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Abstract—Attention Deficit Hyperactivity Disorder (ADHD) is
a behavior-based disorder that mainly occurs in young children.
Resting-state fMRI data have been very popular for diagnos-
ing brain disorders like Autism, ADHD, and schizophrenia,
by network-based functional connectivity, since these disorders
are associated with both individual brain regions and their
connections. Finding patterns among regions of controls’ brain
and ADHD patients’ discriminating brains, is a non-trivial task.
For classification of ADHD, we propose an end-to-end lightweight
CNN architecture with hierarchical representation learning i.e.,
HLGSNet. We extract 116 anatomical regions from each subject
in both normal and patient conditions, and graphs are built
with the help of temporal correlation between different regions,
where each region is considered as a node. Following this, a
Siamese graph convolution neural network with triplet loss has
been trained for finding embeddings so that samples for the same
class should have similar embeddings. Finally, along with a fully
connected layer, the trained model has been fine-tuned for the
classification task. Experiments have been carried out on publicly
available ADHD-200 dataset with promising performance.

Index Terms—fMRI, Graph convolution neural networks,
ADHD detection, Siamese Classification

I. INTRODUCTION

One of the fastest-growing methods for assessing neural
connectivity is the functional magnetic resonance imaging
(fMRI). It is broadly categorized into two classes: task-based
fMRI [1] and resting-state fMRI [2]. More recently, func-
tional connectivity studies using rs-fMRI has been yielding
promising detection results for various diseases, including
Alzheimer’s, Attention deficit hyperactivity disorder (ADHD),
Autism spectrum disorder (ASD), and epilepsy.

ADHD is one of the most severe neuro-developmental
diseases impacting 5-10% of young children between the ages
of 6 and 12. Since no specific diagnostic approach is reported
for ADHD, the diagnosis depends on findings, typically over

months, by medical practitioners or parents. Thus, this is
a very time consuming and costly process. However, non-
invasive brain imaging techniques along with advanced signal
processing methods can help in early detection of ADHD [3],
[4].

Machine learning methods can play a crucial role in the
discovery of the difference in brain connectivity patterns
across ADHD and healthy subjects. Many approaches, such as
clustering [5], sparse dictionary learning [6], correlation [7],
and graph-based techniques [8], have been used for feature
extraction and selection, followed by a classifier to predict
the actual class label. However, few existing classification
techniques use hand-crafted features extractor and traditional
machine learning frameworks which do not have automatic
feature learning capability. Recently, deep learning methods
[9], [10] are being explored to classify subjects based on the
functional connectivity of brain regions.

Challenges and Contribution: There have been several
scientific attempts to identify and recognize brain diseases,
using fMRI activation. However, these methods are usually not
generalizable to smaller data sets because traditional networks
tend to get over-fitted and do not perform well on testing
datasets. Moreover, conventional graph networks fail to learn
hierarchical representations. To overcome aforementioned lim-
itations, this paper presents an end-to-end CNN architecture,
i.e., Hierarchical and Light-weight Graph Siamese Network
(HLGSNet), for classification of neurological disorders, par-
ticularly ADHD from fMRI data. Our contribution in this
paper is of four folds: (1) Each region has been represented
by average signal of that region which helps to get the
denoised signal unlike at voxel level. (2) The network is
trained in a Siamese framework using a triplet loss function
where graph convolution features are learned from the graph
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representation of the brain. Moreover, training is assisted
by the use of adaptive margin, and then a trained network
along with a fully connected layer has been fine-tuned for
the classification. (3) A differential pooling has been used to
build the hierarchical representation of graph structures (4) A
thorough experimental study to validate the proposed network
on challenging ADHD datasets has been performed, achieving
state-of-art performance on test data.

II. LITERATURE SURVEY

It has been observed that correlation is one of the best meth-
ods to compute the functional connectivity network, which
has different variants, including Pearson correlation coeffi-
cient, Kendall rank correlation, and Spearman rank correlation.
Bohland et al. [11] has segmented the brain into 116 regions
utilizing Automated Anatomical Labeling (AAL) atlas [12]
and functional connectivity has been computed using Patel’s
Kappa, sparse regularized inverse covariance and Pearson’s
correlation methods. In [13], the whole brain is parcellating
into 190 regions using CC200 atlas [14] and FCN has been
constructed. Constructed FCN has been represented by a
graph, where each of the regions is represented by a node
in a graph; and the correlation between two nodes gives their
edge weight. By putting some threshold on edge weight, they
have built the unweighted graph.

Conventional Approaches: To measure the similarity be-
tween two graph embeddings, four main methods are reported
in the literature: (i) graph embedding, (ii) graph edit distance,
(iii) graph kernels, and (iv) motif counting. Among these
methods, graph embedding [15] works on classification or
regression modules to estimate brain graph similarity and have
been deployed in various studies. However, this method fails
to extract the structural properties of brain graphs [16]. In
the case of motif counting, the subgraph patterns are obtained
to compare brain graphs, but this a very time-consuming
technique. Graph kernels compare brain graphs based on
extracting smaller sub-graphs and thus unable to capture the
global property of brain patterns.

On the other hand, graph edit distance deploys both struc-
tural and semantic feature variations lying on the graphs
and also provides significant results to unknown node cor-
respondences. In [17], the authors presented an approach of
self-regulation of the right inferior frontal cortex with fMRI-
Neurofeedback to enhance functional connectivity between the
right inferior frontal cortex and other areas of the cognitive
control network. In [18], a mechanism known as general func-
tional connectivity (GFC) is proposed, which offered better
test-retest reliability than resting-state fMRI to measures the
intrinsic connectivity of the brain. In [19], a high field fMRI
and high-density electroencephalogram (EEG) is considered
to study the participant-driven activity patterns to retrieve the
past episodes. In [20], they applied a classification approach
on EEG-fMRI data and achieved IED-related BOLD maps
with greater biological meaning compared to the conventional
method. In [21], the usages of mutual connectivity analysis

with Local Models is investigated to estimate nonlinear mea-
sures of interaction between pairs of time-series in terms of
cross-predictability. In [22], authors utilized the non-imaging
data for classification of an individual as ADHD or non-
ADHD resulting from functional connectivity in various re-
gions of the brain. They enabled the clustering algorithm via
the method of the density peaks. In [23], efforts were made to
classify an fMRI signal of a human as ADHD or non-ADHD
based on differences in functional connectivity.

Deep learning Approaches: Deep learning approaches
have been become very popular in vision field, and researchers
have started to deploy this into medical domain also. In recent
literature, several deep learning method could be seen in
functional MRI (fMRI), diffusion MRI, and EEG. In addition,
few efforts also made in fMRI based diseases classification
like ADHD, and autism. In [24], an end-to-end deep learning
model is designed that learned the network representations
for classification of neurological disorder using fMRI data.
Authors have performed experiments in three steps including
feature extraction, followed by similarity and classification.
Feature extraction and similarity network consist of CNN
layers and Fully connected layers, respectively. In third step,
classification has been carried out utilizing soft-max classifier.
Finally, all the steps have been combined and end to end
training would be performed.

In [25], a novel FCNet is proposed to obtain the inher-
ent features of raw time-series signals by getting functional
connectivity directly from the raw fMRI time-series signals.
There are currently various types of neural networks, such as a
convolutional neural network (CNN), built to learn a similar-
ity feature that compares two pictures. In [26], the authors
proposed a similarity metric between irregular graphs and
achieved 11.9% improvement in accuracy over conventional
methods. In specific, the polynomial filters were extended
to irregular graphs utilizing a Siamese graph convolutional
neural network (CNN). In this way, they have utilized graph
convolution in spectral domain. Later, fully connected layer
has been used to get the embedding. Finally, classification has
been performed for autism dataset.

III. PROPOSED HIERARCHICAL AND LIGHT-WEIGHT
GRAPH SIAMESE NETWORK (HLGSNET)

The proposed framework for ADHD classification based on
HLGSNet illustrated in Figure 1. At the pre-processing stage,
the first task of the network is to build the brain graphs of the
raw fMRI data (as discussed in subsection III-A). Afterward,
online triplets of these graphs have been created randomly
and given to the Graph CNN network. Next, Graph CNN has
been trained based on triplet (anchor, positive and negative)
by using the triplet loss function. One can see in Figure 1 that
the three legs of graph CNN with shared weights have been
used to train the proposed model. Finally, trained graph CNN
along with a soft-max classifier, has been used to perform the
classification task.
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Fig. 1. Proposed Hierarchical and Lightweight Graph Siamese Network

A. Graph Construction for brain classification

A graph is defined by G = (V, E), where V and E are sets
of vertices and edges, respectively. In our work, automated
anatomical labeling atlas [27] has been used to parcellate the
brain into 116 anatomically meaning-full regions for each sub-
ject, which represent the nodes. Now for graph construction,
first, we compute the average of the signals from all the voxels
of each region. In this way, each region would be represented
by the average signal of that region. Moreover, the length of
each signal is 171 since there are 171 temporal samples at
each voxel define as the signal. Hence any brain B, can be
represented as a signal X of size 116× 171.

Further, the correlation matrix C of size of 116 × 116 is
constructed, wherein each entry is the temporal correlation
between these average signals from each pair of regions. We
then construct the graph adjacency matrix A by thresholding
C using a threshold value α. as defined below:

aij =

{
1, if cij > α

0, otherwise
(1)

where cij , aij are ith row and jth column of C and A,
respectively; both of them are of size 116 × 116. These two
matrices (A and X) have been given to the Graph CNN as
input for getting embedding.

Fig. 2 exhibits the (thresholded) difference between the
mean correlation matrix of normal subjects and the ADHD
subjects. Here, we have calculated the absolute difference
between the mean correlation matrix of normal and patient to
show the difference between normal and ADHD. Afterward,
we have put the threshold over absolute difference to get
the binary mask (one and zero denote edge and no edge,
respectively), as plotted in Fig. 2. Moreover, we have shown
the name of every fourth region among the total 116 regions. In
the figure, red color indicates one (edge), whereas blue denotes
zero (no edge). All the edges in the graph, as mentioned earlier,
would be helpful for differentiating between normal and
ADHD subjects. In this way, the Fig. 2 highlights connectivity

differences between the two cases, which can lead our network
to learn discriminative features between the two classes.

Fig. 2. Absolute difference between mean of normal and patient correlation
matrix, followed by thresholding.

B. Graph CNN Network Designing and Architecture

The GCNN design (as shown in Figure 3) consists of the
graph convolution layer, differential pooling layer, followed
by the fully connected layer, as discussed below:

1) Graph Convolution Layer (GCL): Graph convolution
[28] could be defined in the spatial domain or spectral domain
by taking advantage of message propagation or filter based
graph signal processing. In our case, we have utilized the graph
convolution in spectral-domain, which takes the leverage of
graph signal processing.

Laplacian: By assuming the graph is undirected, the fore-
most entity is the normalized Laplacian matrix, which plays a
significant role in the realization of spectral graph convolution.
The first step in the GCL layer is to calculate normalized
Laplacian matrix Lnorm, which is defined as follows:

Lnorm = IN −D− 1
2AD− 1

2 (2)

Where A, D, and IN are adjacency matrix, degree diagonal
matrix, and identity matrix, respectively; each of them is of
size 116× 116.

As Lnorm matrix is real symmetric positive semi-definite,
it can be decomposed into three matrices as defined below
(using spectral decomposition theorem):

Lnorm = UΛUᵀ (3)

where U consists of a set of orthonormal eigenvectors (U =
[ev1, ev2, ev3, ...evn]) , and Λ is a diagonal matrix containing
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Fig. 3. Proposed Graph CNN Network

all eigenvalues (also called spectrum). Since all the eigenvec-
tors have been defined in orthonormal space, UTU = I .

Graph Fourier Transform: The Graph Fourier Transform
(GFT) of X (containing feature vectors of all 116 nodes) is
calculated by multiplying eigenvector matrix with graph signal
matrix X as follows: X

′
= UᵀX , whereas Inverse Graph

Fourier transform (IGFT) is defined as X = UX
′
.

As such, we could see that GFT would transform the input
signal to the orthonormal space where the eigenvectors, as
mentioned above, represents the basis spanning the space of
116 length vector of brain signals. Thus utilizing the same
basis, IGFT would transform the signal defined in orthonormal
space to the original space by multiply basis with correspond-
ing X

′
values.

Defining Graph Convolution: Given two signals Z, W ,
signal Z can be convolved by signal W as defined below:

Z ~W = IGFT (GFT (Z) ·GFT (W )) = U(UᵀZ) · (UᵀW )
(4)

Where ~ is convolution operation, and · is the element-wise
product of two matrices viz; GFT of Z and GFT of W.
Moreover, inverse GFT is applied to get final convolution
output in signal space.

In the similar way as discussed above, the spectral convo-
lution of X by a filter p can be defined as:

Xconv = p~X =IGFT (GFT (p) ·GFT (X))

= U(Uᵀp) · (UᵀX)
(5)

Let us consider the pθ as a learnable filter, represented by
pθ = diag(UT p) and parameterized by θ; where θ is Fourier
coefficient vector need to be learned. Hence the simplified
spectral convolution can be written as follows.

Xconv = p~X =
(
U
(
pθ(U

ᵀX)
))

(6)

Considering the above mentioned spectral convolution, the
input graph signal M l−1 with (if l−1) channels at lth layer
could be establish as below.

M l
(:,q) =

if l−1∑
r=1

UΘl
r,qU

ᵀM l−1
(:,r) (7)

Here, of l (q = 1, 2, ..., of l) is number of output channels at
layer l. In addition, M0 = X at layer 1 of Spectral convolution.
At last pθ = Θl

r,q is learnable diagonal matrix at layer l.
Approximation: Above mentioned decomposing of the

Laplacian matrix into orthonormal eigen vectors matrix is a
time-consuming process (high complexity of order N3). How-
ever, Chebyshev expansion can be employed to approximate
eigenvectors matrix decomposition in time order of N . In this
way, filter pθ would be approximated by Chebyshev expansion
as follows:

pθ =
T∑
n=0

ΩnSn(Λz) (8)

where Λz = 2×Λ
λmax

− I , so as to normalize between [−1, 1].
Ωn represents nth Chebyshev coefficient, and T denotes
Chebyshev polynomial order and Sn(Λz) is defined as:

Sn(Λz) =


1, if m = 0

Λz, if m = 1

2Sn−1(Λz)− Sn−2(Λz), otherwise
(9)

In consequence, the convolution of X with filter pθ, by
utilizing the above mentioned formulation, would be given as:
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Xconv =p~X =
(
U
(
pθ(U

ᵀX)
))

= U
( T∑
n=0

ΩnSn(Λz)
)
UᵀX

=
T∑
n=0

ΩnSn(Lz)X

(10)

here, Sn(Lz) = USn(Λz)Uᵀ and Lz = 2×L
λmax

− I . As we
have utilized this Chebyshev approximation, this algorithm has
reduced the time complexity to order of N from order N3.

Differential Pooling Layer : In this layer, cluster as-
signment matrix Cl(i, j) has been learned, which is of size
nl × nl+1. Each row of this matrix is related to one of the
nl clusters (or nodes) at layer l and each column represents
one of the nl+1 clusters at the next layer l + 1. Hence, this
matrix gives a soft assignment of each node of the present
layer to the clusters of the next layer. In other words, we can
say that based on this matrix, nodes information are aggregated
and combined to form new nodes or cluster for next layer, and
accordingly the adjacency and graph signal matrices have been
changed as defined below.

X l+1
inp = ClᵀX l

out (11)

Al+1
inp = ClᵀAloutC

l (12)

Where, X l+1
inp is input graph signal matrix for layer l + 1,

X l
out is output graph signal matrix for layer l. Similarly Al+1

inp

is input graph adjacency matrix for layer l+ 1, Alout is output
graph adjacency matrix for layer l.

Fully Connected Layer: This layer has been utilized to
get the final embedding (of size 64) of the input feature
map. These embeddings are used for training the triplet-based
Siamese network. Once the Siamese network is trained, these
embeddings are further used to train the softmax classifier
with cross-entropy loss. In this way, one more fully connected
layer with activation function soft-max has been added after a
trained network (by Siamese). The output would give a two-
dimensional probability vector. Finally, the cross-entropy loss
function has been utilized to get the classification error.

C. Network Training with Triplet Loss

Training has been done in two steps: initially siamese
network has been trained with a series of layers viz; GCL-
I, Pooling with embedding, GCL-II, Pooling with embedding
and two fully-connected layers. For training of this network
triplet loss function has been used, as defined below:

Loss =
N∑
i=1

[‖Eanci − Eposi ‖
2
2−‖Eanci − Enegi ‖22 + α] (13)

In this equation, α, Eanci , Eposi , and Enegi are the margin,
embedding of anchor, positive and negative example, respec-
tively. This function minimizes the loss of a similar class of
embedding by minimizing the distance from the anchor to
positive embedding while maximizing the distance from the

TABLE I
METRICS MEASURED FOR DIFFERENT TESTING DATABASES

Dataset Accuracy Sensitivity Specificity
NI 68% 72.73% 64.29%

NYU 68.29% 66.67% 68.96%

negative and anchor. These embeddings will help to train the
classifier in a proper way without over-fitting as we are now
having the network with multiple triplets of samples unlike
standard CNN classifier.

In this way, our approach involves a Siamese neural network
which contains triplet networks of Graph convolution layers
(GCN), importantly with a sophisticated loss, unlike in [26],
Moreover, we have also used contemporary GCN architectures
for further performance improvement.

IV. PERFORMANCE ANALYSIS AND DISCUSSIONS

This section discusses the testing strategy, dataset, exper-
iments, and robustness of the proposed CNN model w.r.t.
various test cases.

A. Datasets Description

We have two datasets to validate our approach, which had
also utilized in ADHD-200 Global Competition. Each dataset
has provided both training and testing data separately with dif-
ferent apparatus and scan parameters. We have performed our
experiments on pre-processed data. FSL [29] and AFNI [30]
tools have been utilized to prepossess the above-mentioned
dataset, which consists of various steps:

1) First four volumes have been removed.
2) lice time correction.
3) Montreal Neurological Institute (MNI) template with 4×

4× 4 voxel resolution has been used for registration.
4) The Gaussian filter has been applied for the smoothing

of data.

B. Experimental Setup

We have made use of NVIDIA GeForce GTX 1080 Ti
graphics card along-with a Linux operating system with 32
GB RAM for the implementation of our proposed network.
Initially, the triplet based Siamese network is trained using
Adam optimizer together with a learning rate of 0.001. The
trained network, accompanied by the soft-max classifier (apply
cross-entropy loss), has been further utilized to perform the
classification task.

C. Testing Strategy

The proposed HLGSNet has been trained over only 270
subjects (NI and NYU) of both normal and patients and
tested individually on NI and NYU with promising results.
NI contains 25 subjects for testing in which 14 and 11 belong
to normal and patient, respectively. NYU testing data consists
of 12 normal and 29 patients subjects, a total of 41 subjects.
Since we have less data, we used the siamese-based network to
mitigate the over-fitting issue of neural networks. In this way,
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TABLE II
COMPARISONS OF THE PROPOSED METHOD WITH EXISTING METHODS

Data-set NI NYU
Approach Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Average accuracy [31] 56.9% N/A N/A 35.1% N/A N/A
Clustering approach [32] 44% 45.4% 42.8% 24.3% 68.9% 60.9%

FCNet [25] 60% N/A N/A 58.5% N/A N/A
DeepFMRI [24] 67.9% 63.6% 71.4% 73.1% 65.5% 91.6%

Proposed Network 68% 72.73% 64.29% 68.29% 66.67% 68.96%

siamese network would take triplet as input, and huge amount
of triplet could be generated using only less amount of data.
Finally, several performance parameters have been utilized to
check the robustness of our model.

1) Performance parameters: We have used three types of
performance parameters including Accuracy, Specificity, and
Sensitivity. They have defined via true positive, true negative,
false positive and false negative as defined below.

True Negative (TN): # correctly classified normal subjects.
True Positive (TP): # correctly classified ADHD subjects.
False Positive (FP): # normal subjects which is mistakenly

classified as ADHD.
False Negative (FN): # ADHD subjects which is mistakenly

classified as normal.
The performance parameters are:
• Sensitivity: # correctly classified ADHD subjects over

total # actual ADHD subjects.

Sensitivity =
TP

TP + FN
(14)

• Specificity: # correctly classified normal subjects over
total # actual normal subjects.

Specificity =
TN

TN + FP
(15)

• Accuracy: # correctly classified subjects over total #
subjects.

Accuracy =
TN + TP

TN + FP + TP + FN
(16)

D. Experimental Analysis

The performance analysis of the test data for the proposed
network is presented in Table 1. Among all datasets, our
proposed network has achieved the best accuracy on NYU.
While in terms of sensitivity, the method yields 72.73 % on
the NI dataset, which is highest among all. On the other hand,
the highest specificity 68.96% is obtained on the NYU dataset
among all the datasets. Hence, these results show that our
proposed method yields a promising performance, given the
problem’s small amount of data and the challenging nature of
it.

Comparative Analysis: To show the performance com-
parison, we have compared the proposed network with four
state-of-art methods based on accuracy, as shown in Table 2.
One can observe that in the case of NI dataset, our method
outperforms all the state-of-the-art approaches. Likewise, in

the case of the NYU dataset, our proposed method yields
the second-best highest accuracy. If we take the case of
sensitivity which is more important performance parameter
of any classification model, our proposed technique achieves
72.73% on NI data, that is far better than all the existing
approaches in Table 2. Considering specificity for NI dataset,
our model has surpassed all the state-of-art methods except
[24]. For NYU data, the sensitivity of our proposed model is
better than all existing techniques except [32], however in the
case of specificity we are better than [32].

While the approach in [24] outperforms the proposed
method on the NYU data, in terms of accuracy, we believe
that the proposed approach and its paradigm of using GCN
variations are encouraging, and can be further explored.

V. CONCLUSIONS

This paper presents an end-to-end hierarchical Siamese
classification network (HLGSNet) for classification of ADHD
and control subjects. Specifically, HLGSNet is comprised
of a graphical CNN feature extractor network that extracts
features from the brain graphs and a learnable classification
network that calculates embeddings to emphasize similarity
and dissimilarity between the graphs corresponding to the class
samples via the triplet loss function. Experimental findings of
our methodology indicate encouraging success on the ADHD-
200 dataset.
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