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Abstract—The Synthetic Minority Oversampling Technique
(SMOTE) is effective to handle imbalance classification problems.
However, the random candidate selection of SMOTE may lead
to severe overlap between classes and introduce new noise
factors. Many variants of SMOTE have been proposed to relieve
these problems by generating new examples in safe regions.
Most of these methods generate new examples with existing
minority examples without considering the negative impact that
class imbalance have brought on these examples. In this paper,
we handle the imbalance classification using Bayes’ decision
rule and propose a novel oversampling method, the Minority
Oversampling using Sensitivity (MOSS). Candidates for new
example generations are selected considering their sensitivity with
respect to class imbalance. New examples are then generated by
interpolating the candidate and one of its adjacent examples.
Experiments on 30 datasets confirm the superiority of the MOSS
against one baseline method and seven oversampling methods.

Index Terms—bayes rule, imbalance, oversampling, sensitivity

I. INTRODUCTION

Class imbalance occurs when a class consists of much
less examples than the other class [1] and it is prevalent in
many real-world applications, for examples anomaly detection
[2], electricity pricing [3], and diagnosis of rare diseases [4].
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Traditional classifiers are prone to be biased to majority class
and minority examples are often misclassified. Misclassifica-
tion in the minority class is not preferable because in many
cases misclassifying minority examples are often more costly
than misclassifying majority ones. For example, classifying a
fraud transaction as normal one may lead to severe financial
consequences.

Over the past decades, many algorithms have been proposed
to handle the class imbalance problem [5] [6] [7]. Existing
approaches can be roughly categorized into two types: data-
level approaches and algorithm-level approaches [1]. In this
work, we only focus on the data-level approaches, because
they are classifier independent and are more versatile. Note
that data-level approaches are often combined with ensemble
learning to create more powerful algorithms [4].

Data-level approaches, also called resampling approaches,
include oversampling and undersampling methods. Undersam-
pling methods remove data to balance the class distribution,
which risk the loss of important concepts [8]. Moreover, when
the number of minority examples is small, undersampling
would produce an undersized dataset, which may in turn
limit classifier performance [9]. Oversampling, on the other
hand, may encourage overfitting when observations are merely
randomly duplicated [10]. This problem can be avoided by
adding genuinely new samples. One possible solution is the
Synthetic Minority Oversampling Technique (SMOTE) [11],
which exhibits popularity among oversampling methods. To
avoid overfitting, new samples are generated along a line
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connecting a candidate minority example and one of its
adjacent minority examples to enhance the representation of
the minority class. However, the random candidate selection
of SMOTE may introduce new challenges. Regions with more
minority examples may be inflated further resulting the within-
class imbalance. Another problem is that new noisy samples
may be introduced when noisy examples already exist in
the data [12], which would further complicate the learning
problem.

A lot of variants of the SMOTE have been proposed to
relieve these problems. Instead of blind oversampling, these
methods attempt to generate new examples at specific loca-
tions of the feature space. Most of these variants focus on
how to determine the locations of oversampling regions. For
example, the Borderline-SMOTE [13] generates new examples
only near the decision boundary by ignoring noisy and safe
examples. Similarly, the Safe-Level-SMOTE [14] generates
new examples in regions in which minority examples have
a high safe level. The adaptive synthetic sampling approach
(ADASYN) [15] generates more new examples near examples
that are difficult to learn where the difficulty of learning
of a minority example is measured by the proportions of
majority examples in its k-nearest neighbors. The majority
weighted minority oversampling technique (MWMOTE) [16]
assigns different weights to hard-to-learn minority examples
and generates new examples using a clustering approach.
Then, new examples are generated inside minority clusters.
In contrast, the k-influential neighborhood oversampling [17]
provides an alternative way to identify noisy examples. The k-
influential neighborhood (K-IN) of an example is interpreted
as the region in feature space where this sample has direct
influence via its k-nearest neighbors and indirect influence via
its reverse k-nearest neighbors. Noisy minority examples are
those whose K-IN has smaller number of minority examples
than a threshold. Noisy samples are removed and the SMOTE
is then applied to the minority class.

All methods above utilize a k-nearest neighbors-based
method to determine where to generate new examples and the
distance metric is Euclidean distance. The noise reduction a
priori synthetic oversampling (NRAS) [18], on the other hand,
utilizes the difference of conditional probability of belonging
to the minority class as the distance metric and removes noises
before oversampling. Similar to the NRAS, the Certainty
Guided Minority Oversampling (CGMOS) also estimates the
conditional probability distribution function to calculate the
posterior probability of all examples using Bayes’s rule [19].
The posterior probability is compared before and after a
new example being added to the dataset. Examples that lead
to higher improvement of posterior probability have higher
chances to be selected as candidate for the SMOTE.

Apart from k-nearest neighbors-based method, clustering
methods are also popular in resampling-based method because
they can preserve data distribution [8]. For example, the k-
means SMOTE applies oversampling only on safe regions to
avoid noise generation where the safe region is discovered by
k-means clustering [9]. A high ratio of minority examples in

the cluster indicates a safe region.
These methods have shown superior performance against

the original SMOTE in many empirical studies, implying that
generating new examples in certain important regions help
enhance the representation of minority class and thus the clas-
sification performance on minority class can be improved. In
this work, we attempt to determine the regions of interest using
Bayes’ decision rule and then propose a novel oversampling
method, the Minority Oversampling using Sensitivity (MOSS),
for imbalance classification. Based on Bayes’ decision rule, the
sensitivity to imbalance of each example can be computed.
Examples with low sensitivity are noisy and safe examples,
while those with high sensitivity are borderline examples
located in areas between two classes. In MOSS, examples with
higher sensitivity are assigned higher sampling weight so that
new examples can be generated in important regions while
lowering the risk of introducing new noises.

The original aspects of this work are that we propose
the sensitivity of an example to analyze the impact that
class imbalance bring on this example, and then propose a
novel sensitivity-based oversampling method for imbalance
classification problems. The major contributions of this work
are as follows.

1) The sensitivity with respect to imbalance of each ex-
ample can be efficiently computed using Bayes’ rule.
This provides a systematic way to analyze the impact of
imbalance on the dataset.

2) The sensitivity of each example is used as a criterion to
guide the candidate selection for oversampling, which
can generate informative examples near decision bound-
ary for better classification.

The paper is organized as follows. Section II gives the de-
tails of the proposed method. Section III reports the empirical
experiments on 30 datasets comparing the proposed method
and 7 existing oversampling methods. Section IV concludes
the work.

II. PROPOSED METHOD

In this section, we first introduce some basic notations.
Then we show how to compute the sensitivity and apply
oversampling using sensitivity.

A. Definition of Sensitivity

Given a dataset D = {(xj , yj)|j = 1, 2, · · · , N} where N
is the number of examples, xj ∈ Rm is the feature vector
of the jth example with m being the number of features,
and yj ∈ {c+, c−} is the corresponding label of xj with
c+ and c− being the positive and negative class respectively.
The cardinality of the positive class is N+ while that of the
negative class is N− and N++N− = N . In a binary imbalance
problem, one usually denote the minority class as positive class
and the majority class as negative class.

Then with Bayes’ theorem, one can compute the posterior
probability of an example using class conditional probability
density function and prior probability as follows:
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P (c|xj) =
p(xj |c)P (c)∑
c p(xj |c)P (c)

(1)

where c ∈ {c+, c−}.
The Bayes’ optimal decision rule is given:

g(xj) =

{
c+, P (c+|xj) > P (c−|xj)
c−, P (c−|xj) ≥ P (c+|xj)

(2)

In (1), the denominator is the same for each example which
can be omitted, so (2) can be reformulated as:

g(xj) =

{
c+, Γ+ > Γ−
c−, Γ− ≥ Γ+

(3)

where
Γ+ = p(xj |c+)P (c+) (4)

Γ− = p(xj |c−)P (c−) (5)

In imbalance classification problems, usually P (c−) �
P (c+), which makes Γ− dominate Γ+ in most cases. This
reveals the fact that minority examples are often misclassified
in imbalance classification, because error rate is still very low.
In order to alleviate this problem, the calibrated decision rule
can be applied:

g(xj) =

{
c+, Γ′+ > Γ−
c−, Γ− ≥ Γ′+

(6)

where
Γ′+ = p(xj |c+)P (c−) (7)

In fact, (6) is the decision rule when the two classes
are balanced. In this case, the effects of the dominance of
P (yj = c−) are alleviated. In the imbalanced case, negative
class dominates positive class and lots of positive examples
are recognized as negative class. Using the calibrated decision
rule in (6) one would move the decision boundary towards the
negative class to mitigate the negative impacts brought by the
class imbalance. Based on this rule, we define the sensitivity
of an example to imbalance as follows:

S(xj , yj) =
Γ′+

Γ′+ + Γ−
− Γ+

Γ+ + Γ−
(8)

Note that ∀j, S(xj , yj) ≥ 0 because in an imbalanced
dataset one has P (c−) ≥ P (c+). The sensitivity effectively
measures the impacts on each example brought by class
imbalance. An example with high sensitivity indicates that
the posterior probability decreases dramatically due to class
imbalance. Thus, this example is expected to contain more in-
formation and learning from it may help alleviate the negative
influence brought by class imbalance. An example with low
sensitivity, on the other hand, shows its robustness to class
imbalance. Class imbalance does not have much influence on
this example, indicating that this example is easy to learn.
Learning too many of this type of examples may not help
the classifier generalize well. As a matter of fact, an example
with low sensitivity is either a safe example surrounded by
examples from the same class, or a noisy example surrounded

by examples from the other class. In both cases, this example is
easy to learn and a classifier would produce high confidence on
classifying it (although the noisy example would be misclas-
sified). Learning from safe examples may help generalization,
but learning from too many noisy examples may adversely
hurt the performance. How to properly handle this situation
would be one of our important future works. Overall, using
the sensitivity information, one can locate the most informative
regions where new examples can be generated.

B. Minority Oversampling using Sensitivity

We first give the overall procedure of the proposed method,
the Minority Oversampling using Sensitivity (MOSS) and then
explain the details.

The MOSS works as follows. Firstly, the sensitivity of
each positive example is computed. Secondly, the sampling
probability of the positive example is obtained based on the
sensitivity information. Thirdly, a set of candidate examples
are drawn from the positive class. Then, a random number
ranging from 0 to 0.5 is generated for each candidate, and a
new example is generated on the line connecting the candidate
and one of its nearest neighbors where the distance to the can-
didate is scaled by the random number. The overall procedure
is given in Algorithm 1.

The sensitivity consists of the class conditional probability
density function and the prior probability. The prior probability
can be estimated by the class ratio in the training set. Some
works adopt the class conditionally independent assumption
and the assumption that features follow a Gaussian distribution
to estimate the class conditional probability density. These
assumptions, although often being violated in real-world appli-
cations, have been empirically shown to be effective in several
oversampling methods, for example CGMOS [19], Random
Walk Oversampling [20], and Sampling With Majority [21].
In this work, we follow the similar idea and assume that each
feature is class conditionally independent from each other
and follows a Gaussian distribution. The class conditional
probability density P (xj |c) is estimated as:

P (x
(i)
j |c) =

1√
2πσ2

ij

exp(−
(x

(i)
j − µij)

2

2σ2
ij

) (9)

where x(i)j is the ith feature of example xj , i = 1, 2, · · · ,m,
µij and σ2

ij are the mean and variance of x(i)j , respectively.
Multivariate normal distribution or non-parametric kernel den-
sity estimation can be used to estimate the probability density
and may be more accurate than the proposed method. But in
this work, we are using the sensitivity of each example to
compute a sampling probability for each example, absolutely
accurate density is not needed and the proposed method
is more efficient compared to these two methods. Having
computed the prior and density, the sensitivity can now be
determined using (8).

Based on the sensitivity, the sampling probability of the
positive examples to determine the chances of being selected
as the candidate is computed. As discussed in subsection II-A,
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Fig. 1. Sampling probability distribution

examples with high sensitivities are more informative and
therefore higher probabilities should be assigned to them. The
sampling probability is computed as follows:

W (xj , yj) =
S(xj , yj) + 1∑N+

j=1 S(xj , yj) +N+

(10)

Fig. 1 illustrates the sampling probability of each example
in a toy dataset. The dataset contains 2050 examples, where
50 from the positive class and 2000 from the negative class.
Examples are generated using two different normal distribu-
tions. The positive examples are generated from the distribu-
tion N(µ+,Σ+), where µ+ = [1, 1]> and Σ+ = [ 0.5 0

0 0.5 ].
The negative examples are generated from the distribution
N(µ−,Σ−), where µ− = [3, 3]> and Σ− = [ 0.5 0

0 0.5 ]. It can be
observed from Fig. 1 that examples located near the boundary
of the two classes have higher sampling probabilities, while
those located far away from the boundary have lower proba-
bilities. Examples near the boundary are considered to contain
more information of the distribution of two classes.

With the sampling probability, N−−N+ positive examples
are drawn with replacement from the positive class as the can-
didates. A new example will be generated from each candidate
so that a balanced dataset would be created with each class
having N− (i.e., the number of negative examples) examples.
The new examples are generated on the line connecting the
candidate and an adjacent example randomly chosen from its
k-NN. Specifically, a new example x′ is generated using the
following expression:

x′ = xj + r ∗ (xk − xj) (11)

where xj is the candidate, xk ∈ KNN(xj) and r is a random
number drawn from a uniform distribution U(0, 0.5). The
difference between the candidate and its adjacent example
is scaled by a random number which is less than 0.5, so
that the generated example is located closer to the candidate.
This avoids generating new examples in the overlapping areas

between the two classes, which may further complicate the
learning problem.

Lots of SMOTE variants apply the k-NN to determine the
regions of interest, for examples Borderline-SMOTE [13] and
MWMOTE [16]. The major difference between the MOSS
and these methods is that the MOSS takes the impact of class
imbalance into account and alters the posterior probability
accordingly, while these SMOTE variants only make use of
the information of imbalanced dataset.

Algorithm 1 Minority Oversampling using Sensitivity
Input:

D, training dataset of size N containing N+ positive
examples and N −N+ negative examples;
k, number of nearest neighbors to be used in k-NN;

Output:
Balanced dataset D′

1: Initilize D′ = φ
2: Compute the sensitivity S of each positive example using

(8).
3: Compute the sampling probability W of each positive

example using (10).
4: Draw N − 2 ∗ N+ positive examples from positive class

with replacement based on W and denote them as M .
5: for each example xi ∈M do
6: Draw a random number r from U(0, 0.5).
7: Generate a new example x′ using (11).
8: D′ = D′

⋃
x′

9: end for
10: D′ = D′

⋃
D

C. Time Complexity

The time complexity of the MOSS involves computing
the sensitivity and sampling probability, and generating new
examples by finding k-NN of each positive example. Time
complexity for computing sensitivity and sampling probability
are both O(N). Finding k-NN of all positive examples re-
quires time complexity of O((N−−N+)Nmk) = O(N2mk)
because N− ≈ N given N− � N+. As such, the overall time
complexity is O(N2mk +N +N) = O(N2mk).

III. EXPERIMENTAL STUDIES

In this section, we perform experiments on 30 imbalance
datasets accessed from the KEEL [22] dataset repository
to validate the effectiveness of the proposed method. The
characteristics of these datasets are shown in Table I including
the name, number of features, number of examples, class
distribution, and imbalance ratio (IR). The IR is defined as
N−
N+

. From Table I, one can note that the IR varies from
2.46 to 100.14 which can evaluate the effects of imbalance
ratio on performances of different methods. A thirty-time
five-fold cross validation is used to evaluate the performance
of each method. In each repetition of cross validation, the
resampling method is performed on the training set and tested
on the remaining validation set. The cross validation process
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is repeated for thirty times to record the average performance.
The performance metric used in this work is the Area under
ROC curve (AUC), which is commonly used in imbalance
classification.

Seven existing oversampling methods are used as the ref-
erence, which are the ROS, SMOTE [11], both versions
of Borderline-SMOTE (BSMOTE1, BSMOTE2) [13], MW-
MOTE [16], safe-level SMOTE (SLSMOTE) [14], and k-
means SMOTE (KSMOTE) [9]. Default parameters are used
as suggested in the original papers proposing these methods.
The parameter k used in the MOSS is set to 5 as the same as
in the SMOTE variants. A baseline method (NONE) without
any treatment to the imbalance problem is also used as the
baseline. The classification and regression tree (CART) is used
as the classifier in this work.

TABLE I
CHARACTERISTICS OF 30 DATASETS. #F MEANS THE NUMBER OF

FEATURES, #E MEANS THE NUMBER OF EXAMPLES, CD MEANS THE
CLASS DISTRIBUTION, AND IR MEANS THE IMBALANCE RATIO.

NAME #F #E CD IR

yeast1 10 1484 429/1055 2.46
vehicle2 18 846 218/628 2.88

SPECT F 44 267 55/212 3.85
segment0 23 2308 329/1979 6.02

glass6 9 214 29/185 6.38
yeast3 10 1484 163/1321 8.1

page blocks0 10 5472 559/4913 8.79
ecoli-0-3-4 vs 5 7 200 20/180 9

yeast-2 vs 4 8 514 51/463 9.08
ecoli-0-6-7 vs 3-5 7 222 22/200 9.09

yeast-0-2-5-6 vs 3-7-8-9 10 1004 99/905 9.14
ecoli-0-4-6 vs 5 6 203 20/183 9.15

CM1 23 498 49/449 9.16
ecoli-0-1 vs 2-3-5 7 244 24/220 9.17
ecoli-0-3-4-6 vs 5 7 205 20/185 9.25

ecoli-0-3-4-7 vs 5-6 7 257 25/232 9.28
PC1 21 1109 77/1032 13.4

glass4 9 214 13/201 15.46
ecoli4 7 336 20/316 15.8

page-blocks-1-3 vs 4 10 472 28/444 15.86
glass-0-1-6 vs 5 9 184 9/175 19.44

flare-F 11 1066 43/1023 23.79
yeast6 10 1484 35/1449 41.4

winequality-red-8 vs 6-7 11 855 18/837 46.5
kddcup-land vs portsweep 40 1061 21/1040 49.52
winequality-white-3-9 vs 5 11 1482 25/1457 58.28

winequality-red-3 vs 5 11 691 10/681 68.1
kddcup-buffer overflow vs back 31 2233 30/2203 73.43

kr-vs-k-zero vs fifteen 6 2193 27/2166 80.22
kddcup-rootkit-imap vs back 47 2225 22/2203 100.14

A. Results and Analysis

Table II reports the average AUC values over 30 runs of
different methods on different datasets. We omit the standard
deviations for succinct presentation of results. In Table II, the
best performance on each dataset is highlighted using bold
face. The last but one row in Table II shows the mean value
of each method over 30 datasets, and the last row shows the
mean rank of each method over 30 datasets where the lower
rank the better. As can be seen from Table II, the proposed
MOSS produces a mean value of 87.07, which is 3.72%

higher than the second highest value (83.95 yielded by the
BSMOTE1). In addition, the MOSS achieved the best results
in 19 out of 30 datasets. Compared with other methods, the
MOSS outperforms the NONE, ROS, SMOTE, BSMOTE1,
BSMOTE2, MWMOTE, SLSMOTE, and KSMOTE in 29, 24,
29, 28, 28, 29, 28, and 29 out of 30 datasets, respectively,
which confirms the superior performance of the MOSS to the
compared methods.

The MOSS yields the lowest mean rank, i.e., the best rank
among all methods. Interestingly, the more advanced over-
sampling methods (i.e., BSMOTE1, BSMOTE2, MWMOTE,
SLSMOTE, KSMOTE) do not show significant improvement
against the original SMOTE and all of them yield worse mean
rank than the SMOTE. These methods attempt to generate
new examples in safe regions via different mechanisms, but
they all ignore the impact on the datasets brought by the class
imbalance, which may be one of the reasons why they yield
worse results than the MOSS.

B. Non-parametric Statistical Analysis

To show the differences among different methods, a one-
sided Wilcoxon signed-ranks test [23] with significance level
of 0.05 is employed as suggested in [24]. If a p-value com-
puted by the test is lower than the significance level (0.05),
it indicates that the performances between compared methods
are significantly different. The Friedman’s test with a post-
hoc Hochberg’s test [25] will be also applied to compare the
proposed method with other methods over multiple datasets.
Similarly, a p-value lower than 0.05 indicates the significant
statistical difference.

Table III reports the results obtained by the Wilcoxon test
for the proposed method. Because the MOSS yields the best
average results among all methods, a significant difference
means that the MOSS significantly outperforms the compared
method. As can be seen from Table III, all p-values computed
by the test are much lower than 0.05. This means the MOSS
significantly outperforms all compared methods with 95%
confidence.

Table IV reports the results obtained by the Friedman’s test
and the post-hoc Hochberg’s test. The MOSS yields the lowest
mean rank so it is used as the control method. The p-value
computed by the Friedman’s test is 0, so there are significant
differences among the performances of different methods.
Then the Hochberg’s test is performed to find out which
pair of methods produce significantly different results. The
pHochbergs in Table IV are all lower than 0.05, which means
the MOSS significantly outperforms all compared methods
over 30 datasets.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we propose a novel oversampling method,
the Minority Oversampling using Sensitivity (MOSS), for
imbalance classification problems. The MOSS selects the can-
didate minority examples for oversampling by considering the
sensitivity to the class imbalance, i.e., the impact of class im-
balance on each minority example. The example that is more
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TABLE II
AVERAGE AUC VALUES (IN PERCENTAGE) OVER 30 RUNS. THE MOSS PRODUCES THE BEST AVERAGE AUC RESULTS IN 19 OUT OF 30 DATASETS. WE

OMIT THE STANDARD DEVIATIONS FOR SUCCINCT PRESENTATION OF RESULTS.

NAME NONE ROS SMOTE BSMOTE1 BSMOTE2 MWMOTE SLSMOTE KSMOTE MOSS

yeast1 79.28 84.07 80.97 79.08 79.31 80.52 80.02 79.65 81.85
vehicle2 96.84 97.93 95.78 96.94 97.1 96.11 96.22 96.46 97.12

SPECT F 98.5 96.47 94.65 94.12 94.64 92.19 97.53 98.5 98.23
segment0 83.97 82.58 84.33 85.4 83.61 82.46 86.68 85.1 86.76

glass6 84.59 81.31 85.17 81.8 78.42 84.99 85.5 83.23 86.55
yeast3 84.78 83.42 87.75 85.62 85.53 85.38 84.69 85.32 86.86

page blocks0 85.35 85.04 87.63 88.49 87.68 87.18 88.86 84.69 89.04
ecoli-034 vs 5 84.02 85.3 86.85 89.2 88.16 85.04 88.95 87.46 89.23
yeast-2 vs 4 83.83 82.46 84.69 83.73 78.97 84.49 85.4 83.14 85.17

ecoli-067 vs 35 84.41 84.11 86.63 85.47 85.25 83.81 87.92 85.51 86.88
yeast-0256 vs 3789 81.41 79.81 82.43 81.55 79.47 83.02 82.43 81.78 83.44

ecoli-046 vs 5 88.27 86.6 86.95 86.5 85.63 83.79 88.28 84.12 89.78
CM1 81.14 81.75 73.13 73.7 71.5 67.53 75.26 79.28 81.29

ecoli-01 vs 235 61.48 64.48 65.18 65.92 69.28 61.29 61.28 61.48 67.09
ecoli-0346 vs 5 90.69 85.18 85.27 87.06 87.93 84.83 90.69 87.64 91.09
ecoli-0347 vs 56 88.79 82.43 90.22 90.22 88.83 90.22 88.79 88.08 91.39

PC1 90.02 89.17 90.23 91.25 88.73 89.38 90.62 88.62 90.81
glass4 60.25 58.25 81.74 78.84 77.89 56.59 60.25 60.25 98.67
ecoli4 55.36 56.1 82.76 91 83.82 55.54 55.36 55.36 96.4

page-blocks-13 vs 4 65.92 63.16 59.71 57.62 52.79 57.54 65.92 65.75 66.06
glass-016 vs 5 91 83.37 91 91 100 91 91 91 100

flare-F 76.08 50 71.8 74.17 70.97 70.06 60.29 76.26 76.81
yeast6 91.45 90.95 90.35 87.54 89.53 90.97 91.45 91.62 92.06

winequality-red-8 vs 67 74.28 72.97 74.9 75.51 74.63 74.71 73.82 74.21 76.12
kddcup-land vs portsweep 89.35 88.95 91.53 90.74 89.87 90.75 89.35 89.88 92.58
winequality-white-39 vs 5 90.86 94.32 94.35 95.9 96.14 93.13 92.78 91.74 94.45

winequality-red-3 vs 5 98.86 98.62 99.05 98.84 98.81 99.06 98.76 98.9 99.29
kddcup-buffer overflow vs back 72.31 73.42 72.22 72.33 71.27 73.55 70.94 72.83 72.86

kr-vs-k-zero vs fifteen 71.31 74.1 72.08 71.38 70.02 73.37 70.29 71.36 73.73
kddcup-rootkit-imap vs back 87.49 91.73 87.89 87.42 87.85 89.5 88.37 87.12 90.63

Mean Value 82.4 80.93 83.91 83.95 83.12 81.27 82.26 82.21 87.07
Mean Rank 5.67 6.13 4.48 4.78 5.85 5.82 5.03 5.68 1.55

TABLE III
RESULTS OBTAINED BY THE WILCOXON TEST FOR ALGORITHM MOSS

Compared Methods P-value
NONE 9.314E-9
ROS 5.974E-6

SMOTE 4.656E-8
BSMOTE1 3.856E-7
BSMOTE2 1.382E-6
MWMOTE 1.8626E-8
SLSMOTE 4.712E-7
KSMOTE 5.588E-9

sensitive to the class imbalance is assigned higher probability
so that it has higher chance to be selected as the candidate.
In this way, new examples are generated based on more
informative examples. Experiments on 30 imbalance datasets
are carried out to empirically demonstrate the effectiveness of
the MOSS, which shows that the MOSS yields significantly
better results than 8 methods (1 baseline method without
any preprocessing procedure and 7 oversampling methods).
In conclusion, the MOSS is effective in handling imbalance
classification problems compared with existing oversampling
methods.

The MOSS is only evaluated against oversampling methods,
other types of approaches like cost-sensitive methods and

TABLE IV
RESULTS OBTAINED BY THE FRIEDMAN’S TEST. THE P-VALUE COMPUTED

BY THE FRIEDMAN’S TEST IS 0, INDICATING THE EXISTENCE OF
SIGNIFICANT DIFFERENCE AMONG ALL METHODS. THE pHochberg SHOWS

THE P-VALUE COMPUTED BY THE POST-HOC HOCHBERG’S TEST.

Algorithm pHochberg

ROS 0
BSMOTE2 0
MWMOTE 0
KSMOTE 0

NONE 0
SLSMOTE 0.000003
BSMOTE1 0.00001

SMOTE 0.000033

algorithm-level methods can be applied to better evaluate
the performance of the MOSS. In addition, oversampling is
considered in this work, while some works claim that under-
sampling is preferred to handle imbalance problems in certain
situations [26]. It would be interesting to extend the MOSS
to undersampling setting. Combining the idea of sensitivity
and ensemble learning is also one of our important future
works. For comprehensive analysis of the proposed idea, we
would also like to evaluate the method on several real-world
applications, for example fraud detection and diagnosis of rare
diseases, in terms of AUC as well as other metrics including
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F-measure, G-mean, and Precision-Recall Curve.
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