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Abstract—Nowadays, with the advance of technology, there
is an increasing amount of unstructured data being generated
every day. However, it is a painful job to label and organize it.
Labeling is an expensive, time-consuming, and difficult task. It is
usually done manually, which collaborates with the incorporation
of noise and errors to the data. Hence, it is of great importance
to developing intelligent models that can benefit from both
labeled and unlabeled data. Currently, works on unsupervised
and semi-supervised learning are still being overshadowed by the
successes of purely supervised learning. However, it is expected
that they become far more important in the longer term. This
article presents a semi-supervised model, called Batch Semi-
Supervised Self-Organizing Map (Batch SS-SOM), which is an
extension of a SOM incorporating some advances that came
with the rise of Deep Learning, such as batch training. The
results show that Batch SS-SOM is a good option for semi-
supervised classification and clustering. It performs well in terms
of accuracy and clustering error, even with a small number of
labeled samples, as well as when presented to unsupervised data,
and shows competitive results in transfer learning scenarios in
traditional image classification benchmark datasets.

Index Terms—Self-organizing maps (SOMs), semi-supervised
learning, transfer learning, classification, clustering.

I. INTRODUCTION

Nowadays, with the advance of technology, there is a
plentiful amount of unstructured data available. However,
organize and label them is considerably challenging. Labeling
is an expensive, time-consuming, and difficult task that is
usually done manually. People can label with different for-
mats and styles, incorporating noise and errors to the dataset
[1]. For instance, competitions like Kaggle: ImageNet Object
Localization Challenge [2], tries to encourage this kind of
practice in order to obtain more reliable and bigger datasets
continuously. There, participants are challenged in tasks to
identifying objects within an image, so those images can then
be further classified and annotated to be incorporated into
datasets.

It is well-known that supervised learning algorithms nor-
mally reach good performances when high amounts of reliable
and properly labeled data are available [3]. On the other hand,
Semi-Supervised Learning (SSL) purpose is to categorize
(classify or cluster) data even with a lack of properly labeled
examples. To this extent, SSL algorithms put forward learning
approaches that benefit from both labeled or unlabeled data.

Still, the abundant unlabeled data has a large amount of
discriminating information that can be fully explored by SSL

algorithms and then combined with the prior information
available from the smaller number of labeled samples. In this
context, previous works in SSL have contributed directly to
a variety of areas in different application scenarios, such as
traffic classification [4], health monitoring [5], and person
identification [6].

Moreover, those datasets are most common in the form of
a high number of dimensions, then providing complex data
structures to be fed to the models. Such high-dimensional
data space imposes great challenges for the traditional ma-
chine learning approaches because they normally have the
presence of noisy or uncorrelated data in some dimensions.
Furthermore, due to the curse of dimensionality, traditional
distance metrics may become meaningless, making objects
appear to be approximately equidistant from each other. So,
many approaches have been applied to deal with this problem.
For example, Learning Vector Quantization (LVQ) and Self-
Organizing Map (SOM) based models, such as [7], [8].

Therefore, not only the datasets itself can be used for
clustering or classification tasks, but also its characteristics
(features), or learned representations, that can be found and
extracted using deep learning models. Then, it can be trans-
ferred and fed to independent learning models using transfer
learning techniques [9], which is a common practice employed
to workaround the computational cost necessary to train huge
datasets while also exploring generalization capabilities. For
instance, it is very common to see many works using pre-
trained features of ImageNet [10]. However, such strategies
are often neglected in SSL, but it is still a good starting point,
which can be further explored.

In this article, we propose a new model called Batch Semi-
Supervised Self-Organizing Map (BATCH SS-SOM), which
is a novel approach to the previous Semi-Supervised Self-
Organizing Map (SS-SOM) model that can be easily scaled
to a wide range of deep learning tasks. To achieve this,
many modifications were incorporated into the baseline model
to allow dealing with batches of samples and easily couple
the proposed model in Deep Learning architectures. For the
evaluation, we compared it with other semi-supervised models
as well as studied its performance and behavior under different
amounts of available labels in a variety of deep learning
benchmark datasets.

The rest of this article is organizing as follows: Section
II presents a short background related to the areas in which
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this paper is inserted. Section III discusses the SS-SOM, the
baseline model for the current work. Section IV describes in
detail the proposed method. Section V presents the experi-
ments, methodology, the obtained results, and comparisons.
Finally, Section VI debates the obtained results and concludes
this paper, as well as indicates future directions.

II. BACKGROUND

According to [11], it is expected that unsupervised and
semi-supervised learning becomes far more important in the
longer term. On considering a purely unsupervised scenario,
many approaches based on deep learning have been proposed
recently. In that sense, [12] divides them into three different
main strategies, as illustrated in Fig. 2.

The so-called Multi-Step Sequential Deep Clustering con-
sists of two main steps: 1) learn a richer deep representation
(also known as latent representation) of the input data; 2)
perform clustering on this deep or latent representation. For
instance, it can be distinguished by the use of transfer learning
techniques [9], relying on the use of pre-trained models to
create or extract the representations that can be further fed to
clustering models. The current paper is based on this approach.
In Joint Deep Clustering, the step where the representation is
learned is tightly coupled with the clustering. Hence, models
are trained with a combined or joint loss function that favors
learning a good representation while performing the clustering
task itself. The Closed-loop Multi-step Deep Clustering is
similar to Multi-Step Sequential Deep Clustering. However,
after pre-training, the steps alternate in an iterative loop, where
the output of the clustering method can be used to allow
retraining or fine-tuning of the deep representation.

Unsupervised Learning with
Deep Learning

Multi-step Sequential
Deep Clustering

Joint Deep
Clustering

Closed-loop Multi-step
Deep Clustering

Fig. 2: (Deep) Unsupervised Learning Taxonomy [12].

On the other hand, Projected Clustering, Soft Projected
Clustering, Subspace Clustering, and Hybrid algorithms are
common approaches for the semi-supervised and unsupervised
traditional context. They use diverse kinds of models, ranging
from Prototype-based models algorithms and Hidden Markov
Random Fields (HMRFS) to Label Propagation (LP) [13].

SSL can be further classified into semi-supervised classifi-
cation and semi-supervised clustering [13]. In semi-supervised
classification, the training set is normally given in two parts:
S = {(xi, yi)|xi ∈ Rd, yi ∈ Y, 1 ≤ i ≤ M} and
U = {ui ∈ Rd|i = 1, · · · ,M}. Where S and U are the
labeled and unlabeled data, respectively. It is possible to
consider a traditional supervised scenario using only S to
build a classifier. However, the unsupervised estimation of the
probability function p(x) can take advantage of both S and U.
Besides, classification tasks can reach a higher performance

through the use of SSL as a combination of supervised and
unsupervised learning [13].

Nonetheless, in the semi-supervised clustering, the aim is
to group the data in an unknown number of groups re-
lying on some kind of similarity or distance measures in
combination with objective functions. Moreover, the nature
of the data can make the clustering tasks challenging, so
any kind of additional prior information can be useful to
obtain a better performance. Therefore, the general idea behind
semi-supervised clustering is to integrate some type of prior
information in the process.

Many models from both kinds of approaches have been
proposed over the years [14]. However, as mentioned, con-
ventional forms of clustering suffer when dealing with high-
dimensional spaces. In this sense, SOM-based algorithms have
been proposed [8], [15]–[17]. However, most of them do
not have any form to explore the benefits of more advanced
techniques, even a simple form of mini-batch learning. The
SS-SOM is explained in more detail in the next section in
order to establish the ideas of the model proposed in this paper.

Finally, notice that SSL is growing in machine learning
alongside the deep learning context, as it is possible to see
in [18]–[21]. So, it is not unusual to find the term Deep
Semi-Supervised Learning (DSSL) to express deep learning
methods applicable to SSL, as well as approaches combining
more traditional models to work in a deep learning scenario.
They range from approaches based on generative models
[18] to transfer learning [9], convolutional, and SOM-based
approaches [16], [22].

III. SS-SOM

SS-SOM [15] is a semi-supervised SOM, based on Local
Adaptive Receptive Field Dimension Selective Self-organizing
Map (LARFDSSOM) [8], with a time-varying structure [23]
and two different ways of learning. It is composed of a
set of neurons (nodes) connected to form a map in which
each node is a prototype representing a subset of input data.
The nodes in SS-SOM can consider different relevances for
the input dimensions and adapt its receptive field during the
self-organization process. To do so, SS-SOM computes the
called relevance vectors by estimating the average distance of
each node to the input pattern that it clusters. The distance
vectors are updated through a moving average of the observed
distance between the input patterns and the current center
vector (prototype).

The SS-SOM can switch between a supervised or unsuper-
vised learning procedure during the self-organization process
according to the availability of the information about the class
label for each input pattern. It modifies the LARFDSSOM to
include concepts from the standard LVQ [24] when the class
label of an input pattern is given. The general operation of the
map consists of three phases. They are: 1) Organization; 2)
Convergence; and 3) Clustering and/or Classification.

In the organization phase, after initialization, the nodes
compete to form clusters of randomly chosen input patterns.
There are two different ways to decide which node is the
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winner of a competition, which nodes need to be updated, and
when a new node needs to be inserted. If the class label of
the input pattern is provided, the supervised learning mode is
used, and each winner node in the map will be associated with
a respective class label. Otherwise, the unsupervised mode is
employed.

When executing the unsupervised mode, given an unlabeled
input pattern, the SS-SOM algorithm looks for a winner node
disregarding their class labels. Therefore, the winner of a
competition is the node that is the most activated according
to a radial basis function with the receptive field adjusted as a
function of its relevance vector. Also, the neighborhood of SS-
SOM is formed by connecting nodes with others of the same
class label, or with unlabeled nodes. Moreover, in SS-SOM,
any node that does not win at least a minimum percentage of
competitions will be removed from the map.

The convergence is pretty similar to the organization phase.
However, there is no insertion of new nodes. After finishing
the convergence phase, the map can cluster and classify input
patterns. Depending on the amount and distribution of labeled
input patterns presented to the network during the training,
after the convergence phase, the map may have: 1) all the
nodes labeled; 2) some nodes labeled; 3) no nodes labeled. All
of these before mentioned situations are handled differently by
SS-SOM. In [15], a full description concerning each of them
is given.

IV. BATCH SS-SOM

To extend the range of applications of SS-SOM, Batch SS-
SOM1 is introduced. Initially, to take advantage of Graph-
ics Processing Units (GPU), to allow mini-batch training,
and thus to be more integrated with other Deep Learning
approaches that commonly use the same framework and
structure, the implementation uses the PyTorch framework.
Moreover, three important modifications to the baseline model
in order to improve its performance under the new set of
conditions are proposed.

First, when a mini-batch is given to the model, it is separated
into two different mini-batches: 1) the unsupervised mini-
batch; and 2) the supervised mini-batch, as shown by the first
two columns of Fig. 3. For the unsupervised case, the key-
point modification is to compute an average vector Xu of all
unlabeled samples that each winner node j succeeded to be the
most activated during the competition. After that, the process
continues straightforwardly to the unsupervised procedure by
sending all the average vectors and their representative winner
node.

On the other hand, the supervised scenario results in three
distinct situations, as illustrated by the last column of Fig.
3, that must be handled differently after finding the winner
node for each sample contained in the supervised mini-batch
(likewise in SS-SOM):

1) Fig. 3-A: A node with an undefined class is the winner
for a labeled sample;

1Available at: https://github.com/phbraga/batch-sssom

2) Fig. 3-B: A node with a defined class is the winner for
one or more samples of the same class;

3) Fig. 3-C: A node with a defined class is the winner for
one or more samples of different classes, including or
not its own.

Fig. 4 shows how each of these mentioned situations is
handled. In Fig. 4-A workflow, the actions are to set the node
class to be the same as the input pattern and then update its
position towards such an input.

Second, in Fig. 4-B, it is necessary to compute the average
vectorX l, where l is the related class label, considering all the
samples that are under this situation. Notice that l is unique.
Following, the usual supervised update procedure of SS-SOM
is called, where the class is the same for both node and average
sample vector.

Third, the case illustrated in Fig. 4-C is handled as follows:
for all the classes contained in this subset of samples, every
different class duplicates the original winner node j by pre-
serving the centroid vector cj , the distance vector δj , and the
relevance vector ωj , but setting the class of the new duplicated
node to be the same as the current treated class, as well as
setting its number of victories to zero. After that, for each
class l found in the current subset, a vector X l is calculated,
and the respective duplicated node is updated using both X l

and l, suchlike in Fig. 4-B, in which the original winner node
is updated using its corresponding vector and class.

Still, notice that when this situation occurs for an unlabeled
winner node j, the first calculated Xu vector and its related
class are used to update j as in Fig. 4-A. Finally, all the
operations executed in the BATCH SS-SOM are performed in
parallel on the GPU, which optimizes the computational cost
and allows the model to be applied to more complex tasks,
datasets, and architectures.

V. EXPERIMENTS

The experiments were divided into two distinct scenarios.
The first one is focused on comparing BATCH SS-SOM with
semi-supervised methods widely used in clustering tasks to
show how competitive the model is. The latter demonstrates
the capability of the proposed model to cluster and deal
with extracted features from Convolutional Neural Networks
(CNN) architectures.

A. Parameters Sampling

In order to properly adjust the parameters of the model,
the Latin Hypercube Sampling (LHS) [25] was used. It is a
statistical method for generating a random sample of parameter
values from a multidimensional distribution. In this sense,
for the first experimental scenario, we gathered 500 different
parameter settings, i.e., the range of each parameter was
divided into 500 intervals of equal probability to be sampled
[25]. For the latter scenario, we sampled 10 different parameter
sets using LHS. For both, a batch size of 32 was used. In Table
I, the parameter ranges for the Batch SS-SOM is provided.
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Fig. 3: The basic operation performed by BATCH SS-SOM when a mini-batch is given, and its resulting cases.

TABLE I: Parameter Ranges of BATCH SS-SOM

Parameters min max
Activation threshold (at) 0.90 0.999
Lowest cluster percentage (lp) 0.001 0.01
Relevance rate (β) 0.001 0.5
Max competitions (age wins) 1× S∗ 100× S∗

Winner learning rate (eb) 0.001 0.2
Wrong winner learning rate (ew) 0.01× eb 1× eb

Neighbors learning rate (en) 0.002× eb 1× eb

Relevance smoothness (s) 0.01 0.1
Connection threshold (minwd) 0 0.5
Number of epochs (epochs) 1 100

* S is the number of input patterns in the dataset.

B. Datasets

Before underlying in more detail the two sets of experi-
ments, it is important to specify the used datasets.

1) UCI Datasets: We select some datasets from the UCI
machine learning repository [26] that were previously used in
similar works to perform a comparison with our approach in
the same experimental setup used for them. They are Breast,
Diabetes, Glass, Liver, Shape, and Vowel.

2) MNIST: The MNIST is a widely used image benchmark
dataset of handwritten digits; it has 60,000 examples of the
training set and 10,000 examples of the test set. Each sample
fits into a 28x28 grayscale level bounding box [27]. Fig. 5
shows some of its samples.

Fig. 5: MNIST samples.

3) Fashion-MNIST: Fashion-MNIST is a fashion product
dataset of Zalando’s article images [28]; it shares the same
image size and structure of train and test splits of MNIST
dataset. Fig. 6 shows Fashion-MNIST samples.

Fig. 6: Fashion-MNIST samples.

4) SVHN: The Street View House Numbers (SVHN)
dataset is a real-world house numbers dataset obtained from
Google Street View images. The SVHN is much harder than
MNIST because images have a lack of contrast, normalization,
and sometimes the digit has been overlapped by others, or it
has noisy features. It consists of 73, 257 digits for training,
26, 032 digits for testing, and 531, 131 extra training data
ranging from 0 to 9 digits [29]. Fig. 7 shows SVHN samples.
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Fig. 4: How to handle each distinct situation from the BATCH SS-SOM operation when a mini-batch is given.

Fig. 7: SVHN samples.

C. BATCH SS-SOM on UCI Datasets

Table II shows the best values of the Clustering Error (CE)
of the models over 500 runs on each of them, and as high the
value is, the better is the model. In addition to the comparisons
of SOM-based models, DOC [30] and PROCLUS [31] models
were used. They both are commonly used benchmarks for this
type of datasets.

BATCH SS-SOM showed to perform well in clustering tasks
over a variety of datasets from UCI. In the Breast dataset,
it achieved the same value as other clustering methods. In
Diabetes and Vowel, it was statistically equal to LARFDS-
SOM [8] / SS-SOM [15] and ALT-SSSOM [17], respectively,
because in the unlabeled scenario, it behaves similarly. In the
Glass, Liver, and Shape datasets, the batch size has a slightly
negative influence on the outcome, once it presented a small
degradation in terms of performance, which is an effect of
the mean vector update rule. However, the BATCH SS-SOM
accelerates the training process by using the mini-batches and
can also be employed as a last layer of deep learning models
to perform categorization tasks. In particular, it is important
to point out that SS-SOM works exactly as LARFDSSOM
when no labels are available.

D. BATCH SS-SOM using Features Extracted from Custom
CNN Models

Since BATCH SS-SOM showed good results in comparison
with its competitors in the first scenario, we accessed its
performance in a more challenging task with high-dimensional
data, such as images, using high-level features. To do so, we
develop the following strategy. First, we trained a CNN model
from scratch and then extracted the features. More specifically,
we extracted the features before the classifier layer, using
them as input to BATCH SS-SOM. Second, we defined several
supervision rates, i.e., the percentage of available labels. It is
worth mentioning that the sampling was not balanced. Also,
this experiment indicates the effects of the number of labeled
samples in the outcome results for MNIST, Fashion-MNIST,
and SVHN. For this scenario, we started from MNIST and then
expanded to the other datasets to guide a case study about
the behavior of the model. The main idea is not to surpass
any other model, but understand its behaviors when applied to
more complex data structures or representations.

Different CNN architectures were evaluated in order to
achieve better results for each dataset in particular. For
MNIST, Fig. 8a describes the CNN layer block (convolu-
tion, batch normalization, ReLU and Max Pooling); Fig. 8b
illustrates the full architecture: layer1 (16 filters, kernel size
5x5, stride 1x1, padding 2x2), layer2 (32 filters, kernel size
5x5, stride 1x1, padding 2x2), fully-connected 1 (FC1 with
32 neurons), fully-connected 2 (FC2 with 10 neurons); In Fig.
8c, we described the BATCH SS-SOM training pipeline, in
which we removed FC2 and extracted features to feed BATCH
SS-SOM with 32 input dimensions.

For Fashion-MNIST, Fig. 9a describes the CNN layer
block (convolution, ReLU and Max Pooling); In Fig. 9b, the
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TABLE II: CE Results for Real-World Datasets. Best results for each dataset are shown in bold.

CE Breast Diabetes Glass Liver Shape Vowel

DOC [30] 0.763 0.654 0.439 0.580 0.419 0.142
PROCLUS [31] 0.702 0.647 0.528 0.565 0.706 0.253

LARFDSSOM [8] / SS-SOM [15] 0.763 0.727 0.575 0.580 0.719 0.317
ALT-SSSOM [17] 0.763 0.697 0.575 0.603 0.738 0.319

Batch SS-SOM 0.763 0.723 0.537 0.580 0.693 0.301

full architecture is given: layer1 (64 filters, kernel size 5x5,
stride 1x1), layer2 (32 filters, kernel size 5x5, stride 1x1),
dropout (0.5), fully-connected 1 (FC1 with 128 neurons), fully-
connected 2 (FC2 with 32 neurons), and fully-connected 3
(FC3 with 10 neurons); Still, Fig. 9c shows the BATCH SS-
SOM training pipeline, where we remove FC3 layer to extract
the features to BATCH SS-SOM with 32 dimensions.

Conv 2D Layer
Batch

Normalization 2D
Layer

ReLU MaxPooling 2D

(a) Custom layer block for MNIST.

Layer 1 FC 1Layer 2 FC 2

(b) MNIST CNN Model: Two custom layer blocks (Fig. 8a) followed by
two fully-connected (dense) layers.

Layer 1 FC 1Layer 2 Batch SS-SOM

(c) BATCH SS-SOM training pipeline: The previous FC2 is removed, the
features are extracted from FC1 and then fed to BATCH SS-SOM.

Fig. 8: MNIST Training Pipeline.

Lastly, for SVHN, Fig. 10a draws the full architecture:
Conv2d (20 filters, kernel size 5x5, stride 1x1), MaxPool2d,
Conv2d (16 filters, kernel size 5x5, stride 1x1), fully-
connected 1 (FC1 with 400 neurons), fully-connected 2 (FC2
with 120 neurons), fully-connected 3 (FC3 with 84 neurons);
Fig. 10b outlines the BATCH SS-SOM training pipeline, where
the FC3 is removed, the features are extracted from FC2, and
then sent to BATCH SS-SOM with 84 input dimensions.

Table III illustrates the best results over 10 runs on each
dataset. It showed that, as expected, BATCH SS-SOM has
increasing gains as the number of labeled samples grows,
specifically for beginning percentages. Following through, at
a certain point, around 5% of labeled data, the performance
stabilizes. This behavior is observed across all the datasets,
showing that the proposed method is a good approach to the
problem at hand. Notice that transfer learning is a difficult
task, and it is a challenge for a great variety of methods.

Such performance obtained by the BATCH SS-SOM defines a
promising path through the use and application of SOM-based
methods.

1Conv 2D Layer ReLU MaxPooling 2D

(a) Custom layer block for Fashion-MNIST.

Layer
2

Layer
1 Dropout FC1 FC2 FC3

(b) Fashion-MNIST CNN Model: Two custom layers (Fig. 9a), and a dropout
layer followed by 3 fully-connected (dense) layers.

Layer
2

Layer
1 Dropout FC1 Batch SS-SOMFC2

(c) BATCH SS-SOM training pipeline: The previous FC3 is removed, the
features are extracted from FC2 and then fed to BATCH SS-SOM.

Fig. 9: Fashion-MNIST Training Pipeline.

Conv 2D
Layer FC 1 FC 3Conv 2D

Layer FC 2MaxPooling 2D

(a) SVHN CNN Model: One convolutional 2D layer followed by a max-
pooling 2D, other convolutional 2D layer and 3 fully-connected (dense)
layers.

FC 1 Batch SS-SOMConv 2D
Layer FC 2MaxPooling 2DConv 2D

Layer

(b) BATCH SS-SOM training pipeline: The previous FC3 is removed, the
features are extracted from FC2 and then fed to BATCH SS-SOM.

Fig. 10: SVHN Training Pipeline.

VI. CONCLUSION AND FUTURE WORK

This paper presented the BATCH SS-SOM, an approach that
can be applied to both classification and clustering tasks. The
proposed model showed a good performance in comparison
with other traditional models and also demonstrated its capa-
bilities in the context of having to deal directly with more
complex datasets and its representations.
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TABLE III: The Accuracy results obtained with BATCH SS-
SOM on each dataset according to a percentage of labeled
data.

% MNIST SVHN Fashion-MNIST
1% 0.788 0.560 0.624
5% 0.9643 0.716 0.797

10% 0.974 0.713 0.798
25% 0.9793 0.777 0.834
50% 0.983 0.792 0.847
75% 0.9839 0.810 0.840
All 0.9836 0.826 0.846

Although the proposed approach is not far superior to other
models, it can trace a promising path to follow. It can be
considered as the first step towards more SOM-based models
that can work effectively in non-traditional scenarios.

Our main contributions include modifications in the previ-
ous model behavior to allow dealing with more complex data
structures, while still performing well in traditional tasks for
which it was initially intended to do. Finally, for future work,
we have left some more detailed studies with transfer learning,
optimizations on the BATCH SS-SOM model, and a better way
to estimate the unsupervised error when prior information of
labels is not given.
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