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Abstract—The ability to capture relations within data can
provide the much needed inductive bias for robust and inter-
pretable Machine Learning algorithms. Variational Autoencoder
(VAE) is a promising candidate for such purpose thanks to
their power in data representation inference, but its vanilla form
and common variations cannot process feature relations. In this
paper, inspired by recent advances in relational learning with
graph neural networks, we propose the Self-Attention Graph
Variational AutoEncoder (SAG-VAE) model which can simul-
taneously learn feature relations and data representations in an
end-to-end manner. The SAG-VAE is trained by jointly inferring
the posterior distribution of two types of latent variables, which
respectively represent the data and the feature relations. The
feature relations are represented as a graph structure, and
the presence of each edge is determined by a Gumbel-Softmax
distribution. The generative model is accordingly parameterized
by a graph neural network with a special attention mechanism we
introduced in the paper. Therefore, the SAG-VAE model can gen-
erate via graph convolution and be trained via backpropagation.
Experiments based on graphs show that SAG-VAE is capable
of approximately retrieving edges and links between vertices
based entirely on feature observations. Furthermore, experiments
on image data illustrate that the learned feature relations can
provide the SAG-VAE robustness against perturbations in image
reconstruction and sampling. The learned feature relations as
graph adjacency matrices are observed to be structured, which
provides intuitive interpretability of the models.

Index Terms—Variational Autoencoer, Graph Neural Network,
Relational Learning, Latent Variable Model

I. INTRODUCTION

In practice, data often comes with complex relations be-
tween features which are not explicitly visible, and extracting
this structural information has been a crucial, yet challenging,
task in the field of Machine Learning. Recently, renewed inter-
est in relational and structure learning has been largely driven
by the development of new end-to-end Neural Network and
Deep Learning frameworks [1]–[3], with multiple promising
results reported. This renewed drive in relational structure
inference using Neural Networks can be partially attributed
to current efforts to overcome the limited generalization capa-
bilities of Deep Learning [4]. More importantly, learning the
relational structure with Neural Network models has several
inherent advantages: strong and efficient parameterization abil-
ity of Deep Learning can extract essential relational informa-

tion and perform large-scale inference, which are considered
difficult with other learning algorithms.

Recently, research in relational learning using Neural Net-
works has largely focused on sequential generation/prediction
of dynamical systems, while static data has been largely
ignored [5]–[7]. At their core, these algorithms use either one
or a combination of Graph Neural Networks (GNNs) [8]–[10]
and Variational Autoencoders (VAEs) [11]. The former pro-
vide a convenient framework for relational operations through
the use of graph convolutions [12], and the latter offer a
powerful Bayesian inference method to learn the distribution
of the latent graph structure of data. Inspired by these recently
developed methods, we devised a Neural Network based
algorithm for relational learning on graph data.

In this paper, inspired by the recent advances in the field
of GNNs and VAEs, we propose Self-Attention Graph Vari-
ational Autoencoder (SAG-VAE), a novel VAE framework
that jointly learns data representation and latent structure in
an end-to-end manner. SAG-VAE utilizes the gumbel-softmax
reparameterization [13] to infer the graph adjacency matrix,
and employs a novel Graph Convolutional Network (also
proposed by this paper) as the generative network. During the
generative process, a sampled adjacency matrix will serve as
the graph edge information for the novel Graph Network, and
a sampled data representation will be fed into the network
to generate data. Based on this framework, SAG-VAE will be
able to directly infer the posterior distributions of both the data
representation and relational matrix based simply on gradient
descent.

Several experiments are carried out with multiple data sets
of different kinds to test the performances. We observe in
the experiments that SAG-VAE can learn organized latent
structures for homogeneous image data, and the interpretation
can match the nature of the certain type of image. Also, for
graph data with known connections, SAG-VAE can retrieve a
significant portion of the connections based entirely on feature
observations. Based on these performances, we argue that
SAG-VAE can serve as a general relational structure learning
method from data. Furthermore, since SAG-VAE is a general
framework compatible with most Variational Autoencoders, it
is straightforward to combine advanced VAEs with SAG-VAE
to create more powerful models.
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The rest of the paper is arranged as follows: Section II
conducts a literature review regarding methods related to the
paper; Section III introduces the background and discuss the
proposed SAG-VAE; Experimental results are shown in section
IV, and the implications are discussed; And finally, section V
gives a general conclusion of the paper.

II. RELATED WORK

Early interest in learning latent feature relations and struc-
tures partly stems from questions over causality in different
domains [14], [15]. Before the era of machine learning,
methods in this field substantially relied on domain knowledge
and statistical scores [16], [17], and most of them work only
on small-scale problems. The recent advancements in machine
learning prompted the development of large-scale and trainable
models on learning feature relations [18], [19]. However, most
of the aforementioned methods are domain-specified and are
usually not compatible with general-purpose data. Thus, these
models are not quantitatively evaluated or compared in this
paper.

Feature relational learning in Neural Networks can trace
its history from sequential models. Recurrent Neural Network
(RNN) and its variants like LSTM [20] are the early examples
of relational learning methods, although their aspect of ‘feature
relation’ has been overwhelmed by their success in sequential
modeling. After the emerge of Deep Learning, researchers
in the domain of Natural Language Processing first built
‘neural relational’ models to exploit the relations between
features [21]. Recently, a variety of notable methods on neural
relational learning, such as AIR [22], (N-)REM [3], [23] and
JK network [2], have achieved state-of-the-art performances
by adopting explicit modeling of certain relations. However,
although the models discussed above are powerful, most of
them assume a known relational structure given by the data or
experts, which means they do not have the ability in extracting
feature relations.

More recently, the idea of leveraging graph neural networks
to learn feature relations has grasped considerable interests
[4]. The graph neural network model was originally devel-
oped in the early 2000s [8], [24], [25], and it has been
intensively improved by a series of research efforts [26]–
[28]. And finally, [9] proposed the well-renowned Graph
Convolutional Network (GCN) model which established the
framework of modern graph neural networks. Graph neural
networks are increasingly popular in the exploration and
exploitation of feature relations [7], [12], [29], and there are
several methods in this domain similar to the proposed SAG-
VAE. For instance, [6] embeds a graph neural network into
the framework of Variational Autoencoders to learn the latent
structure for dynamic models, and [30] designs an iterative
refining algorithm to extract the graph structure. Furthermore,
[31] proposed the Variational Graph Autoencoder (VGAE) that
can reconstruct graph edges from feature observations and
limited number of given edges. The VGAE model provides
a strong baseline to evaluate graph edge retrieval. Apart from
the graph neural networks, this paper is also closely related

to Variational Autoencoders (VAEs) [11] and the Gumbel-
Softmax distribution [13]. Among the numerous variations of
the VAEs, [32] devises an auto-encoding inference structure
composed by a Graph Convolutional Network-based encoder
and an inner product-based decoder, which can accomplish
tasks similar to the SAG-VAE. Furthermore, [33] elaborated
on the idea to use VAEs to learn explicit graph structure.
Gumbel-softmax was introduced by [13] to provide a ‘nearly-
discrete’ distribution compatible with reparametrization and
backpropagation. Based on this technique, we can compute
gradients for each edge, which is considered impossible with
the categorical distribution.

III. METHOD

A. Background

1) Graph Convolution Networks: We first introduce Graph
Convolutional Networks following the framework of [9]. A
graph is denoted as G = (V ,E), where V is the set of
vertices and E is the set of edges. The vertices and their
features are denoted by a n×d matrix, where n = |V | and d is
number of features. A graph adjacency matrix A of size n×n
is adopted to indicate the edge connections, and Â = A+ I
is used to introduce relevance for each vertex itself. A feed-
forward layer is characterized by the following equation:

H(l+1) = fW (H(l),A)

= σ(D̂
− 1

2 ÂD̂
− 1

2H(l)W (l))

= σ(ÃH(l)W (l))

(1)

where D̂ is the diagonal matrix with D̂s,s =
∑
t Âs,t, and

Ã = D̂
− 1

2 (A+ I)D̂
− 1

2 is the normalized adjacency matrix.
2) Variational Autoencoders: Variational Autoencoders

(VAEs) have been witnessed to be one of the most efficient
approaches to infer latent representations of the data [11].
Following the standard notation, we use p(·) to denote the
real distribution and q(·) for the variational distribution. There-
fore, the inference model q(Z|X) and the generative model
p(X|Z) as:

q(Z|X) =
m∏
i=1

qφ(zi|xi)

p(X|Z) =

m∏
i=1

pθ(xi|zi)
(2)

Where m stands for the amount of data. And under the
Gaussian prior used in the original paper [11], the inference
network will be:

qφ(zi|xi) = N (zi|µφ(xi),diag(σ2
φ(xi)

)) (3)

and the optimization objective was given as the format of
Evidence Lower Bound (ELBO):

log p(X) ≥− L(θ, φ)

=EZ∼qφ(Z|X)[log pθ(X|Z)]

−DKL(qφ(Z|X)||p(Z))

(4)
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For conjugate priors like Gaussian, the KL-divergence can
be computed analytically to avoid the noise in Monte-Carlo
simulations.

3) Gumbel-Softmax Distribution: To introduce feature rela-
tions as a graph structure, the most straightforward approach
is to represent each edge connection as a Bernoulli random
variable. Alas, there is no properly-defined gradients for dis-
crete distributions like Bernoulli. Hence, to train the model
in a backpropagation fashion, we must have some alternatives
to the truly discrete distribution. Thanks to recent advances
in Bayesian Deep Learning, we are able to utilize Gumbel-
Softmax distribution [13] to simulate Bernoulli/categorical
distributions. A simplex-valued random variable a from a
Gumbel-Softmax distribution is a k-length vector character-
ized by the follows:

a1:k =
( exp((log(αk) +Gk)/τ)∑K

k=1 exp((log(αk) +Gk)/τ)

)
1:k

(5)

where αk is proportional to the Bernoulli/categorical prob-
ability and Gk is a noise from the Gumbel distribution.
The subscript 1 : k indicates a softmax vector, and τ is
the temperature variable that control the ‘sharpness’ of the
distribution. A higher τ will make the distribution closer to a
uniform one, and a lower τ will lead to a more discrete-like
distribution.

Notice that the above equation is not a density function:
the density function for the Gumbel-Softmax distribution is
complex, and we usually do not use it in practice. What is
of our interest is that we can design neural networks to learn
log(αk) for each class (in the case of graph edge connection,
the number of classes is 2 since we want to approximate
Bernoulli), and although the output of the neural network is not
necessarily valid distributions, we can apply the reparametriza-
tion trick and the transformation of equation 5 to get simplex-
valued vectors. In this way, the neural network to learn log(αk)
(encoding network) can be trained by backpropagation since
the gradients of equation 5 is well-defined.

B. Inference of SAG-VAE
Based on the above strategy, we introduce another latent

variable A, which represents the distribution of the adja-
cency matrix of the graph. We only consider undirected
graph in this paper, so the distribution an be factorized into
p(A) =

∏n
s=1

∏n
t=s+1 p(As,t). Following the doctrine of

variational inference, we use the Gumbel-Softmax distribution
to approximate the probability for each edge:

qφ(As,t|X) = Gumbel-Softmax(φ1(As,t|X)) (6)

Notice that in equation 6 there is no index on X , which
means the learned adjacency matrix is a shared structure
(amortized inference) and should be averaging over the in-
put. In practice, one can apply Gumbel-Softmax to each
φ1(As,s|Xi), and averaging over the probability:

qφ(As,t|X) =
1

m

m∑
i=1

Gumbel-Softmax(φ1(As,t|Xi))

(7)

as this will make the estimation of the KL-divergence part
more robust. We will discuss more on this issue further in the
later paragraphs.

Fig. 1. The model structure and graphical model of SAG-VAE.

Taking back the original Z variable, the joint posterior
is p(Z,A|X). Figure 1 illustrates the difference between
the vanilla VAE and the SAG-VAE. Observing from the
graphical model of SAG-VAE, since A and Z are considered
not d-separated, they are not necessarily independent given
X . Nevertheless, to simplify computation, we perform the
conditional independence approximation on the variational
distributions:

p(Z,A|X) ≈ qφ1
(Z|X)qφ2

(A|X) (8)

Crucially, equation 8 allows the posterior distributions to
be separated, and therefore avoids noisy and expensive
Monte-Carlo simulation of the joint KL-divergence. With the
similar derivation developed in [11], one can get the new
ELBO of our model:

log p(X) ≥ −L(θ, φ1, φ2)

= EZ∼qφ1 (Z|X),A∼qφ2 (A|X)[log pθ(X|Z,A)]

−DKL[qφ1(Z|X)||p(Z)]

−DKL[qφ2(A|X)||p(A)]

(9)

The posterior distribution of Z is characterized by a learned
Gaussian distribution, and the prior p(Z) is standard Gaussian.
We omit more complicated priors developed recently since our
focus is not on powerful data representation. The posterior
distribution of A is ccharacterized by the learned Gumbel-
Softmax distribution, and the prior of A is a Bernoulli
distribution with one-hot, uniform or specified values.

For SAG-VAE, we need the dimension of the hidden repre-
sentation to be equal to the number of dimension (one can see
the reason in section III-C). Therefore, we propose two types
of implementations. The first one is to apply a set of hidden
distributions for each data point, as it is usually applied in
ordinary VAEs; and the second one is to learn a distribution
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for each dimension. Noticeably, the latter scheme will lead
to high-quality reconstruction results, albeit with the cost that
the model becomes more vulnerable to noise/perturbations and
sampling from the SAG-VAE becomes difficult. Nevertheless,
the advantages of robustness and noise-resistance of SAG-VAE
are more obvious with the second implementation.

Another issue to notice is the computation of the KL-
divergence term DKL[qφ2(A|X)||p(A)]. Notice that for the
SAG-VAE with data point-wise representation, with the im-
plementation based on equation 7, the KL divergence will
become:

1

m

m∑
i=1

n2−n∑
j=1

DKL(qφ2
(Aj={s,t}|Xi)||p(Aj={s,t}))

This function is not properly normalized as the summation de-
pends on n but there is no such parameter on the denominator.
For the per-dimension version of SAG-VAE, although we do
have an additional 1

n factor, this KL-divergence term can still
be way too dominating as the summation is of O(n2) terms.
Thus, inspired by the idea in [34], we use a βA = 1

n2−n to nor-
malize the KL-divergence term (βADKL[qφ2

(A|X)||p(A)])
and improve the performance.

C. Self-attention Graph Generative Network

The generative network of SAG-VAE is composed by a
novel Self-attention Graph Neural Network model design in
this paper. We can denote this in a short-handed notation:

pθ(Xi|Zi,A) = SA-GNNθ(Zi,A) (10)

The Self-attention Graph Network follows the framework of
[9] for information aggregation. On the top of that, one
significant difference is the introduction of the self-attention
layer. The approach is similar to the mechanism in Self-
attention GANs [35], but instead of performing global at-
tention regardless of geometric information, the self-attention
layer in our model is based on the neighbouring nodes. The
reason for adopting such a paradigm in this model is that
the node features and edge connections are learned instead of
given. And if a global unconditional attention is performed,
the errors on the initialization stage will be augmented.

Suppose feature H(l) is the output of the previous layer has
the shape [n × d(l)], where n and d(l) represent the number
of dimensions (vertices) and graph features, respectively. Now
for node i and any other node j ∈ Ni (neighboring vertices),
the relevance value ei,j is computed as follows:

ei,j = (H
(l)
i Wl)(H

(l)
j Wr)T (11)

where Wl and Wr are the [d(l) × d̄] convolution matrices
to transform the d-dimension features to d̄-dim attention
features. Finally, having taken into consideration the graph
edge connections as geometric information, we perform the
softmax operation on the neighboring nodes of i (including
itself). Formally, the attention value will be computed as:

αi,j =
exp(ei,j)∑

j∈Ni∪{i} exp(ei,j)
,∀j ∈ Ni ∪ {i} (12)

In practice, the above operation can be done before
normalization in parallel by multiplying the relevance
information computed by equation 11 with the adjacency
matrix. This attention mechanism is similar to Graph Attention
Network (GAT) [31], with one main difference being that in
GAT the relevance features are aggregated and multiplied by
a learnable vector, while in SA-GNN the relevance features
are directly processed by dot products. After computing αi,j
for each pair and obtaining the matrix α, the attention result
can be directly computed by matrix multiplication in the
same manner of [35]:

H̄
(l)

= [α(H(l)Wg)]Wf (13)

where Wg and Wf are the [d(l) × d̄] and [d̄× d(l)] transfor-
mation matrices, respectively. The main purpose of using the
two matrix is to reduce computational cost.

To introduce more flexibility, we considered incorporating
edge weights into the attention mechanism. The weights can
be computed by the encoding matrix with a share structure
of qφ2(A) network. Formally, this can be expressed as:

V = φ̂2(X) (14)

where φ̂2(·) indicates a network shares the structure with
φ2(·) except the last layer. Meanwhile, the main diagonal of
V will be set to 1. Therefore, equation 12 can be revised into:

αi,j =
exp(ei,j)Vi,j∑

j∈Ni∪{i} exp(ei,j)Vi,j
,∀j ∈ Ni ∪ {i} (15)

And in a similar idea to [35], the attention-based feature will
be multiplied by a λ coeffcient originally set as 0 and added
to the features updated by the rules in vanilla GCN:

H(l+1) = (λH̄
(l)

+ ÃH(l))W (l) (16)

where W (l) is the convolution weights of the l-th layer.
Based on the above equation, the network will first focus
on learning the graph geometry (edges), and then using the
attention mechanism to improve the generation quality.

One potential issue of training VAEs is the so-called
‘posterior collapse’, i.e., the posterior distribution becomes
irrelevant from data when the decoder (generative model) is
powerful. Graph neural networks are powerful models, so to
make sure the posterior distributions are properly trained, we
introduced the idea in [36] to enforce correlation between
the generated graph adjacency matrix and the output of each
layer. Specifically, we use skip connection to interpolate the
latent representation of data with the self-attention-processed
information at each layer. This can be denoted as:

H(l+1) = σ(λH̄
(l)

+ ÃH(l))W (l) + ÃH(1)Ŵ
(l)

(17)

where σ(·) is the non-linear activation, H(1) is the latent
representation of the data (directly from Z), and Ŵ

(l)
is

the convolutional weight between the latent representation and
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the current layer. For the last layer, we apply activation after
amalgamating the information:

H(L) = σ
(
(λH̄

(L−1)
+ ÃH(L−1))W (L) + ÃH(1)Ŵ

(L))
(18)

to keep the properties produced by certain activation (e.g.
Sigmoid will produce results in [0, 1]). Finally, it is important
to note that in the VAE framework, the latent variable Z
does not naturally fit in the GCN framework where each node
is treated as a feature vector. Thus, for the data point-wise
distribution version of SAG-VAE, one needs to first transform
the dimension into n with a fully-connected layer, and then
add one dimension to get a [m × n × 1] tensor. In contrast,
for the SAG-VAE with dimension-wise distributions, one can
directly sample a [m× n× d] to operate on GCNs.

IV. EXPERIMENTS

In this section, we demonstrate the performances of SAG-
VAE on various tasks. Intuitively, by learning the graph-
structured feature relations, SAG-VAE will have two advan-
tages over ordinary VAEs and their existing variations: inter-
pretable relations and insights between features and robustness
against perturbations. To validate the correctness of the learned
feature relations, one can apply SAG-VAE to the task of
retrieving graph edges based on node feature observations. On
the other hand, for the robustness of the SAG-VAE model, one
can test the performance on tasks such as reconstruction with
noise/mask and sampling with perturbations.

For the most of the experiments, the SAG-VAE models are
implemented with dimension-wise distributions. The setup is
picked for it the advantage of SAG-VAE is more significant
with it. The data point-wise distribution counterpart of the
SAG-VAE is also straightforward to implement, although the
parameters are more difficult to tune.

A. Graph Connection Retrieval
We apply two types of feature observations based on graph

data. For the first type, the features are generated by a 2-
layer Graph Neural Network (GCN in [9]) by propagating
information between neighboring nodes; And for the second
type, we pick graph data with given feature observations and
randomly drop out rows and add Gaussian noises to obtain a
collection of noisy data. Notice this task of retrieving graph
edge from feature observations is considered as an interesting
problem in the area of machine learning. To facilitate the
training process, for the SAG-VAE model used for graph
connection retrieval, we apply an ‘informative’ prior that
adopts the edge density as the prior of Bernoulli distribution.
This is a realistic assumption and the type of information is
likely available for real-life problems. Thus, it does not affect
the fairness of performance comparisons.

Results of experiments on two types of graph data illustrate
that SAG-VAE can correctly retrieve a significant portion
of links (satisfactory recall) while avoid generating overly
redundant connections (satisfactory precision). For the first
type of data, SAG-VAE can effectively generalize the recon-
struction to an unseen pattern of positions. Also, by sampling

from the hidden distributions, new patterns of positions can
be observed. For the second type of data, SAG-VAE can
outperform major existing methods. In addition, the inference
of hidden representation is a unique advantage comparing to
existing methods.

To show the performance advantages of SAG-VAE, the
performances of SAG-VAE are compared with pairwise prod-
uct and Variational Graph Autoencoder (VGAE) [32]. The
number of models for comparison is in small scale since
there is only limited number of methods capable of inferring
links based entirely on feature observations. The most naive
model (pairwise product) is to directly compute the dot product
between any pair of vertices, and use Sigmoid to produce the
probability for a link to exist. This simple method serves as
the baseline in the experiments of [32], although the features
in the original experiments were calculated by DeepWalk [37].
More advanced baselines are based on VGAE, which use
part of the graph to learn representation and generalize the
generation to the overall graph. The direct comparison between
VGAE and SAG-VAE is to remove all edge connections and
feed the graph data to VGAE with only ‘self-loops’ on each
node. To further validate the superiority of SAG-VAE, we also
demonstrate the performance of VGAE with 10% of edges
preserved in the training input, and show that SAG-VAE can
outperform VGAE even under this biased setup.

1) Karate Synthetic Data: We adopt Zachary’s karate club
graph to generate the first type of feature observations. In the
implementation, each type of node (labeled in the original
dataset) is parametrized by an individual Gaussian distribution,
and 5 different weights are adopted to generate graphs with 5
patterns. During the training phase, only the first 4 types of
graphs are provided to the network, and the final pattern is
used to test if the trained SAG-VAE is able to generalize the
prediction.

Figure 2 illustrates the reconstruction of 3 patterns of node
positions based on the SAG-VAE with an individual Gaussian
distribution on each dimension. From the figure, it can be ob-
served that the SAG-VAE model can approximately correctly
reconstruct the node positions, and while the patterns of links
are not exactly the same as the original, the overall geometries
are similar in terms of edge distributions. In addition, for the
unseen pattern (the rightmost column), the model successfully
infers the position and the key links of the graph.

Figure 3 shows the sampling results with both data point-
and dimension-wise representation of SAG-VAE. From the
figures, it can be observed that both versions of SAG-VAE
can generate Karate data information in an organized manner.
Sampling from the SAG-VAE with data-wise latent code can
further restrict the patterns of the graph, while sampling from
its dimension-wise counterpart appears to get a more organized
distribution on the node level with different types of nodes
better segmented.

Table I illustrates the comparison of performance between
different methods on the Karate-generated data. From the table
it can be observed that SAG-VAE with both data-wise and
dimension-wise implementations can outperform methods of
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Fig. 2. SAG-VAE reconstruction of the position and link information of
Zachary’s karate club data. Top: Ground Truth; Middle: Position Reconstruc-
tion; Bottom: Position and Link Reconstruction. Notice that the pattern of the
right-most column is not seen by SAG-VAE during the training phase.

Fig. 3. Karate position sampling from SAG-VAE with two different imple-
mentations

comparisons. It is noticeable that for this graph generation
task, adding 10% ground-truth links does not help significantly
improve the F1 score of VGAE. In contrast, simply applying
pairwise product will lead to a better performance in this case.

2) Graph Data with given Node Features: Table II illus-
trates the comparison of performance (F1 scores) between
different models on three benchmark graph data sets: Graph
Protein [38], [39], Coil-rag [40], [41] and Enzymes [38],
[42]. All the 3 types of data come with rich node feature
representation, and we obtain the training and testing data by

TABLE I
PERFORMANCE COMPARISON BETWEEN SAG-VAE AND OTHER METHODS

ON KARATE-GENERATED DATA.

Method Precision Recall F1 score

Pairwise Product 0.139 0.985 0.243
VGAE (no input edge) 0.142 0.524 0.223
VGAE (10 % link) 0.150 0.539 0.234
SAG-VAE (data-wise) 0.616 0.558 0.586
SAG-VAE (dimension-wise) 0.558 0.611 0.583

selecting one sub-graph from the data and apply the second
type of data generation (with random noise and row dropout).
The extracted graph are of size 64, 6 and 18, respectively.
Comparing to the Karate data used above, the graphs adopted
here are significantly sparser

From Table II, it can be observed that SAG-VAE can
outperform methods adopted for comparison, especially for the
VGAE-based results. For VGAE, the performance is poor for
all datasets and adding back 10% links does not help remedy
the situation. On the other hand, simply applying pairwise
product yields in quite competitive performances. One possible
reason behind this observation is that since the node features
are highly noisy, it is very difficult for the VAE architecture to
learn meaningful embedding of the nodes; on the other hand,
since the feature representations are originally rich, pairwise
product can capture sufficient information, and therefore leads
to an unexpected good performance. The curse of noisy feature
is resolved by applying SAG-VAE: with the merits of the
joint inference of data representation and feature relations, the
model can overcome the problem of noise under the VAE
framework and lead to overall superior performances.

TABLE II
PERFORMANCE COMPARISON (F1 SCORE ONLY) BETWEEN SAG-VAE
AND OTHER METHODS ON GRAPH DATA WITH GIVEN NODE FEATURES.

Method Protein Colirag Enzymes

Pairwise Product 0.367 0.714 0.410
VGAE (no input edge) 0.276 0.620 0.315
VGAE (10 % link) 0.283 0.643 0.319
SAG-VAE (dimension-wise) 0.385 0.800 0.423

B. Image Data: Robust Reconstruction and Sampling

As it is stated before, we expect SAG-VAE to have a
more robust performance against perturbations because of the
learned correlations between features can lead to a noise-
resisting inductive bias. In this section, we test the robustness
of SAG-VAE on two image datasets: MNIST and Fashion
MNIST. The performances are evaluated based on 3 tasks:
masked/corrupted reconstruction, noisy reconstruction, and
noisy sampling. Intuitively, for the reconstruction tasks, if the
reconstructed images from SAG-VAE are of higher qualities
than those from plain VAE, the robustness of SAG-VAE
will be corroborated. Moreover, the noisy sampling task will
directly perturb some of the hidden representations, and the
inductive bias in SAG-VAE will be able to overcome it.
Finally, the plots of the adjacency matrices will show how
well the model learned the structured relationships between
features. While we may not have any metric to measure it, we
can observe if the learned relations are structured and if they
are consistent with the characteristics of the images.

In these experiments, we only implemented SAG-VAE with
dimension-wise distributions. This type of model can produce
reconstruction with higher qualities, but it is more vulnerable
to perturbation. Therefore, testing with this type of imple-
mentation can better illustrate the advantages of SAG-VAE.
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A drawback of the dimension-wise distribution in sampling
is that it makes the data representation harder to obtain, as
there is no immediate low-dimension latent codes. Hence,
to conduct the sampling process, we model the mean and
variance of each pixel for data with different labels. We use
Gaussian distribution:

µ ∼ N (µµ,σµ) σ ∼ N (µσ,σσ)

to approximately model the manifold and distributions of each
dimensions. Notice that unlike graph data, for images, using
dimension-wise distribution will bring high image variance.
Therefore, it is not recommended to use this strategy in
practice. We apply this paradigm here mainly for the purpose
to illustrate the robustness of the SAG-VAE.

1) Noisy and Masked Reconstruction: Both MNIST and
Fashion MNIST images are in the shape of 28 × 28. For the
Fashion MNIST, to better leverage a common structure, we
remove the image classes that are not shirt-like or pans-like
since their geometries are significantly different from the rest
of the dataset. To artificially introduce adversarial perturbation
on images, two types of noises are applied: uniform noise and
block-masking (corruption). For uniform noise-based pertur-
bation, 200 pixels (150 for Fashion MNIST) are randomly
selected and replaced with a number generated from uniform
distribution U(0, 1). For masked-based perturbation, a block
of 6 × 6 is added at random position on each image, thus a
small portion of the digit or object in the image is unseen.

We firstly test SAG-VAE on MNIST data with perturbations.
10 reconstructed images with corresponding perturbed and
original images are randomly selected and presented in figure
4 and figure 5. On the same image, the performance of vanilla
VAE is also illustrated. The vanilla VAE is implemented with
fully connected layer for each dimension, which is equivalent
to SAG-VAE with the adjacency matrix (links) to be zero for
all but the main diagonal.

Fig. 4. Reconstruction comparison on noisy MNIST. Top: Noisy images;
2nd row: VAE Reconstruction; 3rd row: SAG-VAE Reconstruction; Bottom:
Original images.

As one can observe, images reconstructed by vanilla VAE
falsely learned the patterns of noise and blocks, as there is
no inductive bias against such situation. On the other hand,
for both tasks, SAG-VAE outperforms VAE significantly in
terms of reconstruction quality. For the noisy perturbation,
one can merely observe visible noise from the reconstruction
result of SAG-VAE. And for the masked perturbation, although

Fig. 5. Reconstruction comparison on masked MNIST. Top: Masked images;
2nd row: VAE Reconstruction; 3rd row: SAG-VAE Reconstruction; Bottom:
Original images.

the reconstruction quality is not as strong, it can still be
observed that the edges of blocks are smoothed and mask
sizes are reduced adequately. Notice that the performance
of SAG-VAE on the task with uniform noise is close to
denoising autoencoder [43], yet we did not introduce any
explicit denoising measure. The de-noising characteristics is
introduced almost entirely by the inductive bias from the
learned feature relations.

We further test the same tasks on Fashion MNIST, and
the performances can be shown in figures 7 and 8. Again,
we can observe from the figures that SAG-VAE significantly
outperforms VAE when perturbation exists in the input data.
It is noticeable that in Fashion MNIST reconstruction, SAG-
VAE appears to be more resistant to block-masking, although
the robustness against uniform noise is much more significant,
similar to its performances on the MNIST dataset.

Figure 6 shows the loss (l2 distance) between reconstructed
images and the original and the noise-corrupted images re-
spectively for the SAG-VAE on the Fashion MNIST data. The
legends are removed in the interest of the clarity of plotting.
It can be observed that the gap between reconstructed and
original images declines aligned with training loss, while the
loss between reconstructed images and noise images declines
ends up with landing at a plateau on a high level. This
indicates that the robustness of SAG-VAE will defy itself
from learning the perturbation as information. Limited by the
space, we did not include the figure for the training losses of
vanilla VAE. In our experiments, we observe that for vanilla
VAE, the reconstruction loss between the noisy image will
continue to decrease while the loss between the real image will
increase, indicating that plain VAE falsely fits the perturbation
as information.

Finally, figure 9 shows the learned feature relations as
adjacency matrices for both MNIST and Fashion MNIST. It
can be observed that while it is not very straightforward to
interpret the reason for each connection to exist, the graph
structure is properly organized, and it can be reasonably
argues that the robustness against perturbation comes from
this organized structure.

2) Noisy Sampling: Following the method discussed in
section IV-B, we fit the latent distribution of different MNIST
digits/classes with the means and variances of each pixel.
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Fig. 6. Training Loss and Reconstruction Loss of Fashion MNIST.

Fig. 7. Reconstruction comparison on noisy Fashion MNIST. Top: Noisy
images; 2nd row: VAE Reconstruction; 3rd row: SAG-VAE Reconstruction;
Bottom: Original images.

Fig. 8. Reconstruction comparison on masked Fashion MNIST. Top: Masked
images; 2nd row: VAE Reconstruction; 3rd row: SAG-VAE Reconstruction;
Bottom: Original images.

Fig. 9. Adjacency Matrix Generated from MNIST and Fashion MNIST.

For each digit/class, we only pick one image to avoid the
high image variance from the dimension-wise modeling. After
getting the µ and σ for each digit, we sample 10 hidden
representation z for each of the digits/classes, and randomly
replace 200 dimensions with random noise before sending
them to the decoder to generate images. Figure 10 illustrates
the performance comparison between the SAG-VAE and the
vanilla VAE on the above task.

From the figure, it can be observed that although both
methods can preserve the general manifold of each digit,
the SAG-VAE model outperforms vanilla VAE in terms of
avoiding ‘noise over digits’, i.e., loss of the grain-like pattern.
This can be explained by the graph convolution mechanism
of the SAG-VAE, which can ‘fill’ the noise-corrupted pixel
through exchanging information with connected pixels. And
with a higher quality of image coherence, we can argue that
the SAG-VAE model is shown to be more robust against noise
perturbations during sampling.

Fig. 10. Noisy Sampling on MNIST images.

V. CONCLUSION

In this paper, we propose Self-Attention Graph Variaional
AutoEncoder (SAG-VAE) based on recent advances on Varia-
tional Autoencoders and Graph Neural Networks. This novel
model can jointly infer data representations and relations
between features, which provides strong explainable results
for the input datasets. In addition, by introducing the learned
relations as inductive biases, the model demonstrates strong ro-
bustness against perturbations. Besides, a novel Self-Attention
Graph Neural Network (SA-GNN) is proposed in the paper.

To conclude, this paper makes the following major contribu-
tions: firstly, it proposes a novel VAE-based framework which
can jointly infer representations and feature relations in an end-
to-end manner; secondly, it presents a novel Self-attention-
based Graph Neural Network, which leverages the power of
self-attention mechanism to improve the performance; and
finally, it demonstrates advantageous performances on multiple
experiments, which can be of great utility in practice.

In the future, the authors intend to extend the model
to more advanced posterior approximation techniques (e.g.
IWAE) and more flexible priors (e.g. normalized flow). Testing
the performances of the model on more complicated datasets
is another direction.
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