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Abstract—Accurate automatic segmentation of the retinal
vessels is crucial for early detection and diagnosis of vision-
threatening retinal diseases. This paper presents a lightweight
convolutional neural network termed as Shallow Vessel Seg-
mentation Network (SVSN) for vessel segmentation. To achieve
semantic segmentation encoder-decoder structures embedded
with spatial pyramid pooling modules are used. After checking
the input features with pooling through multiple fields of view
and rates, it becomes easy for the erstwhile networks to encode
multi-scale contextual information. While boundaries for sharper
objects are captured by the prevalent networks. Moreover, the
need for pre- and post-processing steps are eradicated. Conse-
quently, the detection accuracy is significantly improved with
scores of 0.9625 and 0.9645 on DRIVE and STARE datasets
respectively.

I. INTRODUCTION

Images obtained from Retinal vasculature structure in the
medical field provides important information about the con-
dition of the eye, which can help ophthalmologists to diag-
nose and predict certain retinal pathologies like, age-related
muscular degeneration (AMD), retinal vascular occlusions,
hypertension, glaucoma, diabetic retinopathy (DR), chronic
systematic hypoxemia[1], [2], [3]. These diseases can be
characterized by observing changes in retinal blood vessels
such as shape, width, branching pattern, and tortuosity. Early
detection, diagnosis, and tracking of disease progression can
prevent vision loss in case of AMD and DR, and lead to cost-
effective treatment options for other conditions [4], [5], [6].
To achieve this target retinal vascular segmentation is done
which is fed to the automated systems.

This task of segmentation is manually done by ophthalmol-
ogists which requires a lot of experience and time to segment
these eye images properly where there is limited information
reliable enough to be extracted. This process configures a
complex task, not only due to abrupt variations in the attributes
(size, shape, intensity levels) and arrangement (branching,
crossing) of the vessels but also to the low quality of retinal
images [7], [8], [9], [10]. Whereas the automated systems with
modern algorithms have an ability to test large screenings
with improved accuracy, less time, and reduced human work.
Although the accuracy of these algorithms is trivial due to
several challenges faced in automatic vessel segmentation.
Automatic vessel segmentation has been widely accepted as a
challenging task but is vital for a computer-aided diagnostic
system for ophthalmic diseases [11], [12], [13].

Li et al [14] presented a supervised method that remolds
the segmentation task as a problem of transforming data
from the retinal image to the vessel map into cross-modality.
Modeling the transformation is proposed by a wide and
deep neural network with strong induction capacity, and an
effective training strategy is presented. The network can output
the label map of all pixels for a given image pat instead
of a single label of the center pixel. A comparison of the
performance of various methodologies has been presented in
[15]. Recently deep neural networks gained a lot of attention
in discriminative tasks and outperformed state-of-art methods.
Aslani et al [16] proposed a hybrid feature vector system
which is the combination of robust features of various algo-
rithms. The random forest discriminator is used to efficiently
segment the vessels and non-vessel pixels. In [17], a neural

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



network architecture has been presented where a retinal vessel
segmentation task is formulated as a multi-label inference
task which learned by the joint loss function. A supervised
segmentation technique using a deep neural network trained
using a large fundus images repository is introduced in [18].
The samples are pre-processed using zero-phase whitening,
global contrast normalization, and augmented using geometric
transformations and gamma corrections. Most of the retinal
vessel segmentation algorithms failed to segment structurally
thin and elongated vessels. To solve this problem an efficient
conditional random field model is proposed in [19]. Generative
Adversarial Network (GAN) has been used for many different
image processing tasks. Son et al [20] proposed a GAN model
to correctly segment the retinal vessels. An extended version
of the U-Net architecture is proposed by [21] to segment the
retinal vessels efficiently. This extension is the combination
of Recurrent Convolutional Neural Networks and Recurrent
Residual Convolutional Neural Networks. CNN models have
been used for efficient retinal vessels segmentation in [22] and
[23]. Hu et al [22] proposed a retinal segmentation method
which is based on convolutional neural network (CNN) and
conditional random field (CRF). The segmentation task is
accomplished in two phases. In the first phase, the CNN
model is used to produce a probability map. In the second
phase, the CRF is applied to segment the retinal vessels. In
[23], a novel method is proposed that combines the multi-
scale analysis provided by the Stationary Wavelet Transform
with a multi-scale CNN model to handle the vessel structure’s
varying width and direction in the retina. The work of Guo
et al [24] used ConvNets to segment the retinal blood vessels
by deploying global and local features extractors. This method
ensured the separation of thin vessels by maintaining spatial
consistency.

To segment vessels at multiple scales, a multiscale
lightweight architecture termed as Shallow Vessel Segmenta-
tion Network (SVSN) network is proposed. The main idea
behind the shallow network is rooted in previous studies
that advocate the idea of overthinking and promote shallower
networks [25], [26]. Shallow networks have been shown to per-
form better or at par with deeper neural networks in previous
studies [27], [28]. The key ideas behind the proposed work are
two-fold: 1) shallower network architecture to retain semantic
information, 2) separate multi-scale contextual information
extraction for both large and tiny vessels.

The proposed method used a residual shallow network
along with spatial pyramid pooling. This work is inspired
by DeepLabv3 [29] that applies several parallel atrous con-
volutions with different rates, and from the PSPNet [30] that
performs pooling operation at different grid scales. Finally to
recover the boundaries of vessels a decoder module is used.
In addition, the network proposed is independent of pre- and
post-processing steps. Compared to the above approaches, the
proposed architecture is better performing.

II. PROPOSED METHOD

Computer vision comprises a major portion of semantic
segmentation which is an art of assigning a semantic label
to each pixel. Especially Deep convolution networks mitigate
the limitations of the existing methods based on fully con-
volutional networks. This work will comprise two different
types of neural networks, obtaining semantic segmentation
through encoder-decoder structure, or spatial pyramid pooling
module, as shown in Fig. 1. In the proposed method, instead of
using 8 residuals, 4 residuals are used in the encoder of each
network. One neural network will extract sharp boundaries
of the objects while the other will work on pooling features
through several resolutions to extract significant contextual
information.

To extract multi resolution or multi-scale contextual infor-
mation, Deep Lab v3 uses Atrous Spatial Pyramid pooling,
also to multi grid-scale pooling operations PSPNet is used,
as shown in Fig. 2. Although the latest feature map has
significant semantic information even then full information
of the boundaries of the object remain insignificant due to
the convolutions with the striding operations. This problem
can be solved by introducing Atrous convolution here which
can filter out denser features. However, given the design of
state-of-art neural networks and limited GPU memory, it is
computationally prohibitive to extract output feature maps that
are 8, or even 4 times smaller than the input resolution [29].
Hence if we go for denser features the costs for computations
will increase. On contrary encoder-decoder structures proofs to
be faster, as there are no dilated images in the encoder path and
the decoder gradually extracts the boundaries for sharp objects.
Combining the encoder-decoder module and getting the best
outcomes of both the approaches it is fruitful to signify the
encoder module by feeding contextual multi-scale information.

There are two key approaches that constitute the design
of the proposed method. Firstly, the standard DeepLab v3+
method employs a 7×7 receptive field followed by atrous con-
volutions. It is hypothesized that this step may not be able to
capture the tiny vessel information that exists at smaller scales.
Therefore a separate encoder-decoder pathway with a receptive
field of 3×3 is incorporated in the proposed approach. Also,
the repetitive residual processing at the encoder stage destroys
important vessel information at smaller scales. To eradicate
this issue, residual stages at the encoder end are shredded to
retain semantic information related to tiny vessels.

The architecture of the proposed architecture shown in
Fig 1. The 3×3 receptive field path extracts contextual in-
formation at multiple scales capturing the fine details of the
tiny vessels present in the retinal image. On the other hand,
the 7×7 path extracts multiscale contextual information of
the thick vascular structure. The proposed architecture can,
therefore, be seen as an ensemble of feature extractors, where
each predictor focuses on a particular modality in the vascular
structure. The information of both the tiny and thick vessels is
combined at the end of the network. The fusion scheme that
worked best in our experiments is the addition of the feature
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Fig. 1. Block diagram of the proposed architecture.

information originating from both the paths.
The differences between the proposed architecture and

DeepLab v3+ are presented in Table I. The major difference
is in the way the semantic and contextual information is
preserved by the two architectures.

A. DATA AUGMENTATION

In a deep neural network, training is dependent on the
size of input data. For effective training, a large size data is
required. When the size of training data is low, parameters are
underdetermined, and the network is poorly trained that badly
affects the performance of a model. One way to tackle this
problem is by data augmentation, which is used to alleviates
this by using existing data more effectively. In this paper,
first, all images are resized to 640×640. Then image rotation
is used on these resized images to generate synthetic images
using original training images. Each image is rotated with a
difference of 1 degree from 0 to 360. By doing this we got 360
rotational images for each image and a total of 7200. In order
to get rid of artifacts in the rotated images first, we converted
binary images into logical images and then used bi-cubic
interpolation while rotating these images. After rotation, we
used contrast enhancement and generated 1800 more images
of different contrasts. Therefore, by augmentation from 20
images to 9000 images are synthetically generated.

B. Training of Networks

In this work, we used the Adam optimizer with an initial
learning rate of 0.005, gradient threshold of 5, epsilon of
0.000001, and squared gradient decay factor of 0.95 with
global L2 normalization. Our model was trained for 15 epochs
with a mini-batch size of 8 images with shuffling after each
epoch as our network converges faster. For calculating the loss
overall pixels available in the candidate mini-batch according
to the vessel and non-vessel class, so we used the cross-entropy

loss function. The network tries to learn the dominant class if
there is a difference between the numbers of pixels in different
classes, which leads to slower convergence of the network and
also affects accuracy.

III. EXPERIMENTAL RESULTS

A. Materials

The proposed method is tested on two publicly available
datasets as listed below:

1) DRIVE [31], Digital Retinal Images for Vessel Extrac-
tion: Retina periphery scans taken from a broad age
group diabetics in the Netherlands.

2) STARE [32] Structured Analysis of the Retina: 20
samples from a collection of 400 mid-resolution images
taken in USA

In DRIVE, the binary masks are available for each image.
The vascular structure is manually marked as vessel or non-
vessel. In contrast with DRIVE, FOV mask is not available for
the STARE database. The appropriate mask must therefore be
generated employing existing procedures [33]. To train and
then test the classifier, DRIVE provides with distinct sets
of images but STARE database has no such provisions. A
common solution to this problem has been to employ an arbi-
trary combination of images in a situation where training and
testing information isn’t independently given. This approach
appears to be practical, yet it exhibits unrealistically favorable
outcomes primarily due to information overlap [34], [35]. This
problem is best tackled by a “leave-one-out” routine that skips
one sample out of a total of ‘n’ samples used from the dataset
once during the whole ‘n-1’ iterations [36], [33]. each iteration
skips a different image from the set such that all images get
left out once and doing so results in remarkable enhancement
in execution. This investigation utilized the ” leave-one-out ”
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Fig. 2. Block diagram of deep lab v3++ architecture.

Sr No. DeepLab v3+ SVSN (proposed)

1 ResNet-18 as backbone Train from scratch
2 8 residual blocks 4 residual blocks
3 Contextual information from a 7×7 receptive field Contextual information from both a 3×3 and 7×7 receptive fields
4 Semantic information loss due to multiple residual blocks Semantic information preservation through lightweight architecture

TABLE I
DIFFERENCE BETWEEN DEEPLAB V3+ AND THE PROPOSED ARCHITECTURE.

technique to train the network with the images loaded from
the STARE dataset.

B. Evaluation Criterion

The efficacy of any method of vascular segmentation de-
pends on how well vessels and pixels of the background are
properly discriminated. The results of the segmentation are
compared with the manually annotated binary ground truth that
act as the reference map. This comparison gives true / false and
positive / negative core values. A pixel identified as a vessel
is labelled positive while recognized as a background pixel
puts it in the false category. True means that any pixels are
segmented properly as vessels or as non-vessels and vice versa.
Thus all four variables play an important role in determining
the effectiveness of every technique of vascular classification.

1) True Positive (TP): Vessels classified correctly
2) False Negative (FN): Vessels classified as background
3) True Negative (TN): Non-vessels classified correctly
4) False Positive (FP): Non-vessels classified as vessels
Using the core parameters listed above, specific ratios are

evaluated to quantify and contrast the performance of the tech-
nique under scrutiny with other state-of-the-art segmentation
strategies as follows [37]:

Se = TP
TP+FN ,

Sp = TN
TN+FP ,

Acc = TP+TN
TP+FN+TN+FP ,

C. Comparison with state-of-the-art

To evaluate the proposed method, we conduct experiments
on the datasets DRIVE and STARE and compare with the
current state-of-the-art methods. For the DRIVE dataset, the
proposed framework achieves 0.8295, 0.9755, 0.9625 and
0.9710 for Se, Sp, Acc and AUC respectively. The sensitivity
and accuracy of the proposed method on DRIVE data is higher
than the existing state-of-the-art. The specificity of [51] is

Type Methods Year Se Sp Acc AUC

Unsupervised methods

Zhang [37] 2016 0.7743 0.9725 0.9476
Aguiree[38] 2018 0.7854 0.9662 0.950
Khan [39] 2018 0.730 0.979 0.958

Khawaja (CLAHE)[40] 2019 0.8027 0.9733 0.9561
Khawaja (GLM) [40] 2019 0.7907 0.9790 0.9603

Khawaja[41] 2019 0.8043 0.9730 0.9553
Zhou[42] 2020 0.7262 0.9803 0.9475

Supervised methods

Marin et al. [43] 2011 0.7067 0.9801 0.9452 0.9588
Fraz et al. [44] 2012 0.7406 0.9807 0.9480 0.9747

Cheng et al. [35] 2014 0.7252 0.9798 0.9474 0.9648
Li et al. [45] 2016 0.7569 0.9816 0.9527 0.9738

Orlando et al. [46] FC 2017 0.7893 0.9792 N.A 0.9507
Orlando et al. [46] UP 2017 0.7076 0.9870 N.A 0.9474

Dasgupta and Singh [47] 2017 0.9691 0.9801 0.9533 0.9744
Yan et al. [48] 2018 0.7653 0.9818 0.9542 0.9752

Olaf et al. [49] U-Net 2018 0.7537 0.9820 0.9531 0.9755
Azad et al. [50] BCDU-Net 2019 0.8007 0.9786 0.9560 0.9798
Alam et al. [51] R U-Net 2019 0.7751 0.9816 0.9556 0.9782
Alam et al. [51] R2U-Net 2019 0.7792 0.9813 0.9556 0.9784

Soomro et al. [52] Strided U-Net 2019 0.8020 0.9740 0.9590 0.9480
Chen et al. [53] Deeplab v3++ 2018 0.8220 0.9750 0.9620 0.9680

Proposed (SVSN) 2020 0.8295 0.9755 0.9625 0.9710

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DRIVE

DATASET.

Type Methods Year Se Sp Acc AUC

Unsupervised methods

Zhang [37] 2016 0.7791 0.9758 0.9554
Aguiree[38] 2018 0.7116 0.9454 0.9231
Khan [39] 2018 0.790 0.965 0.951

Khawaja (CLAHE)[40] 2019 0.7980 0.9732 0.9561
Khawaja (GLM) [40] 2019 0.7860 0.9725 0.9583

Khawaja [41] 2019 0.8011 0.9694 0.9545

Supervised methods

Marin et al. [43] 2011 0.6944 0.9819 0.9526 0.9769
Fraz et al. [44] 2012 0.7548 0.9763 0.9534 0.9768
Li at al. [45] 2016 0.7726 0.9844 0.9628 0.9879

Orlando et al. [46] FC 2017 0.7680 0.9738 N.A N.A
Orlando et al. [46] UP 2017 0.7692 0.9675 N.A N.A

Yan et al. [48] 2018 0.7581 0.9846 0.9612 0.9801
Olaf et al. [49] U-Net 2018 0.8270 0.9842 0.9690 0.9898

Soomro et al. [52] Strided U-Net 2019 0.8010 0.9690 0.9610 0.9450
Chen et al. [53] Deeplab v3++ 2018 0.8320 0.9760 0.9650 0.9735

Proposed (SVSN) 2020 0.8382 0.9749 0.9645 0.9740

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE STARE

DATASET
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Fig. 3. Analysis of Segmented Output of three sample images (test image 3, 8, 14) of DRIVE dataset. Second column shows the ground truth images. Column
3 and 4 shows the output of [46] UP and [46] FC , respectively. Column 5 shows the output of Chen et al. [53] Deeplab v3++. The visual output of the
proposed method is shown in the last column.

highest among all methods. If we compare proposed method
with baseline [53] Deeplab v3++ method then we can see that
proposed method performed better. The sensitivity and AUC
of the proposed is much higher than [53] Deeplab v3++ while
specificity and accuracy are comparable. It can be observed
that the balanced accuracy of the proposed method is higher
than all existing methods on DRIVE dataset.

For the STARE dataset, the FOV masks are generated by
applying a thresholding method. According to the results in
Table III, the proposed framework achieves 0.8382, 0.9749,
0.9645 and 0.9740 for Se, Sp, Acc and AUC respectively. The
Sensitivity of the proposed method is highest than all existing
state-of-the-art methods. The accuracy of Olaf et al. [49] is
highest and [53] Deeplab v3++ is second highest and the
propose methods accuracy is at third slightly lower than [53]
Deeplab v3++. It can be observed that the balanced accuracy
of the proposed method is higher than all existing methods on
the STARE dataset.

The visual results on the DRIVE database in Fig. 3 show
that the proposed method captures tiny vessels that are missed
by the approach of Chen et al. [53] Deeplab v3++ and [46].
Also, the pathological noise and the part of the optic disc
erroneously included by the output of Orlando et al. [46] in
test images 3, 8, and 14 are successfully suppressed by the
proposed method as well as Chen et al. [53] Deeplab v3++.
In conclusion, the visual results on the DRIVE dataset in Fig. 3
clearly demonstrate that the output of the proposed captures
more tiny vessels than Chen et al. [53] Deeplab v3++, in terms
of accuracy both propose and Chen et al. [53] Deeplab v3++
performed well under the noisy condition where the approach
of Orlando et al. struggles to suppress pathological noise and

the optic disc boundary.

IV. CONCLUSION

This paper presented a new approach to retinal vessel seg-
mentation by adapting ideas from the DeepLab v3+ method.
One of the key goals was to capture information at multi-scales
to improve the sensitivity of the method to both large and
tiny vessels. This was successfully achieved by incorporating
a 3×3 reception pathway in addition to the 7×7 paths. The
second goal was to retain semantic information regarding tiny
vessels that otherwise gets lost in the repetitive convolution
process. This was successfully achieved by shredding the rel-
ativize residual processing in the standard encoder of DeepLab
v3 +. The results of the proposed method demonstrate its
efficacy over the standard DeepLab v3+ method and more than
20 state-of-the-art retinal vessel segmentation approaches.
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