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Abstract—We propose a general method for various image
restoration problems, such as denoising, deblurring, super-
resolution and inpainting. The problem is formulated as a
constrained optimization problem. Its objective is to maximize a
posteriori probability of latent variables, and its constraint is that
the image generated by these latent variables must be the same as
the degraded image. We use a Generative Adversarial Network
(GAN) as our density estimation model. Convincing results are
obtained on MNIST dataset.

Index Terms—image restoration, deep learning, optimization

I. INTRODUCTION

Image restoration has been researched for many years, but
in a case-by-case way [1]–[5]. Almost all image restoration
algorithms are only designed for a certain type of images
or degradation. This research paradigm has some obvious
disadvantages. It is exhausting to invent new algorithms or
train new models for slightly different situations. Even if we
can, those specialized solutions are not so elegant, because
they are very unlike one another even though the problems
they focus on are fundamentally so similar.

It is worth noting that any image degradation process can
be abstracted as a many-to-one function. More specifically,
for any given degradation process, one degraded image could
be degraded from many possible original images. From that
point of view, we propose a general method for various image
restoration problems, such as denoising, deblurring, super-
resolution and inpainting. Our algorithm chooses the most
probable original image from all those possible original images,
and uses it as the restoration of the given degraded image. To be
more precise, the general image restoration is formulated as a
constrained optimization problem. Its objective is to maximize
a posteriori probability of latent variables, and its constraint is
that the image generated by these latent variables must be the
same as the degraded image.

Recent progress of density estimation techniques has made
our algorithm possible. In the field of image generation,
Generative Adversarial Networks (GANs) has achieved great
success in recent years [6]–[8]. As research continues, images
generated by GANs become more and more realistic and
clear, and training procedure of GANs become more and more
stable [9], [10]. Besides being an image generation technique,
GANs can also be used for density estimation. The generator

part of a GAN is an implicit probability distribution model,
and it will converge to a good estimator of the data distribution
after training. In this work, we solve the inference problem
with the probability density estimated by a GAN.

Figure 1 provides an illustration of how our image restoration
method works. There are four dashed boxes from left to right
in Figure 1, corresponding to four different phases of an image
capture and restoration process. Images in the first dashed
box are original images, which are clear and undegraded.
These images undergo a series of degradation in the second
dashed box, and then are captured by our camera. In the
image restoration process, we hope to estimate the original
images with the degraded images we captured. As we pointed
out before, every degraded image could be degraded from
many possible original images. To be more precise, there is
a particular subset of the original image manifold for any
degraded image, and all image samples on the submanifold
could be degraded to the given degraded image. Images in
the third dashed box are those samples on the submanifold,
and they are arranged in ascending order of log-likelihood
from left to right. Images marked by yellow boxes are samples
with the highest log-likelihood in their group, and they are
placed in the last dashed box as restoration outputs. Overall,
the contributions of this work are mainly in two aspects:

1) We propose a general method for various image restoration
problems. In the method, we explicitly use density
information estimated by a GAN, an implicit model;
and we directly solve the image restoration problem, an
inference problem, with a GAN, a generative model. To
the best of our knowledge, our work is the first to do
those two things.

2) We propose a new algorithm to solve the optimization
problem in our method. It is a first-order iterative algorithm
for constrained problems, and it works well even for
problems with highly nonlinear objectives and constraints.
These features make it especially suited to neural network
related constrained optimization problems.

II. RELATED WORK

The most similar works to ours are found in [11], [12].
[11] propose an image inpainting method, which can generate
missing content with a trained GAN. They search in the latent
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Fig. 1: An illustration of our image restoration method.

space of the GAN for the image which is close to the corrupted
image, and use the discriminator loss as an indicator of how
realistic their restoration is. [12] then improve their theory and
apply it to various image restoration problems. Unfortunately,
there is a major theoretical flaw in their method. [6] prove that
the discriminator is unable to identify how realistic an input is
after several steps of training, if the GAN has enough capacity.
During the training, the information of the data distribution
gradually transfer from the discriminator to the generator.
Ideally, the generator will have all the information of the data
distribution while the discriminator will have none. Even worse,
[12] ignore a term | ∂z∂x | intentionally in their Eq. (5), because
they think it is intractable. We will demonstrate in the next
section that | ∂z∂x | directly determines the density of data space.
In other words, [12] pays attention to the trivial and ignores the
vital. That is why we use the generator instead of discriminator
to measure how realistic the restoration is. Another difference
between their work and ours is that we use a more radical
strategy of optimization. They simply add their image prior term
to their distortion. This will lead to a compromise between
plausibility and visual quality of restoration. However, we
choose the most probable image only from images which
could degrade to the input. This makes our restorations more
plausible while still keeping them similar to reality.

The maximum a posteriori (MAP) has existed for a long
time as a classic estimation method [13], [14]. But before
GANs, people do not have a probability density model which
is good enough to describe the distribution of images. After
GANs attained great success in image generation, researchers
started to use them in image restoration tasks to get more
realistic results [15], [16]. [17] and [18] try to use the MAP
estimation on GANs to solve the image super-resolution
problem. However, they only use the MAP estimation implicitly
and indirectly, while our method uses it explicitly and directly.
We suspect that all methods that do implicit MAP estimation on
GANs would require redesigning or retraining when the image
restoration task changes, and this makes implicit methods not
as general as our explicit method.

[19] is another work which is seemingly similar to ours, but

they are actually quite different. They use a randomly-initialized
neural network as a prior to solve image restoration problems.
The prior in their method is elaborate, neural network related
but still handcrafted, while in our method the prior is learned
from data. So our data-driven prior has better adaptability to
specific image distribution.

III. MAXIMUM A POSTERIORI ON A SUBMANIFOLD

A. Formulation
Consider a general image degradation model x̃ = F (x,Ω),

where x, x̃, and Ω represent the original image, the degraded
image, and the parameters of the degradation model, respec-
tively. The image degradation function F is a deterministic
function. That means, given an original image x and a particular
set of parameters Ω, the image degradation model will always
produce the same degraded image x̃.

Our goal is to get a reasonable estimate of x with given x̃ and
F . In this paper, we use the maximum a posteriori probability
(MAP) estimate of x as the restoration of x̃. Compared to
MSE-based method, MAP estimate of x is perceptually more
convincing. We can perform inference by maximizing the
posterior p(x,Ω|x̃):

{x̂, Ω̂} =argmax
x,Ω

p(x,Ω|x̃)

= argmax
x,Ω

p(x̃|x,Ω)p(x|Ω)p(Ω)

p(x̃)
(1)

where x̂ and Ω̂ represent MAP estimate of x and Ω. Note
that p(x̃) is always positive and does not depend on x and
Ω, and typically we assume that x and Ω are independent.
Therefore,

{x̂, Ω̂} =argmax
x,Ω

p(x̃|x,Ω)p(x)p(Ω) (2)

Note that x̃ = F (x,Ω) is a deterministic function, i.e.,
p(x̃|x,Ω) = δ(x̃ − F (x,Ω)). Therefore, the estimation is
equivalent to

{x̂, Ω̂} = argmax
x,Ω

p(x)p(Ω)

s.t. ‖x̃− F (x,Ω)‖ = 0
(3)
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Here we write p(x) more specifically as pr(x), which stands
for the probability density of real data distribution. We can
estimate pr(x) with the generator part of a trained GAN, which
is an implicit probability distribution model with distribution
pG(x). The trained generator G represents a mapping from
latent space of z to data distribution of original image x, i.e.,
pr(x) = pG(x), and pG(x) is a probability density function
implicitly defined by x = G(z), where z is typically sampled
from some simple distribution, such as the uniform distribution
or the normal distribution. Assuming G : Rn → Rm is an
injective function, the estimation is equivalent to

{ẑ, Ω̂} = argmax
z,Ω

pG(G(z))p(Ω)

s.t. ‖x̃− F (G(z),Ω)‖ = 0
(4)

and x̂ = G(ẑ) (5)

Generally the dimension of vector space of z is far lower
than the dimension of vector space of x. Note that pG(x) is
nonnegative if and only if x is on the low dimensional manifold
M defined by x = G(z), we can replace the probability density
on the original space pG(G(z)) in Eq. (4) by the probability
density on the manifold pM(z), and end up with the same
estimation result ẑ. According to [20], the probability density
on the manifold can be calculated by

pM(z) =
p(z)√

detGram( ∂G∂z1
, . . . , ∂G∂zn

)
(6)

where Gram represents the Gram matrix, and√
detGram( ∂G∂z1

, . . . , ∂G∂zn
) is the volume of the parallelotope

spanned by the vectors ( ∂G∂z1
, . . . , ∂G∂zn

), so the square root of
the Gram determinant can serve as a local scale factor. It has
an effect similar to the Jacobian determinant, but we can only
use the Gram determinant here because G is a function from
Rn to Rm, and generally n is much less than m.

The Gram matrix can be simply calculated by
Gram( ∂G∂z1

, . . . , ∂G∂zn
) = V TV , where V is an m × n

matrix, whose entries are given by V ij = ∂xi

∂zj
. Therefore,

Eq. (4) is equivalent to

{ẑ, Ω̂} = argmax
z,Ω

p(z)p(Ω)√
detV TV

s.t. ‖x̃− F (G(z),Ω)‖ = 0

(7)

To solve the estimation problem efficiently, we represent
probabilities in Eq. (7) in logarithmic space, i.e.,

log
p(z)p(Ω)√
detV TV

=− 1

2
log detV TV

+ log p(z) + log p(Ω) (8)

Matrix V TV is a positive-definite matrix, so we can use
Cholesky decomposition to calculate log detV TV efficiently,
i.e.,

log detV TV = 2 tr(log(chol(V TV ))) (9)

Finally we deduce a set of expressions which can be calculated
directly, and their final outcome x̂ is the restored image we
want, i.e.,

{ẑ, Ω̂} = argmax
z,Ω

− tr(log(chol(V TV )))

+ log p(z) + log p(Ω)

s.t. ‖x̃− F (G(z),Ω)‖ = 0

(10)

and x̂ = G(ẑ) (11)

Note that (G(z),Ω) form a low dimensional manifold which
is embedded in the space of (x,Ω), and the feasible solutions
of Eq. (10) is on a subset of the manifold, which is defined
by ‖x̃− F (G(z),Ω)‖ = 0. So our method basically makes a
MAP estimate on a submanifold.

Figure 2 is a toy example to show the basic idea of our
formulation in a very visible way. Suppose there is a grayscale
original image x, which has only three pixels. Then it is
downsampled to only one pixel during the image capture
process, and our task is to estimate x with the one pixel
image we captured. Suppose we have trained a GAN as an
implicit model of data distribution of x. More specifically, the
generator of the trained GAN represents a mapping from its
input noise z to data distribution of x. The left part of Figure
2 describes the two dimensional latent space of z. We use the
saturation of orange color to represent probability density level,
i.e., a thicker orange color means a higher probability density.
So the uniform orange color in the latent space means that the
input noise z is sampled from a uniform distribution.

Then the two dimensional vector z is mapped to three
dimensional space of image x by the generator of the trained
GAN, and the big orange square in the latent space of z is
transformed into a twisted torus in the three dimensional data
space of x, which is described in the right part of Figure 2.
Some areas in space of z expand during the transformation,
while other areas shrink. We can find this out by comparing
the red and blue quadrilateral between the latent and data
space. Therefore, the probability density on the torus is no
longer uniform. The orange colors of the expanded areas
become lighter, and the colors of the shrunken areas become
thicker. Quantitatively speaking, the square root of the Gram
determinant in Eq. (6) is the local area scale factor of the
mapping, and its inverse, of course, is the local density scale
factor.

The pale yellow plane in the data space represents the
constraint in the toy example. All points on the plane would
exactly be downsampled to the one pixel image we captured.
So the intersection curve of the plane and the torus is the
submanifold we are looking for, and that white curve is the
feasible set of the toy problem. In this problem, p(z) is a
constant in the domain, and degradation parameters Ω does
not exist at all. According to Eq. (7), what we need to do
is to maximize the inverse of the square root of the Gram
determinant on the submanifold. In other words, the point
with the thickest orange color on the intersection curve is the
restored image x̂, the MAP estimate on the submanifold. We
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Fig. 2: A toy example to show the basic idea of our formulation.

can find out that the method is both intuitive and rational for
this toy example.

B. Optimization Algorithm

We propose a new optimization algorithm to solve Eq. (10).
Note that the objective function and the equality constraint in
Eq. (10) are both highly nonlinear, so gradient-based method
seems a natural choice for the problem. Our algorithm is
inspired by Projected Gradient Descent Method.

To solve an unconstrained problem with ordinary Gradient
Descent Method, we take small steps in the direction of the
negative gradient. To solve a constrained problem, we can try
to use Projected Gradient Descent Method, take a small step
as usual and then project variables back onto the feasible set.
But unfortunately, Projected Gradient Descent Method is only
valid for problems with a very simple feasible set, such as
a solution set of linear equations, a simple polyhedron or a
simple cone. If constraints of a problem are too complex, like
the constraint in Eq. (10), it is very hard to project variables
back onto the feasible set.

To overcome this shortage, we propose a new optimization
algorithm called Quasi Projected Gradient Descent Method.
In our algorithm, the gradient information is not only used
to improve the objective function, but helps to satisfy the
constraints as well. Consider the standard form of a continuous
optimization problem,

minimize
u

f(u)

s.t. hi(u) = 0, i = 1, . . . ,m

hj(u) ≤ 0, j = m+ 1, . . . ,m+ p

(12)

where f, hi, hj : Rn → R, and they are all highly nonlinear.
Algorithm 1 is the proposed algorithm for the problem.

To solve Eq. (10) with Algorithm 1, we only need
to set u = {ẑ, Ω̂}, objective function f(u) =

Algorithm 1 Quasi Projected Gradient Descent Method
Input: objective function f(u), equality constraints hi(u) and
inequality constraints hj(u)
Parameters: step size η‖ and η⊥, positive factors ci and cj ,
number of iterations n, small positive constant ε for numerical
stability, initial guess u0

Output: local optimum un

Let h(u) =
m∑
i=1

ci · ‖hi(u)‖2 +
m+p∑
j=m+1

cj · H(hj(u)) ·

‖hj(u)‖2, where H represents the Heaviside step function
for i = 1 to n do
gf = ∇f(ui−1)
gh = ∇h(ui−1)
g‖ = gf −

gf ·gh
gh·gh+ε

· gh
g⊥ = gh
ui = ui−1 − η‖ · g‖ (or use more advanced optimizer)
ui = ui − η⊥ · g⊥ (or use more advanced optimizer)

end for
return un

−(− tr(log(chol(V TV )))+log p(z)+log p(Ω)), and the only
equality constraint function h1(u) = ‖x̃− F (G(z),Ω)‖.

In the proposed algorithm, we first define an overall
constraint function h(u) : Rn → R≥0, and the feasible set
of the optimization problem is the region where h(u) = 0. In
each iteration of the algorithm, we calculate the gradients of
f(u) and h(u) at ui−1. If we take a small step in the direction
of the negative gf , the value of f(u) will decrease a little bit,
but it may have an unwanted impact on the value of h(u). In
order to avoid this problem, we calculate g‖, the tangential
component of gf on the isocontour of h(ui−1), which can be
calculated by vector rejection of gf on gh. In each iteration,
we actually take a small step in the direction of the negative
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Fig. 3: A toy example to show how our Quasi Projected Gradient Descent Method works.

g‖, the value of f(u) will still decrease, while it has almost
no impact on the value of h(u). We also take a small step
in the direction of the negative g⊥, i.e., gh itself, which is
perpendicular to the isocontour of h(ui−1). Repeat these steps,
and the sequence u will hopefully converge to the desired
optimal solution. Behaviors of our Quasi Projected Gradient
Descent Method is similar to behaviors of the original Projected
Gradient Descent Method. Consider a point u which is very
close to the feasible region. The summation of two moves
against g‖ and g⊥ is actually an inaccurate Projected Gradient
Descent. That is why we name our method as Quasi Projected
Gradient Descent Method.

Here we use the same toy example we used in Section
III-A, to show how our Quasi Projected Gradient Descent
Method works. In Figure 3, solid curves in black and white
are isocontour of constraint function h. The whiter the curve,
the lower value of h it corresponds; Dashed lines in color are
isocontour of objective function f . The redder the line, the
lower value of f it corresponds. Note that the white solid curve
is the feasible set of the toy problem, so intersection points
of the white solid curve and the red dashed line in the latent
space is ẑ in Eq. (10), while the intersection points in the data
space is x̂ in Eq. (11).

Our iterative optimization algorithm starts from the bottom
left corner of the latent space. The red vector is a gradient step
of h. It is pointing towards the direction of the negative gh,
and is perpendicular to the black solid curve, an isocontour
of h. The green vector is a gradient step of f . It is pointing
towards the direction of the negative gf , and is perpendicular
to the yellow dashed line, an isocontour of f . The blue vector

is a projected gradient step. It is pointing towards the direction
of the negative g‖, and is the tangential component of the
green vector on the black solid curve, which can be calculated
by vector rejection of the green vector on the red vector. We
only plot green, red and blue vector for the first iteration to
keep Figure 3 clean and easy to understand. Black vectors
are combined gradient steps, which are vector sums of red
and blue vectors. We move along these black vectors and we
can find out that our optimization algorithm reaches a desired
solution quickly.

IV. EXPERIMENTS

In this Section, we use MNIST dataset [21] to test our
image restoration method. The dataset is divided in 50k for
the training set, 10k for each of the validation and test set.
We use a WGAN-GP [22] trained on the training set as the
density estimation model. The architecture of the WGAN-GP
we used is shown in Table III and Table IV, and we add a
L2 weight decay term with decay parameter of 0.001 on the
generator loss to prevent over-fitting. The network we used is
very simple, but it is enough to prove the effectiveness of our
method.

We use four different kinds of degradation to test the gener-
ality of our method. The first three kinds of degradation are
relatively simple. They are 7× downsampling, making a 14×14
square hole in the center of the image, and adding Gaussian
white noise with a standard deviation of 1.0, respectively.
The last kind of degradation is a composition of a series of
degradation in order, which are (a) adding linear motion blur
by at most 14 pixels in any direction, (b) 4× downsampling,
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TABLE I: Quantitative comparison with other general image restoration methods using PSNR(dB) and SSIM.

Downsample Hole Noise Composition

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Total Variation 12.88 0.4556 11.06 0.5928 11.94 0.1736 12.64 0.2559
[12] 13.23 0.6612 12.13 0.6205 11.99 0.5910 12.79 0.6434

Ours 17.02 0.8287 14.63 0.7815 14.47 0.7238 14.73 0.7403

TABLE II: Visual comparison with other general image restoration methods.

Downsample Hole Noise Composition

Original image

Degraded image

Total Variation

[12]

Ours

TABLE III: Architecture of the generator

Kernel size Output shape

z - 16
Linear, tanh - 64× 4× 4
Deconv, tanh 5× 5 32× 7× 7
Deconv, tanh 5× 5 16× 14× 14
Deconv, sigmoid 5× 5 1× 28× 28

TABLE IV: Architecture of the discriminator

Kernel size Output shape

G(z) - 1× 28× 28
Conv, LeakyReLU 5× 5 16× 14× 14
Conv, LeakyReLU 5× 5 32× 7× 7
Conv, LeakyReLU 5× 5 64× 4× 4
Linear - 1

(c) adding uniform noise between -0.05 and 0.05, (d) randomly
removing 10% of the pixels.

We use two independent ADAM optimizers [23] with g‖
and g⊥ respectively in the Quasi Projected Gradient Descent
Method. For all four kinds of degradation, we run the algorithm
with the same settings. Settings for both ADAM optimizer are
learning rate α = 0.01 (decayed linearly to 0), β1 = 0.9,
β2 = 0.99, and number of iterations n = 500.

In the experiments, we compare our method with two other
general image restoration methods. The first is Total Variation
(TV) [24], a traditional method; and the second is [12], a GAN
based state-of-the-art approach. We use the SSIM index [25]
and PSNR value as quantitative metrics for these restoration
methods, and the results are shown in Table I. We also present
some restoration images in Table II without cherry-picking.
We can find out that our general image restoration method is
better than both baseline methods by large margins. This is
due to the more accurate prior information of images and the
more radical strategy of optimization in our method.

V. CONCLUSIONS AND FUTURE WORK

We propose a general image restoration method in this
work. Compared with traditional image restoration algorithms,
our method is much more powerful. Image restoration is an
inherently ill-posed problem, so additional prior knowledge
is needed. In our method, we use all prior knowledge of
original images, i.e., the probability distribution of original
images; and we use all prior knowledge of degradation, i.e.,
the degradation model itself. Traditional image restoration like
Total Variation, by contrast, just uses a small part of the prior,
typically some statistical properties. Besides, unlike our method,
there is usually no guarantee that an output restoration from
a traditional method can be degraded back accurately to its
input. This makes restorations from a traditional method less
plausible than restorations from our method.

For future work, we think our method can be straightforward-
ly extended to other domains which GANs are gifted in, such
as video, audio and language. We will try to solve restoration
problems and other inference problems in these domains with
our paradigm. The convergence and other properties of the
Quasi Projected Gradient Descent Method would be interesting
as well.
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