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Abstract—Fusion ART is an enhanced version of Adaptive 

Resonance Theory (ART) which is derived from a biologically-

plausible theory of human cognitive information processing. Due 

to its well-established ability of learning associative mappings 

across multimodal pattern channels in an online and incremental 

manner, fusion ART has been widely applied in many real world 

learning problems. In this paper, we take a Fusion Architecture 

for Learning, Cognition, and Navigation (FALCON) as the 

specification and essential backbone of fusion ART and introduce 

an intensity attenuation controller δ for adaptively adjusting the 

intensity of information captured from the environment, by taking 

inspiration from Broadbent-Treisman Filter-Attenuation’s 

perceptual model of environmental attention. Particularly, we 

propose both an adaptive δ detection algorithm as well as a δ-

based pruning algorithm to enhance the learning performance of 

FALCON while reduce the redundant memory storage incurred 

by the “detrimental δ”. To verify the effectiveness and efficiency 

of our proposed method, comprehensive experimental studies are 

carried out on a classical minefield navigation task. 

Keywords—Fusion ART, FALCON, Information Intensity 

Attenuation, Node Pruning, Minefield Navigation Task 

I. INTRODUCTION 

Adaptive Resonance Theory (ART) [1], [2] is a number of 
self-organizing neural network models which is derived from a 
biologically-plausible theory of human cognitive information 
processing. In the literature, ART principles have been widely 
applied for pattern recognition, analysis and prediction, as well 
as for behavioral and neurobiological prediction. Particularly, 
fusion ART  models are direct extensions of single-channel 
ART which can learn associative mappings across multimodal 
pattern channels in an online and incremental manner [3]. In past 
decades, fusion ART has been used in a variety of learning 
scenarios, i.e., reinforcement learning [4], supervised learning 
[5], and multimodal learning [6], and enjoyed excellent success 
across many real world applications, i.e., text categorization [7], 
non-player character modeling [8], [9] and personal profiling 
[10]. 

A Fusion Architecture for Learning, Cognition, and 
Navigation (FALCON) [3], [4] is a specific instantiation of 
three-channel fusion ART. Compared with deep neural 
networks, FALCON has the advantage of achieving the fast 
learning process in an online manner which indicates FALCON  

 

Fig. 1. The learning struture of FALCON-based agent by interacting with the 

environment. 

can quickly adapt to inputs that may occur very rarely. Due to 
its well-established fast and online self-learning capabilities, 
FALCON has shown great significance for solving problems of 
low-dimensional input patterns with few data samples, i.e., the 
online path planning task in minefield navigation domain [11], 
[12], game AI design in real-time shooting games [13] and 
homeland defense games [14], virtual world [15], and so on. 

Learning and memory are the two main foundational 
functions of human brains, which can be realized by a 
FALCON-based agent (as shown in Fig. 1) through the 
following two steps, 1) the agent captures sensory inputs from 
the environment and makes decisions based on the knowledge 
in the memory, 2) upon receiving environmental returns based 
on the behaviors performed, the agent will learn from the 
feedback and update its memory accordingly [3], [16]. During 
this process, the FALCON-based agent may obtain 
environmental information from multiple sensors as sensory 
inputs. This is similar to the human brain receiving information 
from multiple senses at the same time. It is noteworthy that we 
humans usually work at different tasks with different levels of 
sense involvement. For example, when a person is absorbed in 
reading, its central neural system mainly receives information 
from vision and may fail to be able to pay much attention on the 
loud noises nearby in the meantime. This means that information 
from the ear is suppressed. Another example is that a person may 
not notice a friend coming over while enjoying a piece of music, 
resulting in attenuated visual information . 

The sense organs of humans, including eyes, ears and so on, 
are capable of capturing the external stimuli from the 
environment. All the senses of the human are being buffeted by 
numerous internal and external stimuli at the same time. Due to 
the limited capability of human information processing system, 
it is impossible for humans to perfect the processing of all 
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sensory stimuli. Hence, people always choose the important 
ones while ignore the others. Therefore, the core issue of 
attention is the selective analysis of information. Broadbent-
Treisman Filter-Attenuation Model is the perceptual selection 
model of attention, which assumes that there is a filter between 
primary analysis and advanced meaning analysis [17], [18]. In 
the Filter Model, Broadbent believes that the filter allows only 
one channel's information to reach the level of advanced 
meaning analysis. But in the Attenuation Model, Treisman 
believes that the filter not only allows the information of one 
channel to pass through, but also provides permission for 
information from the other channels while its intensity in the 
other channels has been attenuated, weakened [18]. 

We take our cue from this psychological model and 
introduce an intensity attenuation controller δ among the 
information received by the FALCON-based agent from 
multiple sensors. According to the value of information from 
different sources to the current task, the intensity of information 
can be adjusted adaptively with the intensity attenuation 
controller δ. Generally, a higher intensity of information may 
lead to the generation of clearer memorial knowledge inside 
agents’ mind universe.  

The contributions of this work include the adaptive detection 
of δ and the introduction of a δ-based pruning algorithm to 
remove the redundant nodes generated by the “detrimental δ”. 
We modify the code activation process by leveraging the idea 
from the Broadbent-Treisman Filter-Attenuation Model and 
propose the new FALCON network architectures denoted by 
IA-FALCON and P-FALCON for the adaptive algorithm and 
pruning algorithm respectively. The effectiveness of our idea is 
investigated on a minefield navigation task wherein an 
autonomous vehicle needs to reach the target within a specified 
number of steps while avoid hitting the obstacles (i.e., mines) in 
the map field. The results demonstrate that the adaptive 
algorithm with δ-based pruning achieves a higher success rate 
while incurs a lower memory storage by generating much less 
neural nodes in agents’ mind universe than the benchmark 
without intensity attenuation controlling. 

The rest of the paper is organized as follows. Section 2 
introduces the FALCON network architecture. Section 3 
proposes the algorithm detecting the intensity attenuation 
controller δ adaptively and the algorithm pruning nodes based 
on δ. Section 4 presents the experiment results for verifying the 
effectiveness of our proposed method. Section 5 summarizes 
and introduces our future work. 

II. BACKGROUND 

A. FALCON Network Architecture 

FALCON employs a three-channel architecture based on 
fuzzy ART operations consisting of a category field 𝐹2  and 

three input fields, namely 𝐹1
𝑐1 for the sensory input field,  𝐹1

𝑐2 
for the motor input field and 𝐹1

𝑐3 for the feedback input field. 
The dynamics of FALCON are as follows: 

• Input Vectors: Let 𝐈𝐕 =  (𝐒, 𝐀, 𝐑) be the input vector 
where 𝐒 =  (𝑠1, 𝑠2, . . . , 𝑠𝑛)  denotes the state vector, 
and 𝑠𝑖 indicates the value of the sensory input 𝑖; 𝐀 =
 (𝑎1, 𝑎2, . . . , 𝑎𝑚)  denotes the action vector, and 𝑎𝑖 

indicates a possible action 𝑖; 𝐑 =  (𝑟, 1 − 𝑟) denotes 
the reward vector, and 𝑟 ∈  [0, 1]. 

• Activity Vectors: The 𝐹1
𝑐𝑘 activity vector is denoted by 

𝐱𝑐𝑘 for 𝑘 =  1, 2, 3. The 𝐹2 activity vector is denoted 
by 𝒚. 

• Weight Vectors: 𝐰𝑗
𝑐𝑘  denotes the weight vector 

associated with the 𝑗𝑡ℎ neuron in 𝐹2 layer. The weight 

vector 𝐰𝑗
𝑐𝑘 is updated by the input activity vector 𝐱𝑐𝑘 

for 𝑘 =  1,2,3. 

While the FALCON-based agent performs a sense-move-
learn loop, the network operates alternately in two modes, 
namely, predicting and learning. The detailed algorithm is as 
follows: 

1) Predicting: Given the current state 𝑺 of the agent, the 

FALCON network searches the node 𝐽 matching 𝑺 through 

code competition. Then the network reads out the value of the 

motor input field of node 𝐽, so as to select an action. First, 

initialize the activity vectors of the three input fields to be 

𝒙𝑐1 = 𝑺, 𝒙𝑐2 = 𝑵, where 𝑁𝑖 = 1 for all i, and 𝒙𝑐3 = (1,0). 

Then, the algorithm selects the action by code activation, code 

competition and activity readout. 

a) Code activation: Given the activity vectors 𝒙𝑐1, 𝒙𝑐2, 

𝒙𝑐3 , the choice function 𝑇𝑗  calculates the matching degree 

between the input vector and the weight vector corresponding 

to the chosen node j. The formula for the choice function 𝑇𝑗 is 

defined as follows: 

 𝑇𝑗 = ∑ 𝛾𝑐𝑘
| 𝐱𝑐𝑘⋀𝐰𝑗

𝑐𝑘|

𝛼𝑐𝑘+|𝐰𝑗
𝑐𝑘|

3
𝑘=1  () 

where the fuzzy AND operation ⋀ is defined by (𝐩⋀𝐪)𝑖 ≡
min (𝑝𝑖 , 𝑞𝑖) for vectors 𝐩 and 𝐪, and the norm |. | is defined 

by |𝐩| ≡ ∑ 𝑝𝑖𝑖  for vector 𝐩. 

b) Code competition: The 𝐹2  node with the highest 

value of the choice function will be selected. The winner is 

indexed at J where 

 𝑇𝐽 = max {𝑇𝑗: for all 𝐹2 node 𝑗} () 

When the 𝐹2 node J is selected, 𝑦𝐽
𝑐 = 1 and 𝑦𝑗

𝑐 = 0 for all 

𝑗 ≠ 𝐽. This is a winner-takes-all strategy. 

c) Activity readout: The node J in F2 field reads the value 

of its weight vector to the motor input field 𝐹1
𝑐2 such that 

 𝐱𝑐2 = 𝐰𝐽
𝑐2 () 

The action corresponding to the largest element of the activity 

vector 𝐱𝑐2 is selected. 

 𝑥𝐼
𝑐2  =  max{𝑥𝑖

𝑐2 ∶  for all 𝐹1
𝑐2 node 𝑖} () 

2) Learning: When the agent receives a positive feedback, 

the agent will perform code activation, code competition, 
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template matching and template learning to learn the 

association between the state vector 𝑆 , the action vector 𝐴 

and the reward vector 𝑅. When the agent receives a negative 

feedback, the agent will learn the association between the state 

vector 𝑆, the complement code of the action vector �̅� where 

𝑎�̅� = 1 − 𝑎𝑖  for all 𝑖, and the complement code of the reward 

vector �̅�  where 𝑟�̅� = 1 − 𝑟𝑖  for all 𝑖 . After code activation 

and code competition, the algorithm will perform template 

matching and template learning to update the neurons. Initially, 

there is only one uncommitted neuron in 𝐹2 layer. The neuron 

weight is initialized to all 1’s. When this uncommitted neuron 

is selected to learn the association, it is committed, and another 

uncommitted neuron is initialized. 

a) Template matching: The template matching process 

checks whether the weight template for node 𝐽 is sufficiently 

similar to the corresponding activity vector 𝒙𝑐𝑘 for 𝑘 = 1,2,3 

in 𝐹1 layer before node 𝐽 can be used for learning. When the 

weight vectors in node 𝐽  are sufficiently similar to the 𝐹1 

activity vectors, resonance occurs. To be specific, resonance 

occurs if the match function 𝑚𝐽
𝑐𝑘 of the chosen node 𝐽 meets 

its vigilance criterion for each channel 𝑘: 

 𝑚𝐽
𝑐𝑘 =

|𝐱𝑐𝑘⋀𝐰𝐽
𝑐𝑘|

|𝐱𝑐𝑘|
≥ 𝜌𝑐𝑘 () 

If the match function 𝑚𝐽
𝑐𝑘  does not meet its vigilance in a 

certain channel, 𝑇𝐽  is set to 0, and the code competition 

repeatedly selects a new node 𝐽  until the match function 

𝑚𝐽
𝑐𝑘meets its vigilance in each channel 𝑘. 

b) Template learning: Once node J is selected for learning, 

the weight vector 𝒘𝐽
𝑐𝑘  will be updated according to the 

following rules: 

 𝐰𝐽
𝑐𝑘(new)

= (1 − 𝛽𝑐𝑘)𝐰𝐽
𝑐𝑘(old)

+ 𝛽𝑐𝑘(𝐱𝑐𝑘⋀𝐰𝐽
𝑐𝑘(old)

) () 

III. THE PROPOSED METHOD 

A. Code Activation based on Broadbent-Treisman Filter-

Attenuation Model 

Based on the Broadbent-Treisman Filter-Attenuation Model, 
we introduce an attention “filter” before the information from 
the sensors is transferred to the sensory input fields. We adjust 
the intensity of signals in the “filter” as the intensity of differing 
signals from multiple sources is of great difference. 

Consider that the intensity of the signals from different types 
of sensors in sensory input do affect their contributions to the 
learning task undertaken. We introduce an intensity attenuation 
parameter δ to adjust the intensity of signals from different 
sensors, and synchronously adjust the intensity of corresponding 
parts in the weight vector. Based on the above ideas, we define 
the choice function as follows: 

 𝑇𝑗 =
∑ 𝛿𝑖|𝐱𝑖

𝑐1⋀𝐰𝑖,𝑗
𝑐1|𝑙

𝑖=1

𝛼𝑐1+∑ 𝛿𝑖|𝐰𝑖,𝑗
𝑐1|𝑙

𝑖=1

 () 

 

Fig. 2. The adaptive detection strategy of 𝛿1. 

where 𝐱𝑖
𝑐1  denotes the 𝑖𝑡ℎ  component of the sensory input 

from the 𝑖th sensor/information source, 𝐰𝑖,𝑗
𝑐1  denotes the 𝑖𝑡ℎ 

component of the weight vector 𝐰𝑗
𝑐1 corresponding to the 𝐱𝑖

𝑐1, 

𝛿𝑖 denotes the intensity attenuation parameter 𝛿 for the signals 
from the 𝑖 th sensor and 𝑙  denotes the number of sensor 
types/information sources. 

We call this variation of FALCON as IA-FALCON. Except 
for the code activation process, everything else remains the same 
for fair comparison. 

B. Adaptive Detection of δ and Node Pruning 

Another contribution of our work is the use of Hill Climbing 
method to adaptively adjust the value of δ, and pruning nodes 
generated by “detrimental δ” during detection of the intensity 
attenuation controller δ at the same time. 

The adaptive detection strategy in Fig. 2 is to handle the 
adaptive adjustment of two intensity attenuation parameters 
assuming that the agent has two types of sensor. And we assume 
that 𝛿2 = 1 − 𝛿1  because it is the ratio of 𝛿1  and 𝛿2  that 
affects the performance of the agent. So, 𝛿1  is the only 
independent variable to be adaptively adjusted in Alg. 2. We 
adjust 𝛿1 by comparing the performance of the agent with two 
different values of 𝛿1 . Two values of 𝛿1  are denoted by 
𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝛿𝑛𝑒𝑥𝑡 respectively. 

The performance of 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 𝛿𝑛𝑒𝑥𝑡  denoted by 
PR(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) and PR(𝛿𝑛𝑒𝑥𝑡 ) is compared per time in a given 
regular interval during the learning process. When 𝛿1 =
𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , the number of times the FALCON-based agent 
receives positive feedback is denoted by PF( 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ), the 
number of times the FALCON-based agent receives negative 
feedback is denoted by NF(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) and the positive feedback 
ratio PR(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is as follows: 

 𝑃𝑅(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =
𝑃𝐹(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑃𝐹(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)+𝑁𝐹(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
 () 

When 𝛿1 = 𝛿𝑛𝑒𝑥𝑡 , the number of times the FALCON-based 
agent receives positive feedback is denoted by PF(𝛿𝑛𝑒𝑥𝑡), the 
number of times the FALCON-based agent receives negative 
feedback is denoted by NF(𝛿𝑛𝑒𝑥𝑡 ) and the positive feedback 
ratio PR(𝛿𝑛𝑒𝑥𝑡) is as follows: 

 

 

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝛿𝑛𝑒𝑥𝑡

𝛿𝑛𝑒𝑥𝑡

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝛿𝑛𝑒𝑥𝑡 𝛿𝑛𝑒𝑥𝑡𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

𝛿𝑛𝑒𝑥𝑡
 

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

𝛿𝑛𝑒𝑥𝑡
 

𝛿𝑛𝑒𝑥𝑡
 

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

𝛿𝑛𝑒𝑥𝑡
 

𝑃𝑅(𝛿𝑛𝑒𝑥𝑡)
 𝑃𝑅(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑃𝑅(𝛿𝑛𝑒𝑥𝑡)
 𝑃𝑅(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝛿𝑛𝑒𝑥𝑡

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 

𝛿𝑛𝑒𝑥𝑡
 

𝑃𝑅(𝛿𝑛𝑒𝑥𝑡)
= 𝑃𝑅(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

If 𝛿𝑛𝑒𝑥𝑡
 in A is 

out of range, 
rebound. 

If 𝛿𝑛𝑒𝑥𝑡
 in C is 

out of range, 
rebound. 

A B C D E
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Algorithm 1 Adaptive detection of 𝛿1 

1. Initialize IA-FALCON network. 

2. While (The times of detection do not exceed the 

specified times and the value of 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 stays the same 

no more than the specified times 𝑡𝑠𝑡𝑎𝑦) 

3.     Run the regular intervals. In each step, the 

probability of 𝛿1 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 𝛿1 = 𝛿𝑛𝑒𝑥𝑡  is 50% 

respectively. 

4.     Count the times of positive feedback and negative 

feedback when 𝛿1 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 𝛿1 = 𝛿𝑛𝑒𝑥𝑡 

respectively. 

5.     If (𝑃𝑅(𝛿𝑛𝑒𝑥𝑡)  𝑃𝑅(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) 

6.         𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 = 𝛿𝑛𝑒𝑥𝑡  

7.         𝛿𝑛𝑒𝑥𝑡
 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 +
𝛿𝑛𝑒𝑥𝑡−𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2
  

8.         If (𝛿𝑛𝑒𝑥𝑡
  exceeds the range of 𝛿1

𝑐1) 

9.             𝛿𝑛𝑒𝑥𝑡
 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 +
𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝛿𝑛𝑒𝑥𝑡

2
 

10.         End If 

11.     Else If (𝑃𝑅(𝛿𝑛𝑒𝑥𝑡)  𝑃𝑅(𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) 

12.         𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

13.         𝛿𝑛𝑒𝑥𝑡
 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 +
𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝛿𝑛𝑒𝑥𝑡

2
 

14.         If (𝛿𝑛𝑒𝑥𝑡
  exceeds the range of 𝛿1

𝑐1) 

15.             𝛿𝑛𝑒𝑥𝑡
 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 +
𝛿𝑛𝑒𝑥𝑡−𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2
 

16.         End If 

17.     Else 

18.         𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

19.         𝛿𝑛𝑒𝑥𝑡
 = 𝛿𝑛𝑒𝑥𝑡  

20.     End If 

21.     𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  

22.     𝛿𝑛𝑒𝑥𝑡 = 𝛿𝑛𝑒𝑥𝑡
  

23. End While 
 

 𝑃𝑅(𝛿𝑛𝑒𝑥𝑡) =
𝑃𝐹(𝛿𝑛𝑒𝑥𝑡)

𝑃𝐹(𝛿𝑛𝑒𝑥𝑡)+𝑁𝐹(𝛿𝑛𝑒𝑥𝑡)
 () 

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝛿𝑛𝑒𝑥𝑡 in the next time of detection are denoted by 

𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
′  and 𝛿𝑛𝑒𝑥𝑡

′ . 

The specific detection process is shown in the Alg. 1 and Fig. 
2. Note, that the agent receives positive feedback as it 
approaches the target. We determine which value of 𝛿1  is 
superior by comparing the percentage of positive feedback that 
the agent receives when 𝛿1 takes two different values. We will 
choose the value with a higher percentage of positive feedback 
to be 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

 , as is shown in case A, B, C and D in Fig. 2. And 
then we will choose a point starting from 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

  and away 
from another value of 𝛿1 with worse performance. If this point 
is not out of range, we will choose it as 𝛿𝑛𝑒𝑥𝑡

 , as is shown in 
case A and C in Fig. 2. Otherwise, we will choose a point starting 
from 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡

  in another direction as 𝛿𝑛𝑒𝑥𝑡
 , as is shown in case 

B and D in Fig. 2. Specifically, if the agent with each value of 
𝛿1 receives the same percentage of positive feedback, we will 
test these two values of 𝛿1 again, as is shown in case E in Fig. 
2. As the algorithm prefers random exploration at the beginning, 
we initialize two values of 𝛿1  far away from each other to 
maintain the performance diversity. Specifically, considering  

 

Fig. 3. The P-FALCON network architecture. 

Algorithm 2 δ-based pruning algorithm 

1. Initialize the P-FALCON network. 

2. While (𝑡𝑟𝑖𝑎𝑙𝑠 ≤  n) 

3.     Run the regular intervals. 

4.     For each node 𝑗 in P-FALCON network 

5.         If (rand  (
𝑡𝑟𝑖𝑎𝑙𝑠

n
)2 and 

|𝐱𝑐4⋀𝐰𝑗
𝑐4|

|𝐱𝑐4|
 𝜃) 

6.             Delete node j 

7.         End If 

8.     End For 

9. End While 
 

𝛿 ∈ (0,1) , we initialize 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0.99  and 𝛿𝑛𝑒𝑥𝑡 = 0.01 . 
And the distance between 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝛿𝑛𝑒𝑥𝑡 will be halved 
in the next time of detection. 

Then, we introduce a δ-based pruning algorithm to remove 
the redundant nodes generated by the intensity attenuation 
parameter δ away from 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . We do this based on the 
hypothesis that 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is getting closer to the optimal 𝛿 . 
Specifically, we modify the IA-FALCON network architecture 
as shown in Fig. 3. Each node holds the range of 𝛿 values that 
is used to select that node. This variation of IA-FALCON 
network architecture that stores parameter information in nodes 
is called P-FALCON. We focus on the differences between P-
FALCON and IA-FALCON in the following. 

P-FALCON uses a four-channel architecture consisting of a 
category field and four input fields. 𝐹1

𝑐4 is the parameter input 
field. Modify the input vector of IA-FALCON to be 𝐈𝐕 =
 (𝐒, 𝐀, 𝐑, 𝐃)  where 𝐃 =  (𝛿1, 1 − 𝛿1) denotes the parameter 
vector, and 𝛿1 indicates the value of the intensity attenuation 
controller being used in this step. The parameter field works like 
any other input fields in code activation, code competition, 
template matching and template learning process. 

We prune the P-FALCON network in regular intervals in the 
first 𝑛 trials. After that, we delete all nodes that do not satisfy 
the requirement in the parameter field. The specific algorithm is 
shown in Alg. 2. 

For example, the agent has sonar sensors in 5 directions, and 
a target bearing sensor. According to our hypothesis, the agent 
should be able to adjust the intensity attenuation controllers δ of 
different sensors adaptively to improve the performance of the 
agent. We can regard each cognitive code in the FALCON 
network as a rule for reaching a target while avoiding obstacles. 

 

State Action Reward Delta

Category Field

𝐹1
𝑐1 𝐹1

𝑐2 𝐹1
𝑐3 𝐹1

𝑐4

𝐹2

Sensory Field Motor Field Feedback Field Parameter Field
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And we have observed in the experiments that some bad rules 
are generated, when the intensity attenuation controller δ is 
being adaptively adjusted and a better δ is not yet available. To 
remove these bad rules, we introduce a δ-based pruning 
algorithm. 

The same sensory inputs might activate and generate two 
different rules due to different intensity attenuation controller δ. 
For example, the target is 1 unit directly in front of the person. 
And Rule 1 is to move 1 unit forward when the target is right 
ahead and the obstacle is more than 1 unit away from the person. 
In this rule, the information of the distance of the obstacle is 
vague, while the information of the direction of the target is clear. 
Rule 2 is to move 1 unit to the right when the obstacle right 
ahead, in the front-right, in the front-left, and in the left all is 1-
3 units away from the person and the obstacle in the right is 3-4 
units away from the person, no matter which direction the target 
is in. In this rule, the information of the distance of the obstacle 
is clear, while the information of the direction of the target is 
vague. It is clear that Rule 1 is reasonable and Rule 2 is 
misleading. If the agent does not even know the target bearing, 
it is impossible to get the right decision. This over-generalization 
of information from key information sources is caused by 
improper δ values. Cognitive codes that may interfere with the 
decisions of the agent need to be removed in time. 

IV. EXPERIMENT 

To verify the performance of the proposed method, we 
conducted experiments in a 16 by 16 Minefield Navigation Task 
(MNT) experimental platform. During the experiment, the 
FALCON-based autonomous vehicle (AV) repeats sense-move-
learn steps until it reaches the target. We consider a total of 1000 
trials. In each trial, the AV must reach the randomly initialized 
position of the target while avoiding 10 mines in a maximum of 
30 steps, otherwise the task will fail. The AV owns the sonar 
sensor to detect the distance from the AV to the mines or the 
boundaries and the target bearing sensor to detect the bearing of 
the target. This work uses the FALCON network architecture 
with the immediate reward. We update the value of 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
and 𝛿𝑛𝑒𝑥𝑡 in the adaptive algorithm and prune the nodes every 
500 steps. 

The parameters in the experiment for IA-FALCON are set 
as follows: the number of sensor types/information sources 𝑙 =
2, the choice parameter α𝑐1 = 0.1, the learning rate parameter 

β𝑐𝑘 = 1(k = 1, 2, 3)  and the vigilance parameter ρ𝑐1 =
0.2, ρ𝑐2 = 0.2, ρ𝑐3 = 0.5. The parameters of P-FALCON are set 
as follows: the number of sensor types/information sources 𝑙 =
2, the choice parameter α𝑐1 = 0.1, the learning rate parameter 

β𝑐𝑘 = 1(k = 1, 2, 3, 4) , the vigilance parameter ρ𝑐1 =
0.2, ρ𝑐2 = 0.2, ρ𝑐3 = 0.5, ρ𝑐4 = 0 , the number of trials for 
pruning 𝑛 = 500 , the threshold parameter 𝜃 = 0.8  and the 
intervals between twice node pruning are 600 steps. The 
parameters of the Alg. 1 are set as follows: initialize two values 
of 𝛿1 in which 𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 0.99 and 𝛿𝑛𝑒𝑥𝑡 = 0.01, the times 
of detection of 𝛿1 are 5, the maximum times that the value of 
𝛿𝑐𝑢𝑟𝑟𝑒𝑛𝑡  stays the same 𝑡𝑠𝑡𝑎𝑦 = 3 and the intervals of once 

detection of 𝛿1 are 600 steps. Notably, the parameters of basic 
FALCON dynamics are configured to be consistent with 
previous studies for fair comparison. Readers are referred to [19] 
for more details. 

 

Fig. 4. Average success rate of the FALCON-based agent when differing 𝛿 

values are involved. 

We assume that 0 ≤ 𝛿1 ≤ 1 , 0 ≤ 𝛿2 ≤ 1  for the 
complement code of the intensity attenuation controllers in P-
FALCON. According to the Treisman Attenuation Model, 
sensory input from different sources is suppressed rather than 
eliminated. In other words, 𝛿1 ≠ 0 and 𝛿2 ≠ 0. Considering 
that it is the ratio of two intensity attenuation controllers that 
affects the performance of the algorithm, we set 𝛿2 = 1 − 𝛿1. 
And since 𝛿1 = 1 − 𝛿2, 𝛿1 ≠ 1. So, we assume that 𝛿1 goes 
from 0.01 to 0.99. 

As is shown in Fig. 4, we compare the performance curves 
of the FALCON-based agent at different values of 𝛿1 . Each 
curve is drawn with the data obtained by the FALCON-based 
agent performing 100 sets of independent experiments at the 
corresponding value of 𝛿1 . When 𝛿1

𝑐1 ≤ 0.4, the FALCON-
based agent performs better than the FALCON-based agent 
without consideration of the intensity of different components in 
sensory input. In particular, when 𝛿1 = 𝛿2 = 0.5 , it is 
equivalent to the FALCON-based agent without considering the 
intensity attenuation parameter 𝛿. 

As can be seen from Fig. 5, the lower the value of 𝛿1, the 
less nodes will be generated by the FALCON-based agent. The 
FALCON-based agent performs the best when the value of 𝛿1 
locates between 0 and 0.3. Specifically, the success rate of the 
agent with 𝛿1 = 0.2 is the highest (i.e., around 96% in Fig. 4). 
It exceeds the performance of agent with 𝛿1 = 0.1 before the 
starting 50 learning trials. Moreover, the number of nodes when 
𝛿1 = 0.1 (i.e., 240) and 𝛿1 = 0.2 (i.e., 260) is less than half of 
the number of nodes when 𝛿1 = 0.5  (i.e., 560) after the 
learning process. This result indicates that the information from 
the target bearing sensor is more valuable than the information 
from the sonar sensor, hence have a higher contribution for 
instructing the learning process more effectively. 

Obviously, the success rate of the adaptive algorithm is 
higher than that of the algorithm not considering the intensity 
attenuation controller 𝛿  when the number of nodes is 
approximately equal to the latter algorithm (see Fig. 6 and Fig. 
7). Although the adaptive algorithm generates more nodes at the 
beginning of detection with a “detrimental 𝛿”, its code numbers  
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Fig. 5. Average code numbers of the FALCON-based agent when the value of  

𝛿 differs. 

 

Fig. 6. Average success rate of the adaptive detection algorithm with and 

without 𝛿-based pruning. 

get closer to that of the algorithm without considering the 
intensity attenuation controlling (Fig. 7). 

After applying the δ-based adaptive detection and pruning 
algorithms simultaneously, the number of nodes is significantly 
reduced than the adaptive algorithm while the success rate is still 
competitive by reporting around 95% after the learning process 
(see Fig. 6 and Fig. 7). Note, in our case the pruning algorithm 
stops after around 500 learning trials when the adaptive 
detection of 𝛿1 finishes, which means the algorithm will not 
generate and prune redundant nodes with a “detrimental 𝛿”. 
The success rate of the adaptive algorithm with pruning is 
almost equal to the success rate of the algorithm without pruning 
after the 500 trials. This result thus highlights the efficacy of the 
proposed node pruning method for reducing the number of 
redundant memorial nodes while remaining competitive in 
performance by achieving a high success rate. 

 

Fig. 7. Average code numbers of the adaptive detection algorithm with and 

without 𝛿-based pruning. 

Further, the agent using the δ-based adaptive detection and 

pruning algorithms simultaneously reported a success rate of 

around 95% at a small size of 300 nodes, which is significantly 

better than the agent not considering the intensity attenuation 

controller 𝛿 which obtained a success rate of around 92% at 

560 nodes. Notably, the success rates of the adaptive algorithm 

are superior to that of the algorithm without consideration of 𝛿 

after 50 trials when the first time 𝛿 detection finishes (refers to 

Fig. 6). The code numbers of the adaptive algorithm with 

pruning are less than the algorithm without consideration of 𝛿 

after 150 trials (see Fig. 7). As a result, the effectiveness of δ-

based adaptive detection can be verified as well. 

V. CONCLUSION 

In this paper, we introduce an intensity attenuation controller 
𝛿  for fusion ART models by taking inspiration from the 
Broadbent-Treisman Filter-Attenuation Model. Specifically, 
taking a Fusion Architecture for Learning, Cognition, and 
Navigation (FALCON) as the specific and essential backbone of 
fusion ARTs, we propose an IA-FALCON with a newly 
proposed code activation process for adaptive information 
intensity detection as well as a P-FALCON for pruning the 
redundant nodes generated by the “detrimental” attenuation 
controller. Comprehensive experimental studies are conducted 
on a classical minefield navigation problem. The results 
demonstrate that our proposed method obtains significantly 
better learning performance in terms of coverage speed while 
successfully reduces redundant memory storage incurred by the 
“detrimental δ” , thus verifies its effectiveness and efficiency. 

The immediate future work may consider to investigate the 
adaptive detection of the intensity attenuation controller with 
various different types of information sources/sensors. And we 
would like to consider the adaptive algorithm in more 
complicated experimental circumstances, for example the multi-
agent problems, hence improve its generality for real-world 
problem solving. 
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