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Abstract—Recently, trackers based on Siamese networks have
attracted spread attention in the field of tracking because of
a balance between accuracy and speed. Learning powerful
representation via effective offline training strategy is critical
for constructing high performance Siamese trackers. However,
features extracted in most networks cannot accurately distinguish
a tracked target from the background with semantic information
in some challenging scenes. In this paper, we develop a Fully-
Convolutional deep Quadruple Network (QuadFC) to learn more
expressive representation via a novel multi-task loss function
composed of a differential pairwise loss for tracking and a
constructed triplet loss for similarity learning, which can be
trained offline in an end-to-end mode. During inference, the
proposed deep architecture does not need to update model and
the positive-negative branches are removed to avoid unnecessary
calculations. In particular, our approach is able to extract
more discriminative features and perform robust visual tracking,
due to joint representation learning and taking full use of
original samples via the combination of positive-negative pairs.
Furthermore, theoretical analysis of QuadFC is carried out
through comparing the gradients of different loss functions.
Extensive experiments on several tracking benchmarks, show
that the proposed tracker achieves the state-of-the-art tracking
performance while running at 68 FPS. The code can be available
at https://github.com/DavidZhangdw/QuadFC.

Index Terms—Siamese networks, Quadruplet network, Repre-
sentation learning, Multi-task loss, Visual tracking.

I. INTRODUCTION

Visual object tracking is one of the most fundamental and
important tasks in computer vision and video analysis. It
has a large range of applications in different fields, such as
video surveillance, vehicle navigation, augmented reality and
human-computer interaction, etc. We consider the single object
tracking, which is aimed to find the location of a specific object
in all subsequent frames with giving a bounding box of the
unknown target in first frame of sequences. In fact, the core
problem of visual tracking is how to accurately detect and
localize the target in challenging scenes with deformation, il-
lumination change, motion blur, occlusion, background clutter
and other variations. Therefore, trackers are supposed to have
the capability of robustness and discrimination simultaneously.
Meanwhile, most applications demand real-time tracking.

Recently, some trackers based on Siamese networks [1], [3]–
[6] have aroused extensive attention in tracking community,
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Fig. 1: Visualization of score maps. the left column is the
search area, and the second to fourth columns denote response
maps generated by SiamFC [1], SiamRPN [2] and our method,
respectively. Siamese networks separate the object from the
background ambiguously, while our approach obtains superior
discriminability due to joint representation learning.

due to making a good balance between precision and speed.
Specially, SiamFC [1] views the tracking problem as similarity
metric in a certain feature space by constructing a full con-
volutional Siamese network. The inputs of networks contain
an exemplar image patch centered the target and a search
area with a larger size, in which the sub-windows with same
size of template can be regarded as instances. Therefore, the
logistic loss is generally adopted to maximize the similarity for
positive instances and minimize scores for exemplar-negative
pairs. In order to add training elements, SiamFC-tri [5] utilizes
the underlying relations among the triplet (exemplar, positive
as well as negative instances) and introduces triplet loss into
SiamFC [1] for offline training. Although Siamese networks
obtain balanced performance and tracking speed, feature uti-
lized in most Siamese trackers can just distinguish foreground
from the non-semantic background due to not utilizing the full
potential of the training instances and not using deeper and
wider networks. So the performance can not be guaranteed in
some scene, like when the backgrounds are cluttered.

In this paper, we design a deep quadruplet network structure
combined by a multi-task loss consisting of a differential pairs-
loss and a triplet loss for joint representation learning. It
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includes multiple pairs and a triplet mined online. To catch
the underlying relation of instances, the designed architecture
with shared weights has four inputs (exemplar, search area,
positive and negative instance). We first sample an image pair
including a template patch and a search image patch randomly
as inputs of exemplar and search branches. Different from
SiamFC [1] and SiamFC-tri [5], our purpose is to maximize
the differential probability (e.g. sigmoid(p) − sigmoid(n))
through the combination of each positive and negative in-
stances for training. The designed differential pairwise loss
not only utilizes more samples for training, but also further
capture the potential connection between exemplar-positive
and exemplar-negative instances. As an example, we assume
the numbers of positive and negative samples in a mini-batch
as I and J , respectively. So the loss can generate I × J
samples via combining I exemplar-positive with J exemplar-
negative pairs, which is equal to [5] in terms of numbers of
samples. In addition, for the triplet, representative positive and
negative instances are selected from the search image patch
as the input of positive and negative branches, which could
further push away the similarity between positive and negative.
Therefore, our framework aims to construct combination of
pairs and mines a triplet by simple weighted summation of
the differential pairwise loss and the triplet loss for effective
training, which is helpful to learn discriminative features.

SiamFC [1] is considered as our baseline. We apply our
quadruplet framework to train the network and adopt the
same online tracking mechanism. Our method takes full use
of the samples for similarity metric learning. As shown in
Fig. 1, our tracker obtains more discriminative representation
and better tracking accuracy. Moreover, to demonstrate the
effectiveness of our approach, we provide the theoretical
analysis by comparing the original logistic in [1], triplet loss
[5] and our differential pairwise loss. To summarize, the main
contributions of this work are three-fold:
• An end-to-end deep quadruplet framework specifically

developed for effective offline training of Siamese track-
ers is proposed. The architecture utilizes fully inherent
connections among samples and is applied for robust
online tracking successfully.

• We proposed a multi-task loss function composed of a
differential pairwise loss as well as the constructed triplet
loss for joint representation learning. Furthermore, we
also provide theoretical analysis of our loss function to
prove the reasonableness of QuadFC.

• Comprehensive experiments, on several representative
tracking benchmarks, indicate that our proposed QuadFC
framework achieves state-of-the-art performance while
tracking with a far beyond real-time speed.

II. RELATED WORKS

A. Siamese Network Based Trackers

Visual object tracking can be considered as a similarity
learning problem to some extent. SINT [4] being the pio-
neering work searches for the candidates most similar to the

template image cropped in first frame. However, it runs only
2 fps. Furthermore, Bertinetto et.al [1] proposed a fully con-
volutional Siamese network to calculate the feature similarity
for image pairs. It takes an exemplar and a much larger image
as inputs and estimate the similarity for all sub-windows of
search area. Especially, the trained Siamese network is directly
used for online tracking without extra fine-tuning strategy.

There are large numbers of follow-up work [2], [5]–[9]
of SiamFC. CFNet [9] introduces the Correlation Filter into
Siamese networks for online learning. Dong et al. [5] uti-
lizes of the underlying connections among samples by using
a triplet loss for the training of Siamese trackers. Mean-
while, SiamRPN [2] considers the tracking as local detection
problems through adding region proposal networks after the
Siamese network. It obtains significant improvement by end-
to-end training offline with large-scale datasets. Furthermore,
SiamRPN++ [10] and SiamDW [6] utilize successfully deeper
network [11] as backbone networks to replace AlextNet used
by the original SiamFC [1], improving the performance of
Siamese tracker due to deeper semantic features.

B. Quadruplet Networks in Computer Vision

Similarity learning with deep CNNs have been widely used
for many tasks of computer vision, such as image retrieval
[12], [13], face recognition [14] and person re-identification
[15], [16]. FaceNet [14] utilizes similarity learning for face
recognition, while the triplet loss [12] is also used for data
clustering. Quadruplet networks [16] are proposed to pull the
distance between classes and reduce the distance within the
class for person re-id. For visual object tracking, Dong et al.
[5] employed a triplet loss for the training of Siamese trackers.
Furthermore, Quad [17] first applied the quadruplet network
to siamese trackers. Different from most existing approaches
above, our method uses simultaneously triplets mined from
instances and the differential combination of pairs to catch the
underlying connections among samples for effective training.

C. Representation Learning for Tracking

Representation plays an important role in the task of visual
object tracking. HCF [18] integrates multi-layer convolutional
features for online tracking by combining with correlation
filter. MDNet [19] which designed specially for tracking learns
more detailed representation for each domain via updating
continuously. Furthermore, UPDT [20] provides an approach
to fuse shallow features with deep ones for tracking, while a
twofold siamese network (SA-Siam) [8] is proposed to extract
semantic and appearance features respectively at very different
levels. Recently, MLT [21] introduces a meta-learner network
to achieve target-aware features of the specific targets.

III. THE PROPOSED FRAMEWORK

A. Siamese Networks for Tracking

Before introducing the architecture of our method, we
briefly review SiamFC [1], which is the basic framework of our
discussion. The original Siamese networks takes an image pair
as inputs, including a template image z and a search area x.
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Fig. 2: The illustration of our proposed quadruplet architecture. There are four different inputs consisting of exemplar, instances,
positive and negative branches. ϕ denotes the backbone network with shared weights, while ∗ represents the operation of cross-
correlation. CE loss originates from the combination of exemplar-instances, and Triplet loss can be constructed by triplets.

The patch z cropped and scaled with the bounding box of the
first frame denotes the tracked object, while x with a larger
size indicates the candidate image from subsequent frames.
Both inputs flow into a general CNNs ϕ with same weights θ,
and we can obtain two feature maps. Thus, cross-correlation
can be computed between them:

fθ(x, z) = ϕθ(x) ? ϕθ(z) + b (1)

in which b represents a bias term. Eq. 1 equals to computing
the similarity scores of template z over the search image x.
So the maximum score in response map f indicates the most
similar object. To this purpose, SiamFC [1] collected numer-
ous image pairs (x, z) from video datasets for offline training,
and designs the corresponding ground-truth y according to the
distance from the center. Therefore, logistical loss can be used
as objective function of this model, which is expressed as:

Llogist(y, f) =
∑
v∈X

log
(
1 + e(−y[v]·f [v])

)
(2)

where X represents the set of instances for the search branch,
f [v] = f(v, z), and the label of each exemplar-instance pair
(v, z) can be denoted as y[v] ∈ {+1,−1}.

B. Quadruplet Networks

Inspired by triplet loss [5] and quadruplet network [16], we
propose a deep quadruplet network containing four branches
with shared backbone, while can be end-to-end trained through
a joint loss. The proposed architecture is shown in Fig. 2.

Most existing siamese trackers [1], [2] utilize the classical
but shallow AlexNet [22] as the backbone. To apply deeper and
wider networks for Siamese trackers, SiamDW [6] introduces
the residual unit containing a cropping operation. So the
underlying position bias can be eliminated due to a simple
yet effective cropping operation for feature maps. In our
framework, CIResNet22W having doubled channel comparing
with CIResNet22 [6] is employed as our backbone network,
which is helpful to extract more rich semantic information and
enhance tracking robustness and accuracy.

For inputs, four branches of shared network are respec-
tively denotes as exemplar, search area, positive and negative
branches. Each tuple of template image patch and larger search
image patch sampled randomly in the same video sequence
is regarded as inputs of exemplar and search branches. After
extracting features and computing cross-correlation, we use
Sigmoid function to measure the probability that the positive or
negative is similar to the exemplar. To capture the underlying
relation of samples, instances of search area can be divided
into I positives and J negatives in line with the label. Notice
that each instance is selected from the search area without
extra samples. On one hand, exemplar and search area are
applied to construct an embedded function f(x, z), which can
computes similarity scores between z and different instances
from x. On the other hand, as shown in Fig. 3, we further select
typical positive and negative according to label and score map
computed by f(x, z) for similarity metric learning.
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Fig. 3: label and three positive-negative samples are presented.
Positive and negative are decided from search images accord-
ing to the label and response map produced by our network.

Three positive-negative samples are presented in Fig. 3 (b-
d). (b) shows an instance pair of positive and negative from
background noise, while (c) is a pair from different semantic
categories. It’s noteworthy that Fig. 3 (d) indicates an instance
pair of positive and negative from the same category. In this
case, selecting the highest negative instance will result unstable
training and may obtain a worse model and features. So how
to choose positive and negative samples is very crucial.

Now, we introduce the strategy of selecting triplets. We
select the highest score of exemplar-positive pairs as the input
of positive branch, that means the positive with maximum con-
fidence. Different from positive instance, the top k instances
with the highest scores from the negative instance are first
selected, and then one of them is randomly chosen as the input
of the negative branch. It indicates that a negative is selected
from the top k most difficult to distinguish negative, which
avoids over-fitting and unstable training. Once selecting the
triplet, our framework can take full use of the combination of
pairs for classification and constructs typical triplets including
the positive and negative for similarity metric learning.

C. Multi-task Loss
For our framework, the optimization goal is the correspond-

ing positives could be similar to z as well as negatives keeps
away from the exemplar. To make this purpose, we develop a
multi-task objective function for representation learning. With
the training process, the loss error will be reduced. In fact, four
branches are processed by the identical transformation. Like
standard Siamese networks, our differential pairwise loss is
only for the exemplar and search branches. Meanwhile, the an-
other loss serves the exemplar, negative and positive branches.
Therefore, giving the positive score set p and negative score
set n from the similarity score set of exemplar-instance pairs,
the first loss is applied by formulated as follows:

Ldif (p, n) = −
1

I × J

I∑
i

J∑
j

log prob (pi, nj) (3)

where I and J represent the numbers of positive and nega-
tive instances. the differential probability (e.g. sigmoid(p)−
sigmoid(n)) can be further formulated:

prob(pi, nj) =


1

1+e−pi
− 1

1+e−nj
, p > n

lim
x→0+

x , else
(4)

Inspired from the quadruplet framework [16], each triplet
can be constructed between exemplar, positive and negative
branches, and the triplet loss can be obtained by comparing
their soft-max results. The loss function can be formulated:

Ltri(z, p, n) = [s (z, n)− s (z, p) + α]+ (5)

where [z]+ = max(z, 0), α is a threshold, s(z, p) and s(z, n)
is as:

s(z, p) =
ef(p,z)

ef(p,z) + ef(n,z)
, s(z, n) =

ef(n,z)

ef(p,z) + ef(n,z)
(6)

Therefore, the entire loss is a weighted summation of the
above two losses:

L = Ldif + λLtri (7)

D. Inference

During online tracking phase, positive and negative branches
are deleted. As is shown in Fig. 4, the template object and
search branch are only applied to perform tracking. For each
sequence, we crop an image patch centered on target position
of the first frame as the template, and the enlarged search
images in subsequent frames. Keeping the image centered on
target in previous frame, we resize the exemplar and search
area to 127×127 and 255×255, respectively. With the input,
our trained-well network can efficiently extract the features
and calculate a response map. Next we perform up-sampling
for the response map by using bicubic interpolation with a
factor 16. Therefore, according to the maximum of response
map, the target in search image can be tracked.

127*127*3

255*255*3



＊

5*5*512

21*21*512

Score Map


17*17

Result

Fig. 4: The framework of our trackers during inference. Giving
the exemplar patch and a search area, the response map can
be generated by calculating cross-correlation between features.
So the tracked object in search image can be located.

IV. THEORETICAL ANALYSIS

As mentioned before, our differential pairwise loss and
triplet loss [5] contain I × J samples while the amount in
logistic loss is I + J . Now, we analyze and compare these
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functions. For a set of instances X , the original logistic loss
of SiamFC [1] can be expressed as follows.

Ll =
1

I × J

I∑
i

J∑
j

1

2

(
log(1 + e−pi) + log(1 + enj )

)
(8)

The triplet loss [5] in Siamese networks is expressed as:

Lt = −
1

I × J

I∑
i

J∑
j

log
epi

epi + enj

=
1

I × J

I∑
i

J∑
j

log
(
1 + enj−pi

) (9)

In contrast, our differential cross-entropy loss (Ld) is also
simplified for further analysis.

Ld =−
1

I × J

I∑
i

J∑
j

log(
1

1 + e−pi
− 1

1 + e−nj
)

=
1

I × J

I∑
i

J∑
j

(
log(1 + e−pi) + log(1 + enj )

− log(1− enj−pi)
)

(10)

Comparison of Gradients. The gradient acts as an impor-
tant effect in the offline training, because it directly participate
in the back propagation phase. Thence, we analyze the char-
acteristics of different terms. Firstly, for the logistic loss and
SiamFC-tri [5], the gradients are respectively derived as:

∂Ll
∂p

= − 1

2 (1 + ep)
,
∂Ll
∂n

=
1

2 (1 + e−n)
(11)

∂Lt
∂p

= − 1

1 + ep−n
,

∂Lt
∂n

=
1

1 + ep−n
(12)

For ours, the gradients of its term are given as:
∂Ld
∂p

= − 1

(1 + ep)
− 1

ep−n − 1
∂Ld
∂n

=
1

(1 + e−n)
+

1

ep−n − 1

(13)

From Eq. 11, Eq. 12 and Eq. 13, we can find that ∂Ld/∂p
and ∂Ld/∂n considering simultaneously both p and n, are
able to make full use of the information provided by p and
n, while ∂Ll/∂p and ∂Ll/∂n of logistic loss just hinge on p
and n respectively. Comparing with ∂Lt/∂p and ∂Lt/∂n, our
∂Ld/∂p and ∂Ld/∂n also consider the absolute gradient value
of p and n respectively. It means that our differential pairwise
loss can offer suitable feedback for back-propagation when the
similarity value of exemplar-positive p is small than 0 (e.g.
the network prediction is wrong) or less than the exemplar-
negative pair n (e.g. the distance between positive and negative
is not pulled well). For further analysis, visualization is pre-
sented in Fig. 5 via using the heatmaps of different gradients.
It illustrates that ∂Ll/∂n and ∂Ll/∂p are independent of p
and n, respectively, and ∂Lt/∂n and ∂Lt/∂p only depend on
the relative value of the gradients between n and p. In contrast,
∂Ld/∂p and ∂Ld/∂n effectively pay more attention for p < 0,
n > 0 as well as p < n on the training phase.
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Fig. 5: Gradient visualization of three losses (each row) for
different items (each column) containing positive, negative and
their difference pn = p − n, respectively. With comparison,
our differential pair-wise loss is more effective than others.

V. EXPERIMENTS

In this section, we firstly provide the details of implemen-
tation. Next, the comparing results of QuadFC with the state-
of-the-art tracking algorithms are presented on five popular
tracking benchmarks including OTB-2013, OTB-50, OTB-
2015, VOT-2016 and VOT-207. Besides, ablation study is
also shown to analyze the influence of each component for
our proposed tracker. Finally, we present and analyze the
qualitative evaluation by visualizing the tracking results.

A. Implementation Details

Networks. For our variants, we consider the deeper and
wider CIResNet-22 [6] which is similar to ResNet [11] with
Cropping Inside Residual(CIR) Units, but different size of
receptive field and network stride. In our final framework,
CIResNet22W with doubled channels comparing with CIRes-
Net22 is effectively employed as our backbone network.

Training. To maintain the generalization property of feature
representation, CIResNet-22 [6] is firstly trained offline from
scratch on ImageNet Large Scale Visual Recogonition Chal-
lenge (ILSVRC2015) [23]. Therefore, the backbone network
of our QuadFC is initialized with the weights pre-trained on
ImageNet [23]. Next, like [6], the weight of the first 7 × 7
convolution layer is frozen, and other layers are gradually fine-
tuned from back to front for stabilizing the training process.
For optimization method, we use standard stochastic gradient
descent (SGD) with momentum of 0.9 to train QuadFC and
set the weight decay to 10−4. To ensure fairness, we keep the
setting to be consistent with SiamFC [1]. The learning rate
is progressively reduced logarithmically from 10−2 to 10−5.
There are 50 epochs in total, and the batch size is 8. For our
designed multi-task loss, we set λ = 1, α = 1, k = 5.
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The training image pairs for QuadFC can be picked from
video datasets with annotations, such as ImageNet VID [23] or
the GOT10K [24]. VID contains more than 4000 sequences
with about 1.3 million labeled frames, while GOT10K is a
large-scale and high-diversity dataset including over 10000
long sequences, 9335 of which form the training-set is widely
utilized for training in tracking methods recently. In each video
sequence, we pick each image pair within the nearest 100
frames. For both training and testing, we set exemplar and
search images of 127× 127 and 255× 255 respectively.

Tracking. On the inference phase, positive and negative
branches are removed. Thus, the proposed tracker follows
the same protocols as in [1], [6] and runs at similar speed
with baseline trackers. The feature extraction ϕ(z) for the
template target is only calculated once in the first frame, and
ϕ(z) repeatedly matches to the feature ϕ(x) from subsequent
frames by cross-correlation. In addition, QuadFC matches the
target over three scales 1.102{−1,0,1} and utilizes the linear
interpolation with a factor 0.5986 to avoid huge scale change.

The proposed architecture is implemented in Python with
PyTorch 0.4.1 and all the experimental results are obtained
on a workstation with Intel(R) Xeon(R) CPU E5-2683 v4
@2.10GHz and a NVIDIA GeForce GTX 1080 Ti GPU.

B. Comparison with the State-of-the-Art

We compare the proposed tracker with several state-of-
the-art tracking algorithms, as well as some recent Siamese
trackers on five popular datasets of OTB and VOT benchmarks.

OTB Benchmarks. The object tracking benchmarks (OTB)
is composed of three datasets, named as OTB-2013 [25],
OTB50 [26] and OTB-2015 [26]. The evaluation on OTB fol-
lows the standard protocols [25], [26]. Two metrics including
center location error (CLE) of precision plots and area-under-
curve (AUC) of success plots, are applied to estimate all track-
ers. Fig. 6 shows that QuadFC achieves the best performance
with 0.676 and 0.680 of AUC scores on OTB-2013 and OTB-
50, respectively. Note that our tracker surpasses other start-of-
the-art tracking algorithms, such as the recent proposed SA-
Siam [8], CREST [27] and SiamRPN [2]. Moreover, Fig. 7
also presents that compared with recent Siamese trackers, such
as DaSiamRPN [28], CIRes-FC [6] and GradNet [29], our
tracker still ranks first with the scores of 0.665 and 0.885 in
terms of CLE and AUC on OTB-2015 with absolute advantage.
That demonstrates the effectiveness of our architecture.

Fig. 6: The comparison results on OTB2013 and OTB-50.
Thirteen trackers are ranked by AUC scores of success plots.

Fig. 7: The comparison of QuadFC with state-of-the-art track-
ers is shown by precision and successful plots on OTB-2015.

Fig. 8: Illustration of the expected average overlap scores for
VOT-2016 baseline and VOT-2017 real-time challenges.

VOT Benchmarks. The visual object tracking (VOT) have
several versions, and we select VOT-2016 [30] baseline chal-
lenge and VOT-2017 real-time challenge [31] to perform eval-
uation by the official toolkit. Different from OTB, VOT serves
A (accuracy), R (robustness) and EAO (expected average
overlap) as the metrics. VOT2016 consists of 60 challenging
videos, which the bounding box is precisely auto-annotated.
Our approach is compared with a large of competitive trackers
including SiamRPN [2], VITAL [32], SiamFCRes [6], SA-
Siam [8] and the other trackers in VOT-2016 reports. Fig. 8
shows that QuadFC surpasses CCOT [33] which is the winner
and SiamRPN With a slight advantage, and ranks first with a
0.343 score of EAO on VOT-16 baseline challenge. For VOT-
2017 dataset, 10 sequences of VOT-16 are replaced with more
difficult ones. We also compare our QuadFC with SiamRPN,
SA-Siam, SiamFCRes, SiamFCTri [5] and the total 51 trackers
in VOT-2017 reports. As shown in Fig. 8, QuadFC achieves
the best performance with a 0.275 EAO score and surpasses
SiamFCRes, SiamRPN [2], SA-Siam [8] and CSRDCFpp [34]
being the winner in VOT-17 real-time challenge by a large
margin. That effectively proves the advantage of the proposed
tracker in terms of performance and tracking speed.
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Fig. 9: Qualitative results by comparing QuadFC with other trackers. QuadFC tracks robustly in these hard cases.

C. Ablation Analysis

To identify the influence of different elements, we compare
the baselines and several variants of our tracker. As presented
in Fig. 10, our approach outperforms the baselines and all vari-
ants on OTB-2015. Compared with CIRes-FC [6], CIResW-
FC obtains 1.4% and 1.1% gains due to more rich features
with the doubled channel. Furthermore, QuadFC-d improves
the performance with 1.2% and 0.9% by using our differential
pair-wise cross-entropy loss for training. However, QuadFC-t
just selects a positive and negative sample in each image pair
by using the triple loss and achieves 1.1% and 1.2% decrease.
This is because only the difficult instances are concerned and
most of the samples are ignored during training, resulting
in unstable convergence. Therefore, the final model QuadFC
trained via our multi-task loss function can achieve the highest
precision (0.885) and area-under-curve scores (0.665).

Fig. 10: Precision and success plots using OPE on OTB-2015.
CIResW-FC indicates that the backbone network has doubled
channels. QuadFC-d and QuadFC-t denote the model trained
by the differential pair-wise loss and triple loss, respectively.

D. Qualitative Evaluation

As displayed in Fig. 9, we compare our QuadFC tracker
with other five state-of-the-art real-time models (SiamFC [1],

SiamFCRes [6], SiamRPN [2], ECO-HC [35] and Staple [36])
on five challenging sequences of OTB-2015 benchmark. The
sequences in first column (Soccer), third column (Ironman)
and in fifth column (Girl) are examples of semantic distractor,
background clutter and partial occlusion situation. QuadFC can
track the target successfully in terms of either precision or
overlap, while SiamFC, ECO-HC, SiamRPN and SiamFCRes
suffer a drift problem. The second column (Matrix) and
fourth column (MotorRolling) are the challenging sequences
where include fast motion and scale deformation. Our tracker
still performs more accurate than the others. All trackers
except QuadFC lost the target occasionally due to different
challenging factors in Fig. 9, which proves that our tracker is
robust to semantic background clutter and scale deformation.

VI. CONCLUSION

In this paper, we provide a full-convolutional deep quadru-
plet architecture for tracking, referred as QuadFC, to train
Siamese networks in an end-to-end mode. we have especially
designed a multi-task loss including a differential pairwise loss
and a triplet loss by utilizing the combination of instances
and mining of the potential connections among samples for
joint representation learning. The resulting tracker greatly
benefits from this scheme and achieves more discriminative
representation. In addition, we also prove the reasonableness
of our loss function in theory and experiments. Extensive
results on five popular tracking benchmarks indicate that
QuadFC outperforms the start-of-the-art tracking algorithms
while keeping real-time speed. In the future, we will continue
to explore more effective representation learning and the fusion
strategy of features at different levels.
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