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Abstract—Morphological perceptrons (MPs) belong to the
class of morphological neural networks (MNNs) whose neuronal
aggregation functions are drawn from mathematical morphology
(MM). Most MNN models including MPs employ operators of
gray-scale mathematical morphology as aggregation functions.
Recently, a hybrid morphological/linear perceptron (HMLP)
appeared in the literature. This neural network model com-
bines the approximation capabilities of the two-layer perceptron
having sigmoid activation functions with the capability of the
MP to represent non-differentiable functions. For a number of
reasons, that include the non-differentiability of morphological
operators, it is advantageous to train HMLPs using extreme
learning machine (ELM). The fact that gray-scale MM is closely
related to fuzzy MM based on Lukasiewicz operators motivated
us to introduce hybrid fuzzy morphological/linear perceptrons
(FMLPs) and train them using ELM in this paper. We compare
the performances of the HMLP and the FMLP with the ones
of some related models in a number of well-known classification
problems.

Index Terms—Mathematical morphology and complete lattices,
erosion and anti-dilation, morphological neural networks, fuzzy
sets, hybrid (fuzzy) morphological/linear perceptron, extreme
learning machine, classification.

I. INTRODUCTION

Morphological neural networks can be viewed as lat-
tice computing approaches towards computational intelligence
since mathematical morphology has its theoretical foundations
in lattice theory [1], [2]. The operators of gray-scale MM used
in MNN models such as MPs and (gray-scale) morphological
associative memories can be expressed in terms of so called
additive maximum and additive minimum operations that are
defined in a lattice algebra known as minimax algebra, max-
plus algebra or tropical linear algebra [3]. Davidson has shown
that gray-scale MM following Sternberg’s umbra approach [4]
can be embedded into minimax algebra [5] and therefore the
technical term “morphological neural network” was coined
in the 1990s as a name for artificial neural networks that
aggregate neuronal inputs using operators of minimax algebra
[6]. More generally, an MNN performs an operation of MM
at every node before applying an activation function [7].
Although there is no formal definition of a morphological
operator [8], MM on complete lattices is equipped with exact
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definitions of four types of elementary operators, namely
erosion, dilation, anti-erosion, and anti-dilation [9].

One of the main factors that led to the development of
MNNs are the commonalities of linear and minimax algebra
[10] that suggested replacing the linear aggregation func-
tions used in traditional neural network models by certain
non-linear operators defined in minimax algebra. Whereas
conventional multilayer perceptrons are usually trained using
variants of gradient descent [11], a number of constructive
training algorithms were proposed for MPs [12] as well as
the closely related dendrite or dendritic MNNs [13], [14].
To the best of our knowledge, the first of these constructive
training algorithms appeared in [15] and was used for binary
classification. Interestingly, the function described by the MP
after training via this simple algorithm is given by a supremum
of pairwise infima of erosions and anti-dilations from the
complete product lattice of extended real numbers to the
complete lattice {0, 1}. This result is reminiscent of the fact
that every mapping between complete lattices can be expressed
as a supremum of pairwise infima of erosions and anti-
dilations [9]. Although the training algorithm of morphological
perceptrons with competitive learning (MP/CL) [12] is much
more sophisticated than the original MP training algorithm
and automatically constructs a modular architecture, it also
produces a representation of the aforementioned form. Each
module comprises morphological units or components with
each one computing a pairwise infimum of an erosion and an
anti-dilation. As shown in [16], a morphological component
of this form corresponds to a dendrite having an excitatory
response in a so called dendritic morphological neural network
(DMNN) [13], [17]. Ritter et al. have argued that most of the
synapses of a neuron occur in its dendritic tree and it is there
where the information is processed [13]. In addition, neurons
with dendrites can not only implement a rich repertoire of
logical functions but also other lattice-based operations such
as the maximum [18], [19], [20]. Recall that this capability of
biological neurons served as one of the initial motivations for
introducing morphological neural networks [6].

Two of the main advantages of constructive algorithms
for MPs [12], [15] and dendrite MNNs [13], [14] are the
automatic construction of the network’s architecture and the
capability of dealing with highly non-differentiable morpho-
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logical aggregation functions. In Pessoa and Maragos’s hybrid
morphological/rank/linear neural networks (MRL NNs) [21],
problems with the non-differentiability of morphological and
rank operations are overcome by smoothing these operations
before performing error backpropagation. This idea was also
used by Araújo et al. in several of their hybrid models such
as the dilation/erosion/linear perceptron (DELP) [22]. Alterna-
tively, morphological and hybrid morphological/linear models
were trained using variants of evolutionary computation [23].
Recently, a group of Mexican researcher have trained models
of dendritic MNNs and hybrid morphological/linear models
without commenting on issues of non-differentiability [17],
[24]. It seems reasonable to assume that locations where the
partial derivatives do not exist are dealt with by setting the
search directions equal to 0.

This year, we introduced another hybrid model called the
hybrid morphological/linear perceptron (HMLP), and pro-
posed an ELM approach for training [16]. For convenience,
the resulting model was denoted using the acronym HMLP-
EL. Undoubtedly, training a network using ELM [25] is
computationally inexpensive compared to evolutionary opti-
mization [26] and classical neural network training algorithms
and generally leads to a good generalization performance
without requiring some form of regularization in order to
avoid “overfitting” [27], [28], [29]. In simulations concerning
classification, the HMLP-EL exhibited significantly higher
classification accuracies than other classifiers including other
morphological and hybrid morphological/linear models [16].

The HMLP is a single hidden layer neural network having
two layers of weights. The hidden layer comprises conven-
tional semi-linear neurons with sigmoid activation functions
as well as morphological components. Recall that, in this
model, each morphological component computes an infimum
of an erosion and an anti-dilation with values in the complete
lattice R±∞, that is commonly used in gray-scale MM [2].
This paper introduces hybrid morphological/linear perceptrons
whose morphological components compute pairwise infima of
erosions and anti-dilations that have values in the complete
lattice [0, 1], the usual value set of fuzzy MM [30]. Therefore
we speak of fuzzy morphological components. We refer to
the latter model as fuzzy morphological/linear perceptrons
(FMLPs). The FMLP models can also be trained using ELM.
To be more precise, the novelty and the contributions of this
paper compared to our previous paper on the HMLP model
are as follows:

• We used some identities from general lattice theory
in order to derive erosions and anti-dilations that are
membership functions of fuzzy sets;

• Each (fuzzy) morphological component of the FMLP
model presented in this paper corresponds to the Carte-
sian product of triangular fuzzy numbers on the universe
R±∞;

• In contrast to the morphological components of the
HMLP model, the ones of the FMLP model only have a
local influence on the computations of the network.

The paper is organized as follows. The next section reviews
some relevant concepts of lattice theory and MM. Section 3
recalls the HMLP model and how this model can be trained
using ELM. Section 4 proposes a modification of the HMLP-
EL approach, namely an FMLP-EL, i.e., an FMLP trained
using ELM. Section 5 compares the classifcation accuracies
produced by the HMLP-EL, the FMLP-EL, some related
models, and some well-known models from the literature in a
number of benchmark classification problems.

II. A FEW RELEVANT CONCEPTS OF LATTICE THEORY,
MATHEMATICAL MORPHOLOGY AND FUZZY SET THEORY

Lattice theory (LT) is a branch of pure and applied math-
ematics that dates back to the 19th century [31]. In recent
years, LT has exerted an ever growing influence on a wide
variety of areas of computer science and engineering [32] This
influence has provided rigorous mathematical foundations for
these areas and has often led to new insights, developments,
and applications.

In the late 1990s some researchers have started to in-
corporate concepts of mathematical morphology (MM) into
artificial neural networks. The resulting models were called
MNNs [6]. The reasons why several models of MNNs such
as morphological perceptrons [12], morphological associa-
tive memories [33], morphological/rank/linear neural networks
[21], and dilation/erosion perceptrons [22] employ operations
of the mathematical theory of minimax algebra are twofold:
First of all, classical grayscale MM (umbra approach) can
be embedded into minimax algebra [5]. Secondly, minimax
algebra grants an easy access to defining real-valued weights
in MNNs [34].

Minimax algebra investigates algebras of matrices and vec-
tors with entries in a so called bounded lattice ordered group
[3]. For the purposes of this paper, it suffices to consider the
extended reals, i.e., R±∞ = R ∪ {+∞,−∞}. Nevertheless,
we need to review a few concepts of LT. First of all, recall
that a poset is a set L 6= ∅ in which a reflexive, antisymmetric,
and transitive binary relation ”≤” is defined. Hence, a poset is
formally given by a pair (L,≤). If ≤ arises clearly from the
context, then we simply refer to the poset L. For a, b ∈ L, the
closed interval [a, b] is defined as the set {x ∈ L | a ≤ x ≤ b}.
An element l ∈ L is said to be a lower bound of X ⊆ L if
l ≤ x for all x ∈ X . Similarly, u ∈ L is said to be an upper
bound of X ⊆ L if x ≤ u for all x ∈ X . The infimum of
X ⊆ L, denoted

∧
X , is defined as the greatest lower bound

of X . Similarly, the supremum of X ⊆ L, denoted
∨
X , is

defined as the least upper bound of X . If X = {x, y}, then one
writes x∧ y and x∨ y instead of

∧
X and

∨
X , respectively.

If X = {xj : j ∈ J}, then the symbols
∧

j∈J xj and
∨

j∈J xj
stand respectively for

∧
X and

∨
X .

If L is an arbitrary poset, then not every subset X of L has
a lower bound or an upper bound, let alone an infimum or a
supremum. A poset L is called a lattice if for any x, y ∈ L
we have that x ∧ y and x ∨ y exist in L. In particular, a
chain or totally ordered set is a lattice L in which {x∧ y, x∨
y} = {x, y} for all x, y ∈ L. Equivalently, a chain can be
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defined as a lattice L in which all x, y ∈ L satisfy x ≤ y or
y ≤ x. A lattice L is bounded if

∧
L and

∨
L exist in L. If

every subset of L has an infimum and a supremum in L, then
the lattice L is called complete. In gray-scale and fuzzy MM,
images have pixel values in the complete chains R±∞ and
[0, 1], respectively. A complete lattice L satisfies the infinite
distributive laws if for all x ∈ L and all {yi | i ∈ I} ⊆ L:

x ∧
∨
i∈I

yi =
∨
i∈I

(x ∧ yi), (1)

x ∨
∧
i∈I

yi =
∧
i∈I

(x ∨ yi). (2)

Every complete chain such as R±∞ or [0, 1] satisfies the
infinite distributive laws since it represents a completely dis-
tributive lattice [35]. As an immediate consequence, we have
that the direct product of complete chains is also a complete
distributive lattice. Recall that, for any poset L, a partial order
on Ln, the direct product of n copies of L, is defined by

(x1, . . . , xn) ≤ (y1, . . . , yn)⇔ xi ≤ yi, i = 1, . . . , n. (3)

The poset Ln can be identified with LX = {f : X → L},
where X = {1, . . . , n}. In general, if L is a poset and X 6= ∅,
then one defines a partial order on LX as follows:

f ≤ g ⇔ f(x) ≤ g(x), ∀x ∈ X. (4)

Equation 4 implies that (f ∨ g)(x) = f(x)∨ g(x) and (f ∧
g)(x) = f(x) ∧ g(x) for all x ∈ X . We use the same symbol
to denote the scalar a ∈ L and the corresponding constant
function. Thus, (f ∨ a)(x) = f(x) ∨ a and (f ∧ a)(x) =
f(x) ∧ a.

If L is a complete lattice then Ln is a complete lattice as
well and in this case we have for any {(xj1, . . . , xjn) | j ∈ J} ⊆
Ln (here the superscript j merely denotes an index and not
an exponent):∨

j∈J
(xj1, . . . , x

j
n) = (

∨
j∈J

xj1, . . . ,
∨
j∈J

xjn), (5)∧
j∈J

(xj1, . . . , x
j
n) = (

∧
j∈J

xj1, . . . ,
∧
j∈J

xjn). (6)

As mentioned before, MM on complete lattices has four
types of elementary algebraic operators, namely erosion, dila-
tion, anti-erosion, and anti-dilation. Let L and M be complete
lattices. An (algebraic) erosion is an operator ε : L→M that
satisfies the left side and an (algebraic) dilation is an operator
δ : L → M that satisfies the right side of Equation 7 below
(recall that ε(X ) stands for {ε(x) |x ∈ X}) for all X ⊆ L.

ε(
∧
X ) =

∧
ε(X ), δ(

∨
X ) =

∨
δ(X ). (7)

Similarly, δ̄, ε̄ : L → M are respectively called an anti-
dilation and an anti-erosion if

δ̄
(∨
X
)

=
∧
δ̄(X ) and ε̄

(∧
X
)

=
∨
ε̄(X ) ∀X ⊆ L .

(8)
Banon and Barrera’s representation theorem for mappings

between complete lattices L and M [9] implies that for every

ψ : L −→ M there exists an index set I and erosions εi and
anti-dilations δ̄i where i ∈ I such that

ψ =
∨
i∈I

(εi ∧ δ̄i) . (9)

In this paper, certain types of erosions and anti-dilations
Rn
±∞ → R±∞, where Rn

±∞ denotes (R±∞)n, will play an
important role. Specifically, we have that for every w ∈ Rn

±∞,
the following operators εw, δ̄w : Rn

±∞ → R±∞ represent
respectively an erosion and an anti-dilation [12]:

εw(x) =
n∧

i=1

(xi + wi), δ̄w(x) =
n∧

i=1

(x∗i + wi). (10)

Here, +∞+w = +∞ and −∞+w = −∞ for all w ∈ R and
+∞+ (−∞) = −∞+ (−∞) = +∞ (note that the extension
of the addition to R±∞ × R±∞ with these properties was
denoted using the symbol “+′” in previous publications [3],
[12]). Moreover, the symbol x∗ denotes the conjugate of xi
given by [3]:

x∗ =

 −x if x ∈ R,
−∞ if x = +∞,
+∞ if x = −∞.

(11)

.
For every w ∈ Rn

±∞ and every j ∈ {1, . . . , n}, let us
employ the notations εwj and δ̄wj to denote the following
special cases of the operators εw, δ̄w : Rn

±∞ → R±∞:

εwj
(x) = xj + wj = xj + wj +

∧
i6=j

(xi +∞), (12)

δ̄wj (x) = x∗j + wj = x∗j + wj +
∧
i6=j

(x∗i +∞). (13)

Let us use the following observations in order to deduce
erosions and anti-dilations Rn

±∞ → Rn
±∞ from εw and δw.

Theorem 1: Let c be a positive real number and a, b ∈ R±∞.
If ε and δ̄ are respectively an erosion and an anti-dilation
Rn
±∞ → R±∞, then we have
1) cε, ε ∨ a, and ε ∧ b are also erosions Rn

±∞ → R±∞;
2) cδ̄, δ̄∨a, and δ̄∧b are also anti-dilations Rn

±∞ → R±∞.
Similar statements hold true for dilations and anti-erosions;

Proof 1: The facts that cε and cδ̄ are respectively erosions
and anti-dilations for all c > 0 follow immediately from
the identities c · (

∧
i∈I yi) =

∧
i∈I(cyi) and c · (

∨
i∈I yi) =∨

i∈I(cyi). Moreover, for any X ⊆ Rn
±∞, we have

(ε ∧ b)(
∧
X ) = ε(

∧
X ) ∧ b =

∧
ε(X ) ∧ b =

∧
(ε ∧ b)(X ),

(14)
(δ̄ ∧ b)(

∨
X ) = δ̄(

∨
X )∧ b =

∧
δ̄(X )∧ b =

∧
(δ̄ ∧ b)(X ).

(15)
Let us employ the meet infinite distributive law given in
Equation 2 to finish the proof of the theorem. For clarity, let
us write any X ⊆ Rn

±∞ in the form X = {xj | j ∈ J}. We
obtain

(ε ∨ a)(
∧
X ) = ε(

∧
X ) ∨ a =

∧
ε(X ) ∨ a (16)

=

∧
j∈J

ε(xj)

 ∨ a =
∧
j∈J

[ε(xj) ∨ a] =
∧

(ε ∨ a)(X ) (17)
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and

(δ̄ ∨ a)(
∨
X ) = δ̄(

∨
X ) ∨ a =

∧
δ̄(X ) ∨ a (18)

=

∧
j∈J

δ̄(xj)

 ∨ a =
∧
j∈J

[δ̄(xj) ∨ a] =
∧

(δ̄ ∨ a)(X ) (19)

Corollary 1: If ε, δ̄ : Rn
±∞ → R±∞ are respectively an

erosion and an anti-dilation and a, b ∈ R±∞ such that a ≤
b, then the functions (ε ∨ a) ∧ b and (δ̄ ∨ a) ∧ b represent
also respectively an erosion and an anti-dilation from Rn

±∞ to
R±∞.

The proof is straightforward.
Corollary 2: Given erosions εi and anti-dilations δ̄i :

Rn
±∞ → R±∞ for i = 1, . . . ,m, we have that for every

c ∈ Rn
+ that the operators

∧m
i=1 ciεi and

∧m
i=1 ciδ̄i are re-

spectively also an erosion and an anti-dilation Rn
±∞ → R±∞.

Proof 2: Consider c ∈ Rm
+ , erosions and anti-dilations

εi, δ̄i : Rn
±∞ → R±∞, where i = 1, . . . ,m. Corollary 1

implies that ciεi is an erosion for every i = 1, . . . ,m and
therefore we obtain the following for any X ⊆ Rn

±∞:
m∧
i=1

ciεi(
∧
X ) =

m∧
i=1

∧
ciεi(X ) =

∧ m∧
i=1

ciεi(X ). (20)

Thus,
∧m

i=1 ciεi is an erosion. The fact that
∧m

i=1 ciδ̄i can be
proven in a similar way.

Corollary 2 can be applied in particular to the erosions
εwj

and the anti-dilations δ̄wj
of Equations 12 and 13, where

w ∈ Rn
±∞ and j = 1, . . . , n. Together with Corollary 1, this

observation implies that, for every c ∈ Rn
+, a ≤ b ∈ R±∞,

the following operators also represent respectively an erosion
and an anti-dilation from from Rn

±∞ to R±∞:

εc,a,bw = [(

n∧
i=1

ciεwi)∨a]∧b, δ̄c,a,bw = [(

n∧
i=1

ciδ̄wi)∨a]∧b. (21)

The meet infinite distributive law given in Equation 2, which
is satisfied in a product of complete chains such as Rn

±∞,
implies that εc,a,bw and δ̄c,a,bw can also be written as follows:

εc,a,bw =
n∧

i=1

[(ciεwi
∨a)∧b], δ̄c,a,bw =

n∧
i=1

[(ciδ̄wi
)∨a)∧b]. (22)

Let us focus on the special case where a = 0 and b = 1. In
this case, εc,a,bw , δ̄c,a,bw , and the operators over which the infima
are taken have values in the complete chain [0, 1]. Hence, we
have that
• εc,0,1w and (ciεwi

∨ 0) ∧ 1 are erosions Rn
±∞ → [0, 1],

• δ̄c,0,1w and (ciδ̄wi∨0)∧1 are anti-dilations Rn
±∞ → [0, 1].

All of these mappings can also be viewed as fuzzy sets
on the universe Rn

±∞. Recall that a fuzzy set on a uni-
verse U 6= ∅ is given its membership function, which is
a function U → [0, 1]. Using this point of view, Equation
22 reveals that one can interpret the fuzzy sets given by
εc,0,1w and δ̄c,0,1w as the so called Cartesian products [36]
of the fuzzy sets whose membership functions are given by
(ciεwi ∨ 0) ∧ 1, (ciδ̄wi ∨ 0) ∧ 1 : R±∞ → [0, 1], respectively.

III. A FUZZY MORPHOLOGICAL/LINEAR PERCEPTRON
WITH ELM BASED TRAINING: A MODIFICATION OF THE

HMLP-EL

Recently, hybrid morphological/linear perceptrons (HMLPs)
grew out of MPs [6]. In the late 1990, this model was
furnished with a simple learning algorithm that can be ap-
plied to binary classification problems [15]. The more recent
morphological perceptron with competitive learning (MP/CL)
training algorithm tackles multi-class classification problems
by automatically constructing a modular network architecture
[12]. The sth module has weight vectors that are denoted vs

j

and ws
j , where j = 1, . . . ,ms, and produces the following

output ys ∈ R upon presentation of an input pattern x ∈ Rn:

ys =

ms∨
j=1

(εvs
j
(x) ∧ δ̄ws

j
(x)) (23)

Hence, the MP/CL is equipped with
∑

s=1,...,S ms mor-
phological components or units that compute εvs

j
(x)∧ δ̄ws

j
(x)

upon presentation of an input pattern x. Each of these morpho-
logical units determines a closed interval [asj ,b

s
j ] that is given

by [asj ,b
s
j ] = {x ∈ Rn : 0 ≤ εvs

j
(x)∧δ̄ws

j
(x)}. If the number

of classes equals S, then the final output is argmaxs=1,...S ys.
Attractive features of the MP/CL training algorithm include

the following:
1) Constructive algorithm that automatically generates the

aforementioned morphological components;
2) Fast convergence in a finite number of steps when

applied to binary classification problems;
3) Independence of the sequence of the training data.
Moreover, the MP/CL was shown to produce a competi-

tive performance in a number of low-dimensional benchmark
classification problems. However, the MP/CL model general-
izes poorly in applications to high-dimensional classification
problems with sparse training data [16]. In other words, the
MP/CL is unable to deal with the curse of dimensionality.

In contrast, training a neural network using extreme learning
machine [25] generally yields a good generalization perfor-
mance, even without the use of some form of regularization
to avoid “overfitting” [27]. Recall that ELM can be applied
to any network having two layers of computational units and
two layers of weights. The computational units in the first layer
can be arbitrary and need not be neuron-like [37], while the
second layer, i.e., the output layer, comprises linear neurons.
The first layer of weights can be randomly chosen while the
second layer of weights is adjustable and can be trained using
variants of least squares optimization.

These observations reveal that the aforementioned morpho-
logical components can play the role of first layer computa-
tional units. In an effort to combine the approximation capa-
bilities of the two-layer perceptron having sigmoid activation
functions with the capability of the MP to represent non-
differentiable functions, we equipped our HMLP model with
both morphological components and traditional semi-linear
neurons. The resulting architecture is shown in Figure 1. Note
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Fig. 1. Topology of an HMLP

that the hidden layer comprises M morphological components
and L linear nodes with a sigmoid activation function σ. There
are S output nodes for some S ∈ N.

Let us briefly review how the HMLP can be trained using
ELM. Given a training set X = {(xp, tp) : p = 1, . . . , P} ⊂
RN × RS and randomly (with a certain restriction that is
explained at the end of this section) chosen first layer weight
vectors vm,wm,ul ∈ RN and biases bl, where m = 1, . . . ,M
and l = 1, . . . , L, the goal is to determine the second layer
weight vectors z1, . . . , zS ∈ RK , where K = M +L. To this
end, consider the following matrices H ∈ RP×K , Z ∈ RK×S ,
and T ∈ RP×S :

H =

h(x1)T

...
h(xP )T

 ,Z =
[
z1 . . . zS

]
,T =

t
T
1
...
tTP

 . (24)

Here, the vector h(xp)T is given by [(εv1
∧ δ̄w1

)(xp), . . . ,
(εvM

∧ δ̄wM
)(xp), σ(〈xp,u1〉+bl), . . . , σ(〈xp,uL〉+bL)], for

p = 1, . . . , P . When adopting the original ELM approach,
one determines the solution Z∗ = H†T to the problem Z∗ of
minimizing both ‖HZ−T‖F and ‖Z‖F , where ‖ · ‖F stands
for the Frobenius norm. Here, H† denotes the Moore-Penrose
pseudo-inverse of H [38].

In our HMLP-ELM model, we followed the strategy that
was proposed in more recent publications on the ELM model
[37], [39]. In other words, we improved the stability of the
solution and the generalization capability of the resulting
model by adding a positive constant 1

C to the diagonal of
HTH ∈ RK×K or HHT ∈ RP×P [40], [41]. Specifically, if
IK×K and IP×P denote respectively the K ×K and P × P
identity matrices, then the solution Z∗ to the problem of
minimizing ‖Z‖F + C‖HZ−T‖F is given as follows:

1) If C > 0 is such that 1
C IK×K + HTH is invertible,

then

Z∗ =

(
1

C
IK×K + HTH

)−1
HTT. (25)

Fig. 2. The morphological unit εv∧δ̄w , where v = [1, 0]T and w = [2, 1]T .

2) If C > 0 is such that 1
C IP×P + HTH is invertible,

then

Z∗ = HT

(
1

C
IP×P + HTH

)−1
T. (26)

For computational reasons, we chose to determine Z∗ using:
1) Equation 25 if K < P ;
2) Equation 26 if P < K.
Recall that for every v,w ∈ RN , the set {x ∈ RN | εv(x)∧

δ̄w(x)} equals a closed interval of the form [a,b] ⊂ RN for
some a,b ∈ RN . If −v ≤ w, then we have a = −v and
b = w. In ELM-based training for HMLPs, we ensured that
am = −vm ≤ wm = bm for m = 1, . . . ,M as follows:
After selecting arbitrary vectors cm,dm ∈ RN , we generated
non-empty closed intervals [am,bm] = [cm∧dm, cm∨dm] ⊂
RN giving rise to morphological components εvm

∧ δ̄wm
that

satisfy −vm ≤ wm. For example, Figure 2 provides a visual
interpretation of εv ∧ δ̄w, where v = [1, 0]T and w = [2, 1]T .

The results of Section II reveal that a morphological com-
ponent consisting of an infimum of an erosion and an anti-
dilation is also given by εc,0,1v ∧ δ̄c,0,1w : RN

±∞ → [0, 1] for
any v,w ∈ RN and any c ∈ Rn

+. Since εc,0,1v ∧ δ̄c,0,1w can be
seen as a fuzzy set on the universe RN

±∞, we speak of a fuzzy
morphological component. This observation suggests using the
FMLP architecture shown in Figure 3 in which the εvm

∧ δ̄wm

hidden units are replaced by εcm,0,1
vm

∧ δ̄cm,0,1
wm

hidden units.
When using ELM to train this model, vectors vm and wm

satisfying −vm ≤ wm are generated as above. Then we set

(cm)i =

{ 2
vm
i +wm

i
, if − vmi < wm

i ,

0 if − vmi = wm
i .

(27)

where the symbols vmi and wm
i denote respectively (vm)i

and (wm)i. Figure 4 shows the fuzzy morphological unit
εc,0,1v ∧ δ̄c,0,1w , where v = [1, 0]T , w = [2, 1]T , and c =
( 2
1+2 ,

2
0+1 )T = ( 2

3 , 2)T . Note that εc,0,1v ∧ δ̄c,0,1w corresponds
to the Cartesian product of triangular fuzzy numbers [36].
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Fig. 3. Topology of an FMLP

Fig. 4. The fuzzy morphological unit εc,0,1v ∧ δ̄c,0,1w , where v = [1, 0]T ,
w = [2, 1]T , and c = ( 2

3
, 2)T .

IV. SOME EXPERIMENTAL RESULTS IN CLASSIFICATION

In a recent journal paper [16], we applied the (gray-
scale) HMLP-EL to some classification problems given by ten
low-dimensional datasets and one high-dimensional dataset,
namely the Arrythmia dataset from the UCI repository [42].
We compared the classification accuracy of the HMLP-EL
with the ones produced by several morphological and hy-
brid morphological/linear models as well as two multilayer
perceptron (MLP) models with a single hidden layer, one
trained using ELM (MLP-EL) [37] and the other one using
backpropagation (MLP-BP), and a support vector machine
(SVM) [43]. A paired Wilcoxon signed ranks test revealed
that the HMLP-EL outperformed all other models except the
MP/CL which is unable to deal with sparse, high-dimensional
data. Although the MP/CL training algorithm for binary clas-
sification problems is guaranteed to converge in less than
2P iterations, where P is the number of training patterns,
the computational effort of its multi-class version can be
prohibitively high due to its one-against-one strategy [12].

Apart from the FMLP-EL. HMLP-EL, and MLP-EL, this
section’s experimental comparison takes the following recent
morphological and hybrid morphological/linear models into
account:

1) Dendritic morphological neural network trained by
stochastic gradient descent (DMNN-SGD) [17];

2) Dilation/erosion linear perceptron (DELP) [22];
3) Morphological/linear neural network (MLNN) [24].
Instead of the random search strategy employed in

[16], we used a grid search in conjunction with 10-
fold cross-validation to determine the hyperparameters
of the HMLP-EL, FMLP-EL, DMNN-SGD, DELP,
MLNN, and MLP-EL. Specifically, we considered
the following hyperparameters that are contained in
C = {10e | e = −5,−4, . . . , 0}, D = {10, 20, . . . , 100}
or E = {100, 200, . . . , 500, 1000, 2000, . . . , 5000}:
• HMLP-EL [16] and FMLP-EL: Numbers of classical

hidden neurons and hidden morphological units in E as
well as the regularization constant in C;

• DMNN-SGD [17]: Initialization method in {HpC, dHpC,
D&C, k-means}, and learning rate in C;

• MLNN [24], [44]: Number of morphological modules in
D and learning rate in C

• DELP [22] : Number of dilation/erosion/linear modules
in D;

• MLP-EL [37]: Number of classical hidden neurons in E
as well as the regularization constant C in C;

We performed simulations using the following datasets that
were drawn from the UCI dataset repository [42]. Note that we
generated a balanced subset of the high-dimensional MNIST
dataset and considered only red wine in the Wine Quality
dataset [45].

Dataset Train. Size Test Size Dimension Classes
Iris 120 30 4 3

Pages 4450 1023 10 5
MNIST 1000 200 784 10

Wine Quality 1199 400 11 11
Dermatology 292 74 34 6
Ionosphere 280 71 34 2

Cancer 397 172 30 2
Pima 615 153 8 2

TABLE I
OVERVIEW OF DATASETS

For each model and each dataset under consideration, we
selected the set of hyperparameters that yielded the best mean
validation performance in 10 partitions of the training set
into 10 folds. Then we retrained the model using this set
of hyperparameters and recorded the classification accuracy
for the test set. In the case of the models that were trained
using ELM, we also fixed the first layer weights that yielded
the highest mean classification rate in the validation phase
before determining the second layer weights using the entire
training set. If the network has a non-deterministic training
algorithm, then we recorded the mean classification accuracy
and the standard deviation for the training and testing data in
10 trials.
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Fig. 5. Mean testing accuracies.

Tables II, III, and IV below list respectively the hyperpa-
rameters found in the validation phase and the classification
rates in the training and testing phases. For convenience, we
included Figure 5 to provide a visual interpretation of Table
IV.

Model Parameters Pages MNIST Wine Quality Dermatology Ionosphere Cancer Pima

Hid. neurons 500 4000 400 200 1000 500 500
FMLP Morph. Units 200 1000 1000 2000 500 1000 200

C 0.00001 0.1 1 1 0.1 0.001 0.1

Hid. neurons 300 5000 500 200 1000 100 200
HMLP Morph. Units 400 5000 5000 300 1000 200 100

C 0.0001 0.1 0.1 0.001 0.1 0.1 0.01

Morph. units 60 100 10 70 40 30 60
MLNN LR 0.02 0.001 0.02 0.02 0.08 0.02 0.01

Method K-means HpC D&C dHpC dHpC dHpC dHpC
DMNN-SGD LR 0.0001 0.001 0.001 0.0001 0.00001 0.00001 0.001

DELP DEL modules 50 60 100 60 60 80 10

Hid. neurons 828 830 107 305 368 339 100
MLP-EL C 0.001 0.001 0.01 0.1 0.001 1 0.1

TABLE II
HYPERPARAMETERS THAT WERE DETERMINED IN THE VALIDATION

PHASE.

Dataset FMLP-EL HMLP-EL MLNN DMNN-SGD DELP MLP-EL SVM
Pages 97.26 98.11 96.8 ±0.04 91,94 ±2.09 97.21 ±0.4 97.30 95.98

MNIST 100 100 100 80.08 ±0.14 95.55 ±0.92 100 97.3
Wine Quality 62.97 95.56 59.99 ±0.6 95.28 ±0.43 67.56 ±2.48 92.83 59.4
Dermatology 99.66 100 99.96 ±0.1 98.66 ±0.08 98.77 ±2.76 100 98.6
Ionosphere 99.64 100 98.78 ±0.17 95.71 ±1.35 99.0 ±0.3 98.14 93.2

Cancer 100 99.24 97.61 ±0.23 95.21 ±0.72 97.48 ±1.96 97.98 98.26
Pima 81.30 82.68 79.82 ±0.36 72.02 ±1.74 80.29 ±0.34 80.62 77.7
Mean 91.57 96.51 90.42 ±0.21 89.84 ±0.87 90.84 ±1.31 95.41 88.63

TABLE III
ACCURACIES ON THE TRAINING SETS

Dataset FMLP-EL HMLP-EL MLNN DMNN-SGD DELP MLP-EL SVM
Pages 95.80 97.26 96.47 ±0.16 89.95 94.9 ±0.8 95.8 94.16

MNIST 93.5 94.0 88.29 ±0.9 65.55 ±2.3 84.75 ±2.47 93 88.5
Wine Quality 61.25 63.0 61.95 ±0.58 51.62 ±0.58 58.5 ±0.35 57 ±0.4 57.0
Dermatology 98.65 98.65 97.83 ±0.66 90.95 93.51 ±1.13 97.3 98.6
Ionosphere 100 99.59 99.85 ±0.42 94.37 98.31 ±1.1 90.14 93.2

Cancer 100 99.42 97.79 ±0.26 95.93 97.56 ±1.56 98.25 97.73
Pima 80.39 77.58 79.9 ±0.4 73.33 ±0.57 78.47 ±0.8 77.58 75.2
Mean 89.94 89.93 88.87 ±0.48 80.24 ±0.49 86.57 ±1.17 87.01 86.34

TABLE IV
ACCURACIES ON THE TESTING SETS

Table IV and Figure 5 reveal that the FMLP outperformed
all other models in terms of mean classification accuracy
in the testing phase. The HMLP followed closely behind.
Note that for each dataset under consideration, the highest
classification rate on the test data was either achieved by the
FMLP or the HMLP. The MLNN model exhibited the third
best mean classification performance – even better than the

one of the MLP-EL in contrast to the experimental results
in [16]. Also note that there is a great discrepancy between
the best and the worst classification results for the testing
data of the high-dimensional MNIST dataset. On the one
hand, the three highest classification accuracies of 94, 93.5,
and 93% were achieved by the three ELM-based models
we tested, that is, the HMLP-EL, the FMLP-EL, and the
MLP-EL. On the other hand, the three gradient-based models
MLNN, DELP, and MLNN yielded the lowest classification
accuracies. Recall that the strategy of randomly selecting the
first layer weights makes ELM-based models less susceptible
to overfitting than models with gradient-based learning unless
some additional strategies to avoid overfitting are used in
conjunction with the latter models. Note that the DMNN-SGD
model produced a particularly low classification accuracy of
only 65.55± 2.3% for the MNIST test data. Note that in this
case the DMNN-SGD was initialized using the first step of the
MP/CL training algorithm [12] which is unable to adequately
deal with sparsely distibuted high-dimensional data [16].

When performing an unparametric statistical comparison of
the FMLP-EL with the other models using the paired Wilcoxon
signed-rank test, one notices that there is no significant statisti-
cal difference between the results of the FMLP and the MLNN
at the default 5 % significance level, because one obtains a p-
value of 0.2969 in this comparison. All other p-values do not
exceed 0.05. Specifically, the Wilcoxon signed-rank test yields
p = 0.0313 < 0.05 when comparing the FMLP and the MLP-
EL. The p-value for the pairwise comparison of the FMLP
with each of the other models, i.e., the DMNN-SGD, DELP,
and SVM, is 0.0156.

Note that the Wilcoxon signed-rank test yields no statistical
difference at all between the FMLP and the HMLP. In fact,
the corresponding p-value is 1. However, the combined results
of Tables III and IV seem to indicate that the HMLP-EL is
more susceptible to overfitting than the FMLP-EL.

V. CONCLUDING REMARKS

In this paper, we introduced the fuzzy morphological/linear
perceptron as a modification of the hybrid morphologi-
cal/linear perceptron that recently appeared in the literature.
The FMLP is a single hidden layer neural network having
both conventional semi-linear nodes and morphological units
each of which computes an infimum of an erosion and an anti-
dilation from the complete lattice Rn

±∞ to the complete chain
[0, 1]. Each morphological unit of our FMLP model represents
a membership function of a Cartesian product of triangular
fuzzy numbers [36]. In contrast to a morphological unit of
the HMLP model, such a fuzzy morphological unit only has
non-zero values in a closed subinterval of Rn

±∞ (in practice,
Rn) and has therefore only a local effect on the function
computed by the network. This may be the reason why the
FMLP produced a slightly lower mean classification error in
the testing phase than the HMLP although its classification
errors in the training phase were generally higher.

Let us also remark that the MLNN and not the MLP-EL
came closest to the FMLP-EL and HMLP-EL models in terms

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



of classification performance. We suspect that the grid search
employed in this paper is less effective than a random search
[46] for determining suitable parameters of the ELM-based
models.
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