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Abstract—Predicting if red blood cells (RBC) are infected
with the malaria parasite is an important problem in Pathology.
Recently, supervised machine learning approaches have been
used for this problem, and they have had reasonable success. In
particular, state-of-the-art methods such as Convolutional Neural
Networks automatically extract increasingly complex feature
hierarchies from the image pixels. While such generalized auto-
matic feature extraction methods have significantly reduced the
burden of feature engineering in many domains, for niche tasks
such as the one we consider in this paper, they result in two major
problems. First, they use a very large number of features (that
may or may not be relevant) and therefore training such models is
computationally expensive. Further, more importantly, the large
feature-space makes it very hard to interpret which features
are truly important for predictions. Thus, a criticism of such
methods is that learning algorithms pose as opaque blackboxes
to its users, in this case medical experts. The recommendation
of such algorithms can be understood easily, but the reason for
their recommendation is not clear. This is the problem of non-
interpretability of the model, and the best-performing algorithms
are usually the least interpretable. To address these issues, in this
paper, we propose an approach to extract a very small number
of aggregated features that are easy to interpret and compute,
and empirically show that we obtain high prediction accuracy
even with a significantly reduced feature-space.

Index Terms—malaria detection, red blood cell, explainable
machine learning, artificial intelligence, automatic medical diag-
nostic

I. INTRODUCTION

Malaria is a serious disease caused by a parasite and
transmitted by mosquito bites. It is most severe on pregnant
women, immune compromised patients, and children under
the age of 5. It kills more than 3000 children a day in Africa
[1]. In 2018, the number of malaria deaths reached around
405 000 [2]. While there are treatments available for Malaria,
early detection and intervention is important for successful
recovery. As such detection of the disease is an important

problem. Unfortunately, the symptoms of Malaria are not
very distinguished, even though they may be acute. A blood
test followed by a pathologist’s inspection of the sample are
important for diagnosis. Artificial Intelligence (AI) that can
aid the pathologist in this diagnosis can be a game changer in
saving pathologist time.

While AI research has seen many peaks and valleys in its
six decades journey [3], [4], the field has recently gained
immense attention, mostly due to the successful implemen-
tation of Machine Learning (ML) to solve many problems
(such as automatic speech recognition, hand writing recog-
nition, weather forecasting, etc.) typically belonging to the
AI domain. On the other hand, AI has fueled the need for
ML to develop algorithms that can learn autonomously from
data [5]. To achieve a state of usable intelligence we need
an automatic workflow that will learn from prior data, will
extract information, will generalize, and will expose the hidden
informative factors of the data [6]. Even with such a workflow,
a remaining challenge is to make sense of the data in the
context of an application domain. While data-quality assurance
and feature extraction are significant steps [7] in ML algorithm
design, the full effectiveness of success is limited by the
algorithm’s inabilities to explain its results to human experts.
This is a prime concern in applications of AI to the medical
domain. Indeed, the results of an AI algorithm need to be
“explainable”, i.e., an expert should be able to understand the
raison d’être for the results [8].

In particular, in the medical domain, interpretability of an
ML method is crucial since it involves making decisions that
have far-reaching consequences [8]. Therefore, it is critical
that ML applications in healthcare are transparent and trust-
worthy [8]. However, there is typically a tradeoff between
performance (predictive accuracy) and explainability. Often
the best-performing methods (such as deep learning) are the
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least explainable, and the ones providing a clear explanation
(like decision trees) are less accurate [9]. In general, the
performance of ML algorithms relies heavily upon feature
representation; hence most of the effort traditionally goes into
pre-processing and feature engineering. Over the last several
years though, approaches such as deep learning have aimed
towards automatically extracting features from the data devoid
of any domain expertise. While this is extremely useful, it has
certain drawbacks. Specifically, the feature-space that typical
neural networks operate in, is extremely large. For example,
famous CNN architectures such as Resnet [10], Alexnet [11],
etc. use large number of parameters and produce extremely
large feature-spaces. While this improves the performance of
ML on very challenging tasks, the large feature-space is prob-
lematic since it is extremely hard to separate the discriminating
information from the overall information. Further, learning
such models require vast amounts of data and computational
resources [12]. In this paper we consider the problem of
predicting malaria parasites from RBC images. We develop a
very small number of aggregated features and show that even
with a small feature-space we obtain high prediction accuracy.

Our objective in this paper is to study the efficacy of
aggregated features from multispectral RGB features to distin-
guish malaria parasite infected RBC from non-infected RBC.
Thus, two classes are considered: “Infected” and “Uninfected”.
We compute aggregated interpretable features, that help to
reduce the problem dimensionality significantly. As our fea-
tures are interpretable, this beats any deep learning model
in explainability, interpretablility and trust. Then using these
aggregated features, we trained a prediction model. To achieve
this goal, the Random Forests classifier is used. This algorithm
is well suited for classification and can be trained with large
datasets as the number of features is small. In addition, it
measures feature importance so that the relative importance
of a feature can be examined for the different classes we
consider. In this work, we have studied feature importance by
generating histograms for both classes. As the feature space
is substantially lower-dimensional than the input image space,
the feature importance is not interpretable enough for medical
experts. Therefore, we present an explainer for the model in
the input space.

Challenges. An essential criterion for explanations is
interpretability [13]. One reason why feature importance is
not an effective explanation is because it makes an unrealistic
expectation of the medical expert: to perceive directly how a
feature is related to the image. To be effective, an explainer
has to provide a qualitative understanding between the input
image and the prediction of the model. Thus, a linear [14], a
gradient vector [15] or an additive model [16] may or may not
be interpretable. For example, if a single specific aggregated
feature is important to a prediction, it is not reasonable to
expect any medical expert to understand why the prediction
was delivered. Therefore, explanations should be simple to
understand, which may not be true for most of the aggregated
features used by the model. In addition, we note that the idea
of interpretability also depends on the target audience. So,

if one medical expert is skilled at a specific image domain
(such as RBC images), it may not be effective to provide 2D
frequency spectrum image or explanation in texts/audio.

Another challenge is that the explainer has to be effective
for specific inputs locally, and not just globally, in a sensitive
field like a medical diagnostics. Local model interpretation
is a set of procedures attempting to understand individual
predictions of machine learning models. It has less value
for medical experts to make a decision based on a model’s
prediction if explainer provides global interpretation. Global
model interpretation is a set of values (mostly statistical
measures of input variables or feature values) attempting to
understand how predictions are made by a machine learning
model.

In this paper, we propose a new framework called CIDMP
that is sufficiently robust and explainable for use in malaria-
infected RBC diagnosis. We computed explainable features
from RBC images that are mathematically and informatically
sound in malaria parasite detection. We adopt an explainable
modeling approach so as to obtain better interpretability and
generalizability.

II. RELATED WORK

This section summarizes the attempts made by researchers
to diagnose malarial parasites using digital image processing
(DIP) algorithms. Some of these methods are complex and
need manual supervision. Other methods using neural net-
works are black boxes. A k-nearest neighbor (KNN) classifier
was proposed for diagnosis and screening of malaria [17].
It also considers color-based and shape-based features for
detecting parasites and non-parasites.

SVM classifiers have been used to classify parasite-infected
areas using color, size, and textural features [18]. The paper
[19] used Otsu thresholding and watershed transforms for
segmentation of blood cells and then applied SVM to detect
parasites using color and statistical features.

RGB, HSI and C-Y color spaces were studied in [20] to
detect malaria parasites. The paper discusses the mathematical
model for classification of RBC as infected parasite and non-
parasite. The method for counting RBC is also discussed.
Comparative analysis of different classifiers for malaria de-
tection is presented in [21]. In [22] a technique is proposed
to automate segmentation for malaria parasite and infected
erythrocytes detection. The automatic counting of the num-
ber of malaria parasites using conventional image processing
algorithms such as histogram equalization, thresholding, mor-
phological operations, and connected components analysis is
demonstrated in [23].

Another line of research is to apply machine learning meth-
ods to medical image analysis. The aim is to get meaningful
feature representations that are significant to achieve desired
results. The majority of computer-aided diagnosis (CADx)
software uses machine learning techniques with deterministic
features for decision-making [24]–[26]. However, the process
requires expertise in examining the variability in size, ratio,
background, angle, region of interest (ROI), and signal to noise
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Fig. 1. Uninfected RBC (left) and an infected RBC (right)

ratio (SNR) of the images. To overcome the challenges of de-
vising deterministic features that capture variations in the un-
derlying data, Deep Learning is used with notable success [27].
Deep learning models use a cascade of layers to self-discover
the relation between input raw data and prediction. Higher-
level features are extracted from lower-level features to aid in
learning complex decision-making functions, resulting in end-
to-end feature extraction and classification [28]. Unlike kernel-
based algorithms like Support Vector Machines (SVMs), deep
learning models usually exhibit enhanced performance with an
increase in data size and computational resources [29].

In [30] a CNN (Convolutional Neural Network) based
model is proposed. The model has three convolutional layers
and two fully connected layers to classify malaria parasite
from RBC image. Our work uses domain knowledge to
analyze and compute features. We harness the shape infor-
mation of the malaria parasite and demonstrate satisfactory
interpretability both in feature space and model prediction,
with high accuracy.

III. PROPOSED METHOD

The problem we want to solve is to detect the presence
of malaria parasite in Red Blood Cell image. Figure 1 shows
an uninfected RBC (left) and an infected RBC (right). Our
method is based on the following observation: The malaria
infected RBC has a ring shaped entity whereas the uninfected
RBC doesn’t contain such a ring shaped entity. Thus, our
proposed method is to detect the ring shaped entity as shown
in Figure 2. At first we extract aggregated features from
RBC images. Then we train a random forest classifier with
extracted features. After proper training, we use this trained
classifier to classify malaria infected RBC and provide an
interpretation of the decision. For sanity and trust reasons, we
need interpretable features rather than features accumulated in
several hidden layers inside a deep learning model.

Now we propose the features to capture the ring shaped
structure in RBC.

A. Feature Extraction

1) Aggregated Laplacian coefficient: Laplacian of an image
provides significant information in image classification field
[31]–[33]. The Laplacian is a 2-D isotropic proportion of the
second spatial derivative of an image [34]. The Laplacian of an
image features the fast changes in pixel intensity values and is
mostly utilized for edge detection problems. The Laplacian is
generally used on gray-level images or single-channel images.
Laplacians of the images were calculated separately for each
channel (red, blue and green). Aggregated laplacian coefficient
were calculated by summation of each laplacian. Let I(x, y)
denotes a pixel in RBG image at (x, y) position. Ir(x, y),
Ig(x, y) and Ib(x, y) are red, green and blue channels’ pixel
intensity of I at (x, y) position. We denote the Laplacian at
position (x, y) from R channel by Lr(x, y), and similarly for
blue and green.

Lr(x, y) =
∂2Ir
∂x2

+
∂2Ir
∂y2

, (1)

where the partial derivatives are computed using finite
difference methods. We denote Ialc(r) as aggregated Laplacian
coefficient for R channel.

Ialc(R) =
∑
x

∑
y

Lr(x, y) (2)

Similarly, We compute Ialc(G) and Ialc(B) from Lg(x, y)
and Lb(x, y) respectively.

Histogram showed (see Figure 3, Figure 4, and Figure 5)
significant difference present in the distribution of aggregated
laplacian coefficient between infected and uninfected RBC im-
ages. Therefore, the aggregated laplacian coefficient promises
to be an important feature for distinguishing infected and
uninfected images.

2) Inner Ring length: As malaria parasite is endothelial to
RBC surface, the ring shape of the parasite is visible in RBC
images. This length conceivably meddles with the deformation
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Fig. 2. Summary of workflow of proposed method

Fig. 3. Histogram of aggregated Laplacian coefficient on Red channel of infected (left) and uninfected(right) RBC

Fig. 4. Histogram of aggregated Laplacian coefficient on Blue channel of infected (left) and uninfected(right) RBC

of the membrane of RBC [35]. So, this inner ring detection is
a challenging and important step for building an interpretable
classifier.

To compute the length of the inner ring we first filter the
image with an edge detection algorithm, and then remove
the outer boundary of RBC image. We have used the Canny
edge detection algorithm [36] to detect the edges of an image.
The Canny edge detection algorithm has several advantages
over others (i.e. Robert, Sobel, Prewitt ) [37], [38]. Firstly,
Canny operation is not very susceptible to noise. So, it is
less probable that we will extract an inner ring induced from
noise. Secondly, since we are trying to calculate the length

of the inner ring, our ring extractor algorithm should be able
to produce smooth and thin edges. Canny algorithm does it
better than Sobel [37]. Figure 6 shows the output of Canny
algorithm (left) and the inner ring extraction after boundary
removal (right).

After getting the edges from the image, we remove the outer
boundary. This will give us an image with only the inner ring
in it. Then we count the number of pixels containing edges to
get an estimation of the length.
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Fig. 5. Histogram of aggregated Laplacian coefficient on Green channel of infected (left) and uninfected(right) RBC

Fig. 6. Output of Canny algorithm (left) and result after boundary removal (right)

B. Model

The random forest, also known as the decision forest model,
is an ensemble learning strategy for both classification and
regression problems. It works by building a large number of
decision trees at preparation time, and yielding the class that
is the method of the classes (grouping) or mean expectation
(relapse) of the individual trees [39], [40]. The model mitigates
the issue of overfitting in the decision tree model. We selected
Random Forest as our classifier for several reasons. Firstly,
each decision tree has a large variance with low bias. However,
in the random forest, all the trees vote independently, so
the variance gets averaged. So random forest provides a
low bias and moderate variance model. Secondly, Random
forest examines outliers by essentially binning them. Thirdly,
Random forest works well with non-linear features. Finally,
Random forest works well for image classification problems
[41]–[43].

C. Explainer

By “explaining a prediction”, we mean visual artifacts that
present qualitative understanding of the relationship between
the pixels of RBC images and the model’s prediction. In [13]
the process of explaining individual predictions is presented.
It is clear that a hematologist, or even medical doctors, are
much better positioned to make a decision with the help of

a model if they have access to the explanations. For RBC
images, we present the annotation of pixels of a single image
that convinced the model to classify that image as infected or
uninfected.

In this work, we use LIME [13], as an explanation technique
that explains the predictions of any classifier in an interpretable
way. The main idea is to train an interpretable model locally
around the decision boundary of the prediction. Using LIME,
we explain our model by exhibiting representative individual
prediction. The main purpose of using LIME is to understand
the behavior of the Random forest model by perturbing the
input image and perceive how the predictions change.

This happens to be a benefit in terms of interpretability,
because we can perturb the input by changing components that
make sense to medical experts, even though the model may be
using more convoluted components as features (such as aggre-
gated laplacian coefficients). LIME generates an explanation
by approximating the underlying Random forest model by an
interpretable one (such as a linear model with only a few non-
zero coefficients), learned on perturbations of the input image
instance (hiding parts of the image). The key intuition behind
LIME is that it is much easier to approximate a complex
model by a simple model locally (in the neighborhood of
the prediction), as opposed to trying to approximate a model
globally. This is done by weighting the perturbed images
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Learning Algorithm TN FP FN TP
Logistic Regression 2361 394 671 2085

Decision Tree 2174 581 675 2081
Random Forest 2258 497 397 2359

TABLE I
COMPARATIVE PERFORMANCE: TN, FP, FN, TP

Learning Algorithm Precision Recall F1 Score
Logistic Regression 0.84 0.75 0.79

Decision Tree 0.78 0.75 0.76
Random Forest 0.82 0.86 0.84

TABLE II
COMPARATIVE PERFORMANCE: PRECISION, RECALL, F1-SCORE

by their similarity to the input image instance that needs
an explanation. If the perturbed image instance has decent
similarity with the input image instance, then LIME infer
the pixels of the perturbed image significant for prediction
(infected or uninfected) concerning the Random forest model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Level-set based method was used to detect and segment the
RBCs. Multi-scale Laplacian of Gaussian filter was applied to
detect centroids of individual RBCs. The generated markers
were used for cell segmentation inside a level set active
contour framework to restrict the dynamic shape to the cell
boundary. Several morphological operation were performed in
post-processing to remove the falsely detected molecules such
as staining artifacts, using average cell size. White blood cells
(WBCs) were removed using a one-to-one correspondence
based on cell ground-truth annotations. This seems to be
reflective of the images that are presented to medical experts
under usual circumstances [44].

The segmented cells from the thin blood smear slide images
for the infected and uninfected classes are downloaded from
[44]. The dataset contains a total of 27,558 cell images with
equal instances of infected and uninfected cells.

We chose 80/20 training-test split. We implemented a grid-
search mechanism with 5-fold cross validation to get the best
random forest predictor. In our run, the best random forest
predictor had 25 estimators. Figure 7, Figure 8, and Figure 9
show the characteristics of our classifier. Table IV shows that
random forests gives better performance in terms of True
Positives, True Negatives and False Negative. It is noteworthy
that random forest gives around twice better accuracy in
terms of False Negative which is extremely important in
medical diagnostics. If we implement a system with low
performance with False Negative, there is higher probability
that the diseases will go undetected. Table IV shows Random
Forest performs better than other training models in terms of
precision, recall and F1-score.

To evaluate the model’s interpretability, we presented a
random RBC image from the test set to the LIME explainer.
We implemented our workflow in a way so that the feature
computation is integrated with the prediction model. Observe

Fig. 7. Precision−Recall vs. Threshold curve, Precision is indicated by dotted
blue and recall is indicated by solid green

Fig. 8. Precision vs. Recall Curve

Fig. 9. ROC Curve: True Positive rate vs False Positive rate

that while our feature space is smaller than the input space (4
features from a 142∗148 color image), our model still captures
the necessary pixels from the RBC image.

In Figure 10, the green area shows the pixels that influence
proposed method’s prediction to be ‘uninfected’ and the red
area shows the pixels that influence the prediction to be
‘infected’. The yellow boundary shows the most important
pixels in the decision making procedure. Observe that the
area outside of the RBC image also influences the prediction.
However, the influence is insignificant. Figure 11 shows the
pixels of the image that are most significant (with weight
0.08 or larger) for proposed method’s prediction. The range of
weight of a pixel varies from 0 to 1, where weight 1 means
that changing the intensity of that single pixel can reverse the
prediction. From Figure 11, we see the most significant pixels
come from the ring entity of the infected RBC image. This
justifies the validity of our classifier in diagnostic decision.
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Fig. 10. Demarcation of pixels that influence proposed method’s prediction

Fig. 11. Demarcation of pixels that significantly influence proposed method’s prediction

Notice that our feature computation workflow is completely
automated compared to [45] and the feature computation step
is not complete black-box [30].

V. REMARKS AND FUTURE WORK

While several approaches have tried to use ML in pre-
dicting from RBC images, most of these methods rely on
the ML model feature extractors to generate a large number
of (possibly not very relevant) features. Using an increased
feature-space biases the ML model and results in the so called
“curse-of-dimensionality” problem. Our main contribution is
to develop a small subset of aggregate features that result in
a more compact and interpretable model while maintaining
a high level of accuracy. Our work has some limitations
that present several opportunities for future work. First, the
model itself can be improved in various ways. For example,
we use a simple random forest model for detection. More
sophisticated models can substantially improve the detection
accuracy of infected images. Personalized models that use
other physiological data of each patient to calibrate the model
may provide even better performance. Second, detection of
other related infected images in medical analysis using our
modeling approach seems important future work. Third, our
model was built on preprocessed data. Hence, it may not work
for detecting infected RBC with severe noise in it. Finally,

application of our method to other datasets can further improve
its interpretability and accuracy.

VI. CONCLUSION

We presented CIDMP, a system that uses reduced feature
space to predict malaria-infected RBC. We performed sta-
tistical analysis on feature space to check the validity of
the features in predictions. We extracted fully explainable
mathematically sound features to train the machine learning
model. We employed an interpretable Random Forest Model
that predicts the infected RBC with good results. Through
experimentation on real-life RBC image datasets, we demon-
strated that our algorithm and explainer can be used in real-life
scenarios. This work opens the doors for follow up research
and real-life deployment of machine learning algorithms in
sensitive fields such as medical image analysis.
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