned and a threshold

that works for the source (e.g., 0.8) results in high FAR rates

when used by the target.

It is important to mention that, although the adapted embed-

ding provides more aligned and separable pairwise distance

distributions (i.e., target within-class (WC) and between-class

(BC) distributions are better separated and aligned with the

source distributions), it is not expected to rely only on the

quality of resulting embedding to provide accurate classifi-

cation results when the simple Euclidean distance is used as

a distance metric, and also when a simple threshold is used
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(a) Before domain adaptation (b) After domain adaptation.

Fig. 5: The t-SNE representation for first ten persons in the testing set of our COX dataset,

(a) Before domain adaptation (b) After domain adaptation

Fig. 6: The t-SNE representation for first ten persons in the testing set of our Private Video Face dataset.

for classification in the embedding space. Accordingly, we

further feed the embedding of the still (template) and video

(query) samples to a two-layer fully connected network and we

trained this outer network separately using the pseudo-labeling

approach described in Section III.B. This step has improved

the recognition accuracy from 73% to 84% with FAR = 1%
(for the private FR video-based dataset). More importantly,

instead of feeding the two streams of the absolute embedding

(from both the still and video samples), we further generate

the following dissimilarity feature representation:

δ(X) = |XQ −XT |. (6)

where XQ and XT are the feature representation generated

by embedding adapted with the proposed DTML approach for

the query (video) and template (still) samples, respectively.

The resulting dissimilarity representation is accordingly of the

same dimensionality as that for the original representation.

We noticed a significant improvement in accuracy due this

transformation step (recognition accuracy has increased from

84% to 90% with FAR = 1%). Future work will explore

employing the DTML approach with having the dissimalrity

representation and the outer layers trained in an end-to-end

fashion.

Also, it is important to note that the proposed method

is only applicable to transfer problems where the domain

shift between the source and target domain is small enough

so that mutual-supervised training is possible. For instance,

if the initial source and target distance distribution are not

aligned enough, the proposed mining approach can locate

completely wrong samples, or may fail to locate any sample

from either the WC or the BC buckets, so in this case the

mutual-supervised learning mechanism will not work correctly

(see Figure 2). Future work will explore different methods to

enforce the distance distributions of the different domains to

be aligned without the need for the pseudo-labeling step, by

employing the adversarial learning concept.
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VI. CONCLUSION

A general method for UDA of deep distance metrics is

proposed in this paper. The proposed method is applicable

to pair-wise matching problems with domain shift, where the

target domain can provide a small amount of data, and also the

cases where only unlabeled target data are available. Two main

aspects of the proposed method are discussed: the new dual-

triplet optimization and mutual-supervision process. Using a

dual-triplet form the source and target domains allows to

mitigate the issue model corruption because, even with limited

target data, it can also allow for pairwise distance distributions

of both domains more similar. The mutual-supervision feature

provides a novel tool to constitute triplets from the unlabelled

target samples. The method is applied to provide unsuper-

vised domain adaptation for the still-to-video FR systems

and achieved a level of accuracy comparable to the state-of-

the-art more complex methods, that also can be impractical

given the limitations of the camera calibration use-case. Future

directions for our research include validating this approach on

a wider range of applications and datasets, and exploring the

relationship with methods in knowledge distillation.
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