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Abstract—Since the birth of AI, symbols have been well
accepted as an abstract representation for intelligent systems,
even when neural networks are employed. This theoretical work
shows the following new methods: (1) Symbols are probably
not used by biological brains because their behaviors are not
limited by symbols. (2) Autonomous Programming For General
Purposes (APFGP) is necessary for scaling-up AI to animal
level intelligence. “Autonomous ” means inside the skull (or
network). (3) A Developmental Network (DN) performs APFGP
by learning a super Turing machine, called Grounded, Emergent,
Natural, Incremental, Skull-closed, Attentive, Motivated, and
Abstractive (GENISAMA) Turing machine. (4) A DN is free
of any central controller (e.g., Master Map, convolution, or
error back-propagation). (5) The GENISAMA DN does APFGP
without using symbols. Experiments are reported for vision
guided navigation, auditory recognition, and natural language
learning. This is the first conference paper on APFGP.

Index Terms—Turing machines, neural networks, autonomous
programming, vision, audition, natural language understanding

I. INTRODUCTION

We face not only the challenges of understanding and
modeling biological brains but also fundamental limitations
in traditional AI, symbolic models and connectionist models
alike, due to our use of symbols. It seems to be time for
us to liberate ourselves from symbols, i.e., free us from the
limitation of using symbols.

Plato (427-347 BC) believed largely in nativism. His student
Aristotle (384-322 BC), differing from his teacher, argued
for three principles of his theory of association—contiguity,
frequency, and similarity. Aristotle’s ideas that knowledge
emerges from experience have been greatly refined by modern
theories of learning in psychology and neuroscience. We
humans have made much progress in studying our own brains,
but we have not yet seen computational models about how a
brain autonomously programs for general purposes. In par-
ticular, we often assume that brains use symbols as abstract
tokens.

This theoretical work proposes a different view: If the brains
must learn APFGP as modeled here, they probably cannot use
symbols because the limitations imposed by symbols.

Although often not meant to explain biological learning, ar-
tificial intelligence (AI) since Alan Turing 1950 [1] employed

symbols as tokens for concepts and association between con-
cepts. Connectionism (e.g., neural networks) has used some
degree of emergent representations, but symbols have also
been widely used by connectionists, typically as output tokens
from pattern recognition and context tokens.

This theoretical work advocates that outputs, actions, and
contexts for AI agents benefit from using patterns that nat-
urally arise, instead of symbols, if AI agents must learn to
autonomously program for general purposes like brains can.

After discussing symbols, this theoretical work presents
a model for APFGP. Limited by the page limit, this paper
provides an introduction suited for a conference, as the first
conference paper for APFGP. It does not include all the proofs.
The interested reader is referred to Weng arXiv [2] for proofs.

A. Symbols

Symbols (e.g., ASCII codes) are useful for computers. By
a set of symbols, we mean a set S = {s1, s2, ..., sn} where
symbols si and sj are different if i 6= j and are the same if
i = j. This “same” or “different” property makes matching
any two symbols very simple: success and failure.

To understand the limitations of symbol, we should consider
the physical environment in which animals learn. Each animal
life consists of body and brain. The brain has two envi-
ronments, intra-body and extra-body. Suppose that “internal”
means inside the skull (or neural network).

A typical symbolic object-to-concept mapping is many-to-
one. For example., many real apples correspond to the one
abstract class “apple”, or many images of apple 1 correspond
to the same object apple 1.

In the following, we will see that the above many-to-one
mapping seems unavailable for an animal to learn. The real
environments only provide a possibility of learning many-to-
many mappings.

B. APFGP

It remains elusive how a biological brain represents, com-
putes, learns, memorizes, updates, and abstracts through its
life-long experience—from a zygote, to embryo, fetus, new-
born, infancy, childhood, and adulthood. Gradually, the brain
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produces behaviors that are increasingly rule-like [3]–[6] and
can perform APFGP. By autonomous programming, we mean
that a brain autonomously generates a sequence of procedures,
from tying shoelaces, to making a business plan, to writing
a computer program. Such programs are not just random
shufflers. They must relate to meanings of the world — namely
physics gives rise to meanings [7], [8].

Here, we greatly simplify such rich processes of co-
development of brain and body through lifelong activities,
assisted by innate (i.e., prenatally developed) reflexes and
innate motivations [9], [10], to realize auto-programming from
facts, education, engineering, thinking, fiction, and discovery.

We ask: What is a minimal set of mechanisms that enables
a biological or silicon machine to learn APFGP?

In the following, we do not require that symbols are
available. We assume the existence of natural patterns that
we humans like to consider symbols but they are not.

The remainder of the paper is organized as follows.
Section II introduces six requirements that the acronym
GENISAMA represents. They seem to be necessary for
APFGP. Section III discusses a model for au-programming for
general purposes. Section IV provide examples of two tasks
and a grand Turing machine for these two tasks as well as the
emergent Turing machine. Section V addresses the motivation
mechanisms of DN. Section VI provides some discussion and
Section VII gives concluding remarks.

II. GENISAMA

Three conceptual steps guide us to reach the theory of
APFGP. We first extend Finite Automata (FAs) [11], [12] to
agent FA in the sense that states are not hidden but are open
as actions. Then we extend agent FAs to attentive agent FAs,
so that the machines can automatically attend only a subset
of current inputs (e.g., some words among all words on this
page). Finally we introduce the GENISAMA Turing Machines
by replacing all symbols in such attentive agent FAs with
patterns that naturally emerge from the real world.

Agent FA: Two variants of FA, Moore machines and Mealy
machines [11], [12] output actions but not their states. We
extend an FA to agent [13], called Agent FA, by simply
requiring it to output its current state entirely, but its current
actions are included in the current state. This extension is con-
ceptually important because the current state is now teachable
as actions so that we are ready to address the issue of internal
representations in neural networks below. In psychology, all
skills and knowledge fall into two categories [14], declarative
(e.g., verbal) and non-declarative (e.g., bike riding). Therefore,
all skills and knowledge can be expressed as actions.

Attentive Agent FA: Suppose that a symbolic street scene
at time t has multiple objects. E.g.,

S(t) = {car1, car2, sign1, sign2, pedestrian1, ...}

Instead of taking only one input symbol σ at a time (e.g.,
σ = car1), an attentive agent FA attends to a set of symbols at
a time (e.g., S′(t) = {car1, pedestrian1} ⊂ S(t)). The control
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Fig. 1. Three categories of agents, (a) Universal Turing Machines
that is symbolic and cannot auto-program, (b) Grounded Symbolic
Machines that are task-specific and cannot auto-program, and (c)
GENISAMA Universal Turing Machines whose Developmental Pro-
gram are task-nonspecific. A GENISAMA Universal Turing Ma-
chines can auto-program for general purposes. The tape in (a)
becomes the real world and all the symbols in (a) and (b) become
natural patterns. DP: Developmental Program. X: the sensory port.
Z: the effector port. Y : the hidden “bridge for “banks” X and Z.
Pink block: human handcrafted. Yellow blocks: emerge automatically.

of any Turing machine (TM) is an Attentive Agent FA as we
will discuss below.

Universal TM: In order to understand APFGP, we need to
first discuss the Universal TM [11], [12], [15].

Recently, it has been proved by Weng 2015 [16] that the
control of any TM is an FA as illustrated in Fig. 1(a). Using
this new result, our discussions are much simpler.

Theorem 1: The control of a TM is not only an Agent FA,
but also an Attentive Agent FA.

The proof is in [2].
A Universal TM is for general purposes [11], [12]. The

input tape of a Universal TM has two parts, the program as
instructions and the data for the program to use, not just data
like a regular TM. Theorem 1 is also true for any Universal
TM because it is a special kind of TM.

Because the input is a set of symbols instead of a symbol,
the transition table of an Attentive Agent FA, especially as
the control of a Universal TM, is typically extremely large—
impractical to handcraft. This consideration supports that
machine learning from the real world must be fully automated
inside the skull (network).

Next, we drop symbols altogether for our machine. Why?
We give three reasons:
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1. Static. A symbol is static, whose meanings are in the
programmer’s document, not told to the symbolic TM. They
are also too static for real-time tasks. Suppose you, assisted by
a symbolic TM, drive into a new country that uses a new lan-
guage (e.g., new signs) but the programmer of your symbolic
TM has not considered this new language. Your biological
brain immediately deals with the patterns (e.g., images) of new
signs directly without the programmer’s document because
you can pull your car over and start to learn. Namely, your
brain starts to auto-reprogram itself. But your symbolic TM
in Fig. 1(b) cannot because all its symbols are static and your
programmer has left you!

2. Complexity. Weng [17] proved that your brain is free of
symbols for a complexity reason.

3. Atomic. A symbol is atomic, having a unique representa-
tion, si in our above definition. However, when you say, write,
or sign an abstract concept, such as the category “apple”, you
do not produce exactly the same pattern. For example, your
sound waves are different at each different time.

The above discussion prompts us to consider the real
physical world when we discuss brain or machine learning,
instead in a hypothetic symbolic world.

Therefore, for learning auto-programming, we need a new
theory that uses exclusively natural patterns (e.g., image
patches of cars and signs from the retina). The acronym
GENISAMA below provide six conditions that seem neces-
sary.

GENISAMA TM: As illustrated in Fig. 1(c) it has a
Developmental Network (DN) as its control and the real
(physical) world as its “tape”. The DN has three areas, sensory
X , hidden Y and motoric Z with details shown in Fig. 2. For
notational conciseness, we also use X , Y , Z to denote the
mathematical vector spaces, respectively, of the corresponding
neuronal response patterns denoted as vectors, e.g., x ∈ X ,
etc..

If X and Z contain all sensors and effectors of an agent,
Y models the entire hidden “brain”. If X and Z correspond
to a subpart of the brain areas, Y models the brain area that
connect X and Z as a two-way “bridge”. The computational
meanings of the acronym GENISAMA are as follows:

Grounded: All patterns z ∈ Z and x ∈ X are from the
external environment (i.e., the body and the extra-body world),
not from any symbolic tape.

Emergent: All patterns z ∈ Z and x ∈ X emerge
from activities (e.g., images). All vectors y ∈ Y emerge
automatically from z ∈ Z and x ∈ X .

Natural: All patterns z ∈ Z and x ∈ X are natural from
real sensors and real effectors, without using any task-specific
encoding, as illustrated in Fig. 2.

Incremental: The machine incrementally updates at times
t = 1, 2, .... Namely DN uses (z(t),x(t)) for update the net-
work and discard it before taking the next (z(t+ 1),x(t+ 1)).
We avoid storing images for offline batch training (e.g., as
in ImageNet) because the next image x(t+ 1) is unavailable
without first generating and executing the agent action z(t)
which typically alters the scene that determines x(t+ 1).
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Fig. 2. Brain Y is theoretically modeled as the two-way bridge of the
sensory bank X and the motor bank Z. The bridge, is extremely rich:
Self-wiring within a Developmental Network (DN) as the control of
GENISAMA TM, based on statistics of activities through “lifetime”,
without any central controller, Master Map, handcrafted features,
and convolution. (a) Each feature neuron has six fields in general.
S: Sensory; M: motoric; L: lateral; R: receptive; E: effective; F:
field. But simulated neurons in X do not have Sensory Receptive
Field (SRF) and Sensory Effective Field (SEF) because they only
effect Y and those in Z do not have Motor Receptive Field (MRF)
and Motoric Effective Field (MEF) because they only receive from
Y . (b) The resulting self-wired architecture of DN with Occipital,
Temporal, Parietal, and Frontal lobes. Regulated by a general-purpose
Developmental Program (DP), the DN self-wires by “living” in the
physical world. The X and Z areas are supervised by physics,
including self, teachers, and other physical events. See [2] for why
DN does not have any static Brodmann areas.

Skull-closed: As the skull closes the brain to the environ-
ment, everything inside the Y area (neurons and connections)
are initialized at t = 0 and off limit to environment’s direct
manipulation after t = 0.

Attentive: In every cluttered sensory image x ∈ X only the
attended parts correspond to the current attended symbol set
s. New here is the attention to cluttered motor image z ∈ Z so
that the attended parts correspond to the current state symbol
q (e.g., firing muscle neurons in the mouth and arms). Two
symbols correspond to a pattern (not necessarily connected,
as in s = {car2, pedestrian1}). Note: The attention here for
x is about the cluttered sensory world, consistent with the
literature [18], [19], but the attention in [20], [21] is about
the structured internal memory instead inconsistent with the
literature.

Motivated: Different neural transmitters have different ef-
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fects to different neurons, e.g., resulting in (a) avoiding pains,
seeking pleasures and speeding up learning of important events
and (b) uncertainty- and novelty-based neuronal connections
(synaptic maintenance for auto-wiring) and behaviors (e.g.,
curiosity).

Abstractive: Each learned concept (e.g., object type) in Z
are abstracted from concrete examples in z ∈ Z and x ∈
X , invariant to other concepts learned in Z (e.g., location,
scale, and orientation). E.g., the type concept “dog” is invariant
to “location” on the retina (dogs are dogs regardless where
they are). Invariance is different from correlation: dog-type
and dog-location are correlated (e.g., dogs are typically on
ground).

DN as the GENISAMA control: Assume a human knowl-
edge base is representable by a grand TM, whose FA control
has alphabet Σ = {σ1, σ2, ..., σn}, a set of states Q =
{q1, q2, ..., qm}, and a static lookup table as its transition
function δ : Q×Σ 7→ Q. The lookup table has n columns for
n input symbols and m rows for m states. Each transition of
the FA control is from state qi and input σj , to the next state
qk, denoted as (qi, σj) → qk, corresponding to the qk entry
stored at row i and column j, in the lookup table.

Required by GENISAMA, let grounded n (emergent) vec-
tors X = {x1,x2, ...,xn} represent the n (static) symbols
in Σ, so that xj ≡ σj , j = 1, 2, ..., n where ≡ means
“corresponds to”. Likewise, let m (emergent) vectors Z =
{z1, z2, ..., zm} represent the m (static) symbols in Q, so
that zi ≡ qi, i = 1, 2, ...,m. Thus, each symbolic transition
(left, static) in FA corresponds to the vector mapping (right,
emergent) in DN:

[(qi, σj)→ qk] ≡ [(zi,xj)→ zk]. (1)

Note that although the right-side vector of the above ex-
pression corresponds to a single symbol on the left-side, the
symbol on the left-side is only hypothetical but does not seem
to exist in the real world (other than in a computer). There
are many vectors that a human brain considers to be similar
or equivalent.

Because of the complexity reasons in Weng [17], the lookup
table for the human common-sense base is exponentially wide
and exponentially high, but also extremely sparse. Yet, the
right-side in the above Eq.(1) uses only observed sparse entries
emerged, where each entry corresponds to a neuron in DN.

In the following, we provide the computation of DN,
without taking space to explicitly listing the DN algorithm.
The reader is referred to Weng [16] for the DN algorithm.

Denote v̇ = v/‖v‖, i.e., normalizing the Euclidean length
of v.

The neurons in X and Z are open to the environment,
supervised by the environment, or self-supervised by the DN
itself, or both. Therefore, we can only assume that X and
Z are natural patterns, represented as vectors x and z in the
mathematical expressions.

Next, let the grand TM in the environment teach the DN by
supervising its X and Z ports while TM runs, one transition

at a time in real time. The DN has its brain area Y area hidden
(i.e., skulled).

DN Computation: The simplest DN learns incrementally
as follows. Given each observation (z,x) from the teacher
TM, all Y neurons compute their goodness of match. Each
Y neuron (i, j) corresponds to an observed transition at the
(i, j) entry of the lookup table. In order to match both z and
x, it has a two-part weights vij = (tij ,bij). When the best
match is not perfect explained below, (z,x) is the left-side
of a new transition; so DN incrementally adds one more Y
neuron by setting its tij = zi and bij = xj . So, DN adds
up to (finite) mn hidden neurons, but typically much fewer
because the lookup table is sparse.

The top-down match value is vt = ṫ · ż; and bottom-up
match vb = ḃ · ẋ. We know that ȧ · ḃ = cos θ, where θ is
the angle between the two unit vectors ȧ and ḃ. cos θ = 1 is
maximized if and only iff ȧ = ḃ, namely θ = 0. The match
between the current context input (z,x) with the weight (t,b)
of a Y neuron is the sum (or product) of the bottom-up and
top-down match values, as its pre-response value:

f(z,x | t,b) = vt + vb = ṫ · ż + ḃ · ẋ

Only the best matched Y neuron fires (with response value 1),
determined by a highly nonlinear competition:

(i′, j′) = arg max
(i,j)∈Y

f(z,x | tij ,bij)

= arg max
(i,j)∈Y

{ṫij · ż + ḃij · ẋ}.

All other loser Y neurons do not fire (response value 0),
because otherwise these neurons not only create more noise
but also lose their own long-term memory (since all firing
neurons must update using input).

The area Z incrementally updates so that the firing Y neuron
(i′, j′) is linked to all firing components (i.e., 1 not 0) in zk,
so DN accomplishes every observed transition (zi,xj)→ zk,
error-free, as proved in Weng [16].

Using the optimal Hebbian learning in [2], Weng [16]
further proved that (1) the weight vector of each Y neuron
in the optimal (maximum likelihood) estimate of observed
samples in (X,Z), (2) the weight from each Y neuron (i′, j′)
to each Z neuron k is the probability for (i′, j′) to fire,
conditioned on k fired, and (3) overall, the response vectors
y and z are both optimal (maximum likelihood).

Thus, DN uses at most mn Y neurons, observes each
symbolic transition (qi, σj) → qk in TM represented by
vector transition (zi,xj) → zk, and learns each error-free
if each input (z,x) is noise-free. If input (z,x) is noisy,
DN is optimal. Namely, DN both “over-fits” and is optimal,
regardless input is noisy or noise-free. This is a new proof for
TM emerging from DN, shorter but less formal than Weng
[16].

Attention corresponds to weights t and b partially con-
nected with Z area and X area, respectively, thanks to
naturally emerging patterns z and x.
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III. AUTO-PROGRAMMING

Consider two learning modes. Mode 1: Learn from a teacher
TM supervised. Mode 2: Learn from the real physical world
without any explicit teacher. For early learning in Mode 1 to be
useful for further learning in Mode 2, assume that the patterns
in Mode 1 are grounded in (i.e., consistent with) the physical
world of Mode 2.

Theorem 2: By learning from any teacher TM (regular or
universal) through patterns (Modes 1 and 2) with top-1 firing
in Y , the DN control enables a learner GENISAMA TM to
emerge inside it with the following properties.

1) Sufficient neurons situation: The GENISAMA TM is
error-free for all learned TM transitions (Mode 1) and re-
substitution of all observed physical experiences (Mode
2).

2) Insufficient neurons situation: This happens when the
finite n Y neurons have all been activated. The action at
time t+1 is optimal in the sense of maximum likelihood
(but not error-free) in representing the observed context
space (z,x), conditioned on the amount of computa-
tional resource n and the experience of learning for all
discrete times 0, 1, 2, ..., t.

The proof is available in [2].
Next, consider APFGP. We represent each purpose as a TM.

Suppose a grand transition table G represents the FA control of
a grand TM. This G contains a Universal TM Tu and a finite
number of tasks as TMs, Ti, i = 1, 2, .... Traditionally, Tu is
based on a (symbolic) computer language, but here Tu can be
in a (non-symbolic) natural language if it is GENISAMA.

Theorem 3: A GENISAMA TM inside DN automatically
programs for general purposes Ti, i = 1, 2, ..., after it has
learned a Universal TM Tu and the related purposes Ti, i =
1, 2, .... However, the DN algorithm (developmental program)
itself is task-independent and language-independent (e.g., En-
glish or Chinese).

The proof is available in [2].
Therefore, it has been constructively proved in mathematics

that a machine can perform APFGP, not only a biological
machine like a human but also a silicon based robot.

Fig. 3 illustrates a simple DN which does not have Y -to-
Y connections. It also compares with symbolic probabilistic
network.

Table I compares TMs, Universal TMs, grounded symbolic
machines, prior neural networks, and GENISAMA TMs.

IV. EXPERIMENTS

We conducted experiments in which a learning system
acts as a Turing Machine that learns one of three well-
recognized bottleneck problems in AI, vision, audition and
natural language acquisition.

Vision from a “lifelong” retina sequence: In the above
discussion, we used vision as an example of the sensory
modality. Fig. 5 provides an overview of the extensiveness of
the training, regular training, and blind-folded testing sessions.
The inputs to the DN were from the same mobile phone
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Fig. 3. Architectural contrast between an Emergent DN and a symbolic
probabilistic network. (a) Emergent DN. A black circle indicates a firing
neuron and a white circle marks a neuron not firing. (b) A symbolic
probabilistic network. A black circle indicates an active symbolic state and a
white circle marks an inactive symbolic state. Each symbol (α, β, a, b, etc.)
in (b) corresponds to a pattern or sub-vector (in Z or X) in (a). Because
the representations in (Z;X) as patters in (a) instead of “representationless”
symbols in (b), the neural firing values in (a) are based on context (match of
patterns and the associated firing values) instead of symbolic yes-no match
in (b). Note: both the sensory input vector and the emergent motor vector are
typically not exactly the same as their best-matched weight vectors, therefore,
an interpolation is allowed for infinitely many possible input vectors. Namely,
(a) is “aware” of mismatches in both Z and X , but (b) is only “aware” of
mismatch in X in a separate feature detection module but such a mismatch
measure is not integrated into the (b) network as (a). For simplicity, the Y
area responses at odd time indices and the responses of the X and Z areas
at even time indices are not shown.

that performs computation. They include the current image
from the monocular camera, the current desirable direction
from the Google Map API and the Google Directions API.
If the teacher imposes the state in Z, this is treated as the
supervised state. Otherwise, the DN outputs its predicted state
from Z. The DN learned to attend critical visual information in
the current image (e.g., scene type, road features, landmarks,
and obstacles) depending on the context of desired direction
and the context state. Each state from DN includes heading
direction or stop, the location of the attention, and the type of
object to be detected (which detects a landmark), and the scale
of attention (global or local), as shown on the upper panel of
Fig. 4, all represented as binary patterns. None is a symbol.

For further detail of learning vision-guided navigation and
planning for navigation see [22].

Below, we discuss two more sensory modalities, audition
and natural languages.

Audition from a “lifelong” cochlear sequence: For the
audition modality, each input image to X is the pattern that
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TABLE I
DIFFERENT TYPES OF MACHINES

Machine types TM Universal TM Grounded symbolic Prior neural networks GENISAMA TM
Unknown tasks No Yes No Pattern recognition only Yes
General purpose No Yes No No Yes

Grounded No No Yes Yes (can be) Yes
Auto-program No No No No Yes
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Where: (r, c)     r in [1, 72], c in [1, 128]    
What: Ob, Cr, Lo, Ro, *, le, re, oe   Ob: Objetacle, Cr: Crossroad, Lo: Left-offroad
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Fig. 4. Examples of how a task-nonspecific and modality-nonspecific engine
learns. Vision modality: a DN learns concepts like where, what, scale and
navigation actions, while learning an attention sequence global, local, global,
local ... but any arbitrary attention sequence can be learned in a similar way.
The DN has three areas, the sensory area X to take images, the hidden area Y ,
and the state area Z. The discrete time t increments by 1 from left to right, and
continues in the following rows. Top panel: A hierarchy of concepts in the Z
area incrementally taught by the environment. The Z area has been taught 5
concept zones, Action, GPS, Where, What, Scale. Lower panels: auto-wiring
in DN to become a detector-recognizer-navigator. Neurons (circles) at each
discrete time t only take input from the previous time t− 1, t = 1, 2, ... The
discrete time passes from left to right, and continues in the lower panels. Y
neurons are generated one at a time before reaching the limit. Z neurons are
supervised (teaching) or free (performing) at any time. Audition modality:
the X area has a firing pattern of the simulated hair cells in the cochlea.
Natural language modality: the X area has a binary pattern representing a
text (word or punctuation).

simulates the output from an array of hair cells in the cochlea.
We model the cochlea in the following way. The cells in the
base of the cochlea correspond to filters with a high pass band.
The cells in the top correspond to filters with a low pass
band. At the same height, cells have different phase shifts.
Potentially, such a cochlear model could deal with music
and other natural sound, more general than the popular Mel
Frequency Cepstral Coefficients (MFCCs) that are mainly for
human speech processing. The performance will be reported
elsewhere due to the limited space.

training data collection route
blind folded testing route
regular testing route

sunny weather

sunny weather

cloudy weather

cloudy weather

sunny weather

cloudy weather

sunny weather

sunny weather

sunny weather
cloudy weather

sunny weather

cloudy weather

Fig. 5. Training, regular testing, and blind-folded testing sessions conducted
on campus of Michigan State University (MSU), under different times of day
and different natural lighting conditions (see extensive shadows in Fig. 4).
Disjoint testing sessions were conducted along paths that the machine has not
learned.

Fig. 6. The sequences of concept 1 (dense, bottom) and concept 2 (sparse,
top) for phoneme /u:/.

Take /u:/ as an example shown in Fig. 6. The state of concept
2 keeps as silence when inputs are silence frames. It becomes a
“free” state when phoneme frames are coming in, and changes
to /u:/ state when first silence frame shows up at the end. At
the same time, the states of concept 1 count temporally dense
stages.

For more detail of auditory learning using Developmental
Networks, see [23].

Natural languages from a “lifelong” word sequence: As
far as we know, this seems to be the first work that deals
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Fig. 7. The finite automaton for the English and French versions of some
sentences. The DN learned a much larger finite automaton. Cross-language
meanings of partial- and full-sentences are represented by the same state of
meaning context qi, i = 0, 1, 2, ..., 24. See, e.g., q1, q3, q4, and q5. But the
language specific context is represented by another concept: language type.
The last letter is the return character that indicates the end of a sentence.

with language acquisition in a bilingual environment, largely
because the DN learns directly from emergent patterns, both in
word input and in action input (supervision), instead of static
symbols.

The input to X is a 12-bit binary pattern, each represents
a word, which potentially can represent 212 words using
binary patterns. The system was taught 1,862 English and
French sentences from [24], using 2, 338 unique words (case
sensitive). As an example of the sentences: English: “Christine
used to wait for me every evening at the exit.” French:
“Christine m’attendait tours les soirs à la sortie.”

The Z area was taught two concepts: language type (En-
glish, French, and language neutral, e.g., a number or name)
represented by 3 neurons (top-1 firing), and the language-
independent meanings as meaning states, as shown in Fig. 7.
The latter is represented by 18 neurons (18-bit binary pat-
tern), always top 5 neurons firing, capable of representing
C(18, 5) = 8, 568 possible combinations as states, but only
6, 638 actual meanings were recorded. Therefore, the Z area
has 3+18 = 21 neurons, potentially capable of representing a
huge number 221 binary patterns if all possible binary patterns
are allowed.

However, the DN actually observed only 8, 333 Z patterns
(both concepts combined) from the training experience, and
10, 202 distinct (Z,X) patterns—FA transitions. Consider a
traditional symbolic FA using a symbolic transition table,
which has 6, 638 × 3 = 19, 914 rows and 2, 338 columns.
This amounts to 19, 914× 2, 338 = 46, 558, 932 table entries.

But only 10, 202/46, 558, 932 ≈ 0.022% of the entries were
detected by the hidden neurons, representing that only 0.02%

of the FA transition table was observed and accommodated
by the DN. Namely, the DN has a potential to deal with n-
tuples of words with a very large n but bounded by DN size,
because most un-observed n-tuples are never represented. The
FA transition table is extremely large, but never generated.

Without adding noise to the input X , the recognition error is
zero, provided that there is a sufficient number of Y neurons.
We added Gaussian noise into the bits of X . Let α represent
the relative power of the signal in the noisy signal. When
α is 60%, the state recognition rate of DN is around 98%.
When α is 90%, the DN has reached 0% error rate, again
thanks to the power of DN internal interpolation that converts
a huge discrete (symbolic) problem into a considerably smaller
continuous (numeric) problem. See [25] for more detail.

Again, as the only difference from the above two modalities
is the patterns in the X area and the Z area, the same DN
learns the word inputs and the supervised states.

V. MOTIVATION IN DEVELOPMENTAL NETWORKS

Biological motivation in animals is rich. It has two major
aspects (a) and (b) in the current DN model. All reinforcement
learning methods other than DN, as far as we know, are
for symbolic methods (e.g., Q-learning [26], [27]) and are
in aspect (a) exclusively. DN uses concepts (e.g., important
events) instead of the rigid time-discount in Q-learning to
avoid the failure of far goals.

(a) Pain avoidance and pleasure seeking to speed up learning
important events. Signals from pain (aversive) sensors release
a special kind of neural transmitters (e.g., serotonin [28]) that
diffuse into all neurons that suppress Z firing neurons but
speed up the learning rates of the firing Y neurons. Signals
from sweet (appetitive) sensors release a special kind of neural
transmitters (e.g., dopamine [29]) that diffuse into all neurons
that excite Z firing neurons but also speed up the learning
rates of the firing Y neurons. Higher pains (e.g., loss of
loved ones and jealousy) and higher pleasure (e.g., praises and
respects) develop at later ages from lower pains and pleasures,
respectively.

(b) Synaptic maintenance —grows and trims the spines of
synapses [30], [31] — to segment object/event and motivate
curiosity. Each synapse incrementally estimates the average
error β between the pre-synaptic signal and the synaptic
conductance (weight), represented by a kind of neural trans-
mitter (e.g., acetylcholine citeYu05). Each neuron estimates
the average deviation β̄ as the average across all its synapses.
The ratio β/β̄ is the novelty represented by a kind of neural
transmitters (e.g., norepinephrine [32]) at each synapse. The
synaptogenic factor f(β, β̄) at each synaptic spine and full
synapse enables the spine to grow if the ratio is low (1.0 as
default) and to shrink if the ratio is high (1.5 as default). Each
area X , Y , and Z has a prenatal (default) hierarchy of subareas
and subsubareas (e.g. Brodmann areas and its subareas for
Y ) that continuously adapt postnatally. Each area, subarea,
subsubarea, has its own synaptogenic factor. This network of
synaptogenic factors dynamically organize the complex brain
network (e.g., see Fellemen & VanEssen [33]). See Fig. 2(b)
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for how a neuron can cut off their direct connections with
Z to become early areas in the occipital lobe or their direct
connections with the X areas to become latter areas inside
the parietal and temporal lobes. See [28], [30], [31] for more
details about motivational learning in DN.

VI. DISCUSSION

For mathematical simplicity, all the mathematical formu-
lations here do not use the case where Y neurons connect
with Y neurons, other than the connection patterns in Fig. 2.
Connections from the hidden Y area to the hidden Y area
provide functions that a traditional symbolic TM does not
have, e.g., better or faster abstraction using sub-action internal
representations other than using the final action patterns in the
motor area Z only. In DN-1 [31], such Y -to-Y connections use
subareas of Y where the number of neurons in each subarea
are hand-assigned. In DN-2, this restriction will be removed.
An earlier version of this work appeared as a technical report
with proofs in arXiv [2].

The lifetime is the sum of all these time segments. The
future work includes enabling a robot to fully automatically
learn through its lifetime that could potentially last for days,
months, years, or decades. We are not there yet.

Because of APFGP, human programmers are relieved from
hand-crafting rules of the extremely massive and complex
rules in the brain. The hope of Artificial general intelligence
(AGI) requires APFGP in order to scale up. It seems that
strong AI is possible using the presented theory.

Although theoretically proved and we have demonstrated
complex behaviors such as learning planning for navigation
[22], rich demonstrations of APFGP are expected as future
work for many laboratories from those who learn and adopt
of this new kind of AI early.

VII. CONCLUSIONS

The set of mechanisms that enables APFGP corresponds
to a GENISAMA Turing machine which emerges from a
Developmental Network. The GENISAMA Turing machine
is free of any symbols because a pattern corresponding to a
symbol, even if it is supervised by a human teacher, does not
guarantee that the corresponding emergent pattern in state and
action is still unique, which defeats the definition of symbols.
This freedom of symbols liberates machines, biological and
artificial, to learn fully automatically from its physical world,
with or without humans. The three different experimental tasks
here used the same DN, indicating the task-nonspecific and
modality-nonspecific nature of the new general methods.
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