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Abstract—Support Matrix Machines are one the efficient
learning approach for the classification of complex nature data.
However, either it can only deal with binary class problem
or can deal with multi-class classification problem by breaking
the problem into number of binary class problem and solving
them individually or through solving larger optimization. Aiming
to improve performance of support matrix machines, in this
paper, we present Multi-class Support Matrix Machine based
on evolutionary optimization (MSMM-CE) by breaking down
the original multi-class problem of support matrix into sub-
problems in cooperative fashion. The proposed objective function
is a combination of binary hinge loss function for specific class,
Frobenius and nuclear norms as a penalty that promote low
rank and sparsity as well as an additional penalty term to
penalize the multiclass classification error. The additional penalty
term allow us to decompose the problem into sub-problems
and solving them in simultaneously in cooperative fashion. The
proposed objective function learns for each class and consider
the information from other classes, that results in solving the
problem in parallel. A comprehensive experimental study on
publicly available benchmark EEG dataset is carried out to
investigate the proposed approach that confirms the superiority
of MSMM-CE for accurate classification of EEG signal associated
with motor imagery in BCI applications. MSMM-CE provides
a generalized solution to investigate the complex and nonlinear
high dimensional data for various real-world applications.

Index Terms—SVM, matrix classification, cooperative evolu-
tion, SMM, support matrix machine, multiclass classification

I. INTRODUCTION

Recent advancement in data acquisition devices are gener-
ating massive size of high dimensional data that has increased
the scope of classifying it directly without losing informa-
tion during vectorization. Thus, researchers are focusing on
development of efficient methods for classifying data directly
from matrix without converting it into vectors, which exploits
the correlation between the columns or rows of matrix. Rank-
k SVM, models the regression matrix as a sum of k rank-
one orthogonal matrix [1]. Luo et. al. combined hinge loss,
nuclear and Forbenius norm that captured the correlation
within each matrix [2]. Zheng et al. presented Sparse Support
Matrix Machine (SSMM) which is a combination of hinge
loss, nuclear norm and `1 norm and can simultaneously capture
the intrinsic structure of each matrix and select useful features
as well. [3]. Although, these methods takes full advantage of
low rank assumption to exploit the strong correlation between
columns and rows of each matrix and able to extract useful
features, however, the methods based on matrix expect MSMM

are originally developed for binary classication problem [4].
Although, these methods can be used as multi-class classifier
by breaking down the multiclass problem into several two
class problems such as One-vs-Rest (OvR) or One-vs-One
(OvO) approaches (e.g. In OvsR strategy, we solve the mutli-
class problem by splitting it into n binary problems, whereas
OvsO strategy can be solved by splitting the problem into
c(c−1)

2 binary class problem but are computationally expensive
and may results in unbalanced distribution of input samples.
Nonetheless, these methods suffer for complex optimization.

Evolutionary algorithms solve the complex optimization
problem by decomposing the problem into single optimization
and has recently has been applied to many machine learning
problems [5], [6]. One of its integration is with with support
vector machines [4]–[11]. Most of these methods are either
binary class optimization or deal hyper parameter optimiza-
tion. In order to address the aforementioned limitations, we
present a novel classification approach named Cooperative
Evolution Mulitclass Sparse Matrix Machine (MSMM-CE)
through solving the complex optimization problem in single
objective optimization by taking the advantage of problem
decomposition of multiclass problem into single the regression
matrix that is not only low-rank, but sparse. MSMM-CE is a
combination of hinge loss for model fitting, elastic net penalty
as a regularization on the regression matrix and an additional
penalty term (cooperative penalty term) that consider the
information from other classes. The regularization term is
a linear combination of Frobenius norm and nuclear norm
to control the low rank properties whereas the cooperative
penalty term penalizes the errors occurs in classification. Thus,
MSMM-CE takes full advantage of low rank plus sparsity and
decomposition of classification problem into sub problem in
a fashion that each sub problem learns the support matrix of
specific class but also consider information from other classes.

Nonetheless, these methods are either are too complex to
optimize or mainly for binary class problem. Recent success
of evolutionary algorithms integration in to machine learning
algorithms explicitly SVM showed its advantage to solve
complex optimization problem. Co-evolutionary algorithms
are able to optimize more population simultaneously by
discomposing the problem into different sub problems and
assign to different population which then solve the sub-
problem individually in cooperative fashion. To evaluate the
performance of proposed approach, we applied MSMM-CE to
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challenging problem where the correlation between rows and
columns plays important roles such as as EEG. MSMM-CE
provided superior performance compared to the state of
the art methods such as SMM, SSMM and MSMM that
shows the effectiveness and the strong empirical value of
utilizing cooperative evolution in MSMM-CE for real-world
applications.

Compared to the state-of-art featured selection methods, the
key contributions of this paper as follows:
• We present a multiclass SMM based on cooperative evo-

lution (MSMM-CE) that takes advantage of cooperative
evolution to discompose the problem into sub problems.

• MSMM-CE works by effectively combining hinge loss
for model fitting, and additional penalty terms (coopera-
tive and nuclear norm) resulting not only low rank plus
sparse but also considering the information form other
classes in cooperative fashion.

• We show that from a dimensionality perspective, MSMM-
CE exhibit distinctive learning properties.

• Unlike OvO strategy, we have used cooperative evolution
to discompose the problem into sub problems that are
optimized simultaneously in cooperative fashion.

II. NOTATIONS AND PRELIMINARIES

In this section, we presents the notations that have been used
through this paper. Vector, scalar, and matrix are represented
by the lowercase bold letter (e.g. x ), lowercase letter (e.g.
x) and uppercase letter (e.g. X). Consider the matrix Ip ∈
Rp×p. The singular value decomposition (SVD) of a matrix
X( such that X ∈ Rp×q , is denoted as

X = UΣV T

where Σ = diag(σ1, σ2...σr, 0...0) is the rectangular diag-
onal matrix, U is the unitary matrix, and V T is the conjugate
transpose of matrix U .

We can represent the nuclear norm of X is

||X||∗ =
∑
i=1

rσi

and the Forbenius norm of X as

||X|| =

√√√√ p∑
i=1

q∑
j=1

x2pq

As we know, the nuclear norm ||X||∗ =
∑r
i=1 σi of a matrix

X as a function from Rp,q to R can not differentiated [10],
thus we consider the sub-differential of nuclear norm of matrix
(||X||∗) which can be denoted by ∂||A||∗ that is a set of sub-
gradients. For a matrix X of rank r, we can write

∂||A||∗ =
{
UXV

T
X + Z : Z ∈ Rp×q,

UTXZ = 0, ZVX = 0, ||Z||2 ≤ 1 (1)

III. THE PROBLEM FORMULATION

In order to make it easier to understand the proposed
method, we first provide brief description and formalization
of matrix classification problem followed by multiclass clas-
sification.

We are given a set of training samples T = {Xi, yi}ni=1,
where Xi ∈ Rp×q is the the ith input sample matrix
and yi ∈ {1,−1} is its corresponding class label. Gen-
erally, the data needs to be transformed/stacked into vec-
tors in order to fit a classifier. Let xi = vec(XT

i ) =
([Xi]11, [Xi]12, ...[Xi]1q, [Xi]21, [Xi]22, ...[Xi]pq)

T ∈ Rpq .
We have n number of training samples and c number of
classes. Thus, we are required to build c number of binary
SVM classifiers.

The classical multi-class soft margin SVM is defined as

arg min
wj ,bj

1

2
tr(wTj wj) + C

n∑
i=1

ξji (2)

such that

wTj xi + b ≥ 1− ξji , if yi = j

wTj xi + b ≤ −1 + ξji , if yi 6= j

ξji ≥ 0

Where ξji = 1− yi[tr(WTXi) + b]+ is the hinge loss, W ∈
Rpq is the vector of regression coefficients, b ∈ Rpq is an offset
term and C is a regularization parameter. The above equation
is unbalanced problem due to one-vs-all approach even though
each class consist of same number of samples which effects the
end results. In order to overcome aforementioned challenge,
one-vs-one can be used and voting strategy can be used, thus
it requires c(c−1)

2 models.

arg min
wjk,bjk

1

2
tr(wTjkwjk) + C

n∑
i=1

ξjki (3)

such that

wTjkxi + bjk ≥ 1− ξjki , if yi = j

wTjkxi + bjk ≤ −1 + ξjki , if yi 6= k

ξjki ≥ 0

Later on Guermeur formulated a theoretical SVM frame-
work for multi-class classification [12] which can be written
as

arg min
wd×c,bk

1

2

c−1∑
j=1

k∑
k=j+1

||wj − wk||+ 22 +
c∑
j=1

||w||22+

C
n∑
i=1

∑
j 6=yi

ξjki (4)

such that

wTyixi + byi ≥ wTj xi + bj + 1− ξij
ξij ≥ 0, ∀i ∈ 1, ...ci
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Xu et.al. extended the above Eq. 4 to multi-class binary
SVM and proposed c vectors to simulate one-vs-one binary
classifiers [13]

arg min
wd×c,bk

1

2

c−1∑
j=1

k∑
k=j+1

||wj − wk||22 +
c∑
j=1

||w||22+

1

2

c∑
j=1

b2j + C
c∑
j=1

c∑
k=j+1

∑
yi∈j,k

ξjki (5)

such that

yjki fjk(xi) ≥ 1− ξjki , ∀yi ∈ j, k
ξjki ≥ 0

argmin
1

2
tr(wTw) + C

∑
ξji (6)

Whereas fjkxi = (wj − wk)Txi + (bj − bk) and
yjki = {1,−1}.

As mentioned above, we needed to reshape the matrix
into vector which results in losing the correlation among
columns or rows in the matrix, however results proved the
effectiveness of multi-class SVM. To be benefited from rich
structural information hidden in the data, recently support
matrix machine has been proposed. By directly transforming
the equation 6 for matrix, we get

argmin
1

2
tr(WTW ) + C

∑
1− yi[tr(WTXi) + b]+ (7)

It is an established fact that tr(WWT ) = vec(W )vec(WT )
and tr(WTXi) = vec(W )T vec(Xi), thus the above objective
function can not capture the intrinsic structure of each input
matrix efficiently due to the loss of structural information
during the reshaping process. To take the advantage of
intrinsic structural information within each matrix, one
intuitive way is to capture the correlation within each matrix
through low rank constraints on the regression parameters.

Results showed that exploiting the correlation information
improved the classification performance. The equation 6 can
be rewritten for matrix classification as

argmin
1

2
tr(WTW ) + C

∑
1− yi[tr(WTXi) + b]+ (8)

The hinge loss enjoys the large margin principle and also
embodies sparseness and robustness, major desirable prop-
erties for a good classifier. Motivated by this, Luo et. al.
presented sparse matrix machine shown in Eq. 9 [2]. The
objective function in Eq. 9 consists of hinge loss plus nuclear
norm and Frobenius norm as reguarlizer.

argmin
1

2
tr(WTW )+τ ||W ||∗+C

∑
1− yi[tr(WTXi) + b]+

(9)
Recently, Zheng et al. presented a multiclass classifier

(objective function shown in Eq. 10) by reducing the slack
variables. The objective function consists of hing loss as well
as regularization terms that help to extend the margin re-
scaling loss to support matrix-form data. [14]. It aimed to
minimize the regularized loss which maximizes the margins
between different categories.

argmin
1

2
tr(WTW ) + τ ||W ||∗ +

C

N

n∑
i=1

ξi (10)

IV. MULITCLASS SMM-COOPERATIVE EVOLUTION

Nonetheless, these methods are either are too complex to
optimize or mainly for binary class problem. Recent success
of evolutionary algorithms integration in to machine learning
algorithms explicitly SVM showed its advantage to solve com-
plex optimization problem. Coevolutionary algorithms are able
to optimize more population simultaneously by discomposing
the problem into different sub problems and assign to different
population which then solve the sub-problem individually in
cooperative fashion.

In the following text, we introduce the multi-class support
matrix machine with the aim of find the support vectors
in single step parallelly. The proposed approach is able to,
maximize the multi-class the margins in single step, reduce
the data the redundancy, and consider the strong correlation
between columns and rows in a matrix data. MSMM-EC works
in a cooperative fashion by breaking down the problem into
sub problems which are then optimized simultaneously with
the aim to learn support matrices for each class. The objective
function in Eq. 11 is combination of low rank matrices as
well as sparse properties aiming to capture the correlations
efficiently with each data matrix. The additional cooperative
evolution penalty term penalizes the multi-class classification
error. Thus, MSMM-CE is able to consider the information
from other class and penalizes the support matrices that do
not work with each other that results in solving the problem
in parallel.

A. Objective Function

Given a k-class (k ≥ 2) matrix form training data
{Xi, yi}ni=1 ∈ {X,Y }, where Xi ∈ Rpq is the ith feature ma-
trix and yi ∈ {1, 2, .......k} is the corresponding class labels.
The traditional support matrix classifier (argmin 1

2 ||W || +
C
∑n
i=1 ξ) are only binary class classification, thus, these

methods are infact can not deal with multi-class problems.
We devised a novel objective function that adopt the co-
operative evolution approach with the aim to solving the
the class specific each sub problem in single optimization
simultaneously by finding set of support vector of each class
in cooperative fashion. In other words, each sub problem
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manage the optimization of each specific class with additional
information from other classes.

To this end, we have the following the objective function
corresponding to penalized margin maximization for cth class

arg min
Wr,ξr

1

2
tr(WT

k Wk) + τ ||Wk||∗ +
C

N

nk∑
i=1

ξki

+
1

nc

nc∑
i=1

%(Xk
i ) (11)

such that

yif(Xi) ≥ 1− ξri ,
ξri ≥ 0

Where W ∈ Rpq represents the regression parameter in
the form of matrix. %(Xk

i ) is the penalty term imposed on
the classes that does not fit together. C is the non-negative
parameters to balance regularization as well as loss term, nk
are the number of samples in class k, ξ is the slack variable
for cth class.

Notice that there are four terms (Nuclear norm, Forbenius
norm, cooperative penalty term and hinge loss) in the ob-
jective function in Eq.11. We know that the nuclear norm
and Forbenius norm, both satisfy the triangle homogeneity
properties, whereas the rest of the terms are linear functions,
thus we can say all four terms in objective function are convex,
however, non-differentiable and non-smooth. Thus, we are not
able to use subgradient of nuclear norm in standard descent
approaches as a result, driving the solution is complex. An
alternative approach is required to approximate the matrix
W , which can be solved by imposing the rank on W . To
make derivation easier, we first consider the objective function
without cooperative penalty term and added it at later stage.
To conclude, rank matrix minimization is NP hard and can be
solved as

arg min
Wr,ξr

1

2
||W ||F + τ ||Wc||∗ +

C

N

nc∑
i=1

ξki (12)

whereas as W ∈ Rd×c
We can not apply the Nesterov methods and stochastic

gradient descent as all terms are non-differential and non-
smooth. As we know that the the objective function is convex
thus we can break the objective function into sub-problems
to optimize. We can rewrite the problem in Eq.12 as

argmin
W,b

P (W ) +Q(S) (13)

s.t S −W = 0
Where S ∈ RP×Q×k is an additional decision variable to split
the primal problem into two sub problems.

P (W, b) = ||W ||2F +
C

N

nk∑
i=1

ξki (14)

and

Q(S) = ||W ||∗ (15)

where Q(S) is additional penalty function defined on sin-
gular value of matrix and P (W ) is the hinge loss function
obtained from negative likelihood. We can solve the Eq. 13 as

L(W,L, S, ) = P (W )+G(S)+
p

2
||S−W ||2F+〈L, (S−W )〉

(16)

where p > 0 is the hyperparameter and L is the Lagrange
multiplier.

The objective function in Eq. 10 results in optimal solutions
for single class label. However, our target is to consider
the information from other classes in cooperative fashion.
Thus, we imposed an additional penalty term (cooperative
penalty term) into the objective function that takes advantage
of cooperative evolution of every other class to consider
them in learning of specific class. The cooperative penalty
term penalizes the error occur in multiclass classification by
punishing those classes that does not fit with it.

L(W,S,L) = P (W )+G(S)+
p

2
||S−W ||2F+〈L, (S−W )〉+

q

nk

nk∑
i=1

%(Xk
i ) (17)

where

%(Xk
i ) =

{
Z, if Z > 0

0, otherwise
(18)

and

Z = 2 +

nK∑
i=1

LKi 〈Xi, X〉 −
nk∑
i=1

LKi 〈Xi, X〉 (19)

where k ∈ 1, 2, ...K is the the index class with largest
activation value and q controls the strength penalty.

B. Theoretical Justification

In this section, we theoretically analyze and illustrate how
MSMM-CE possesses some elegant features as compared to
conventional support vector machines, conventional elastic net
SMM [2] and SSMM [3]. Conventional methods required
data to be reshaped into vectors, which results increase in
dimensionality as well as loss of structural information exist
in EEG signals. MSMM-CE is a combination of nuclear norm,
Frobenius norm, class oriented hinge loss and cooperative
evolution penalty for information share among classes. We
solved the objective function in cooperative fashion which
discompose the problem into sub problems. Each problem
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Fig. 1. Illustration of proposed framework equipped with MSMM-CE

is optimized simultaneously to solve multiclass classification
problem by penalizing the classes that does not fit with the
certain class. Thus, MSMM-CE solve the problem in single
optimization by considering the information from the other
classes during the learning of support vectors. Each sub
problem share the same samples representation. The number
of variables for each sub problem depends upon the number
of samples in that class, thus number of samples does not
increase during optimization unlike other SVM methods.

MSMM-CE is a combination of nuclear norm and Frobenius
norm, which enjoys the property of grouping effect (i.e.
columns and rows strong correlation). The Frobenius norm
helps to prevent the model from overfiting and nuclear norm
leveraged to capture the global structure of the matrix.

Notice that, the cooperative penalty term penalizes the ob-
jective function for the classes that do not fit together (Z > 0).
This phenomena helps to maximize the inter class margin
for multiclass problem. Each sub problem learn the support
vector for specific class based on its own samples as well
as considers the information form other classes. This results
in parallel optimization for each class. The objective function
degenerates to classical support vector machine if τ = 0 and
Z = 0. This shows that the proposed objective function is a
special case of traditional support vector machines.

V. EXPERIMENTAL EVALUATION

In this section, we present the detail experiment and evaluate
the proposed multiclass support matrix machine. In oder to
validate validate the robustness, we have performed extensiv
evaluation of proposed MSMM-CE and compared it perfor-
mance with state of the art methods such as SSMM [3],
SMM [2], BSMM [15], MSVM [16], KNN [17] and SCSSP
[18] as well as winners of BCI competitions on benchmark
EEG datasets (IIIa and IIa). We have performed k(5)-cross
validation by randoming partitioning the data to observe the
generalization of the results.

A. Results

Our target of this this work is to improve the performance
as compared to state of the art matrix based methods followed
by an improvement in computational complexity. To show the

gain in performance, we have used four evaluation measures
and compared the performance of MSMM-CE with state of
the art methods on two publicly available EEG datasets.
Table I and table III show the evaluation results. For vector
based methods, we first transformed the matrix into vectors
followed by dimensioanlity reduction using PCA and to form
multiclass problem form binary class problem, we have used
OvR strategy except MSMM. Furthermore, for better com-
parison, we have evaluated the performance using error rate
in Kappa measure. The evaluation results on data-set IIa are
shown in table II, and table IV. Notice that, matrix based
classifier achieved better results as compared to those methods
based on vectors. This shows that importance of structural
information for the classification for EEG classification. In
comparison to matrix based methods, MSMM-CE achieved
better performance.

We can observe that the proposed approach (objective
function in 11) consist of term τ that controls the the number
of low-rank regression parameter and manages the penalty.
We can observe that the larger the value of τ results in much
heavy penalty on the regression coefficient thus setting mostly
singular values to zero which in turn result in losing most
structural information embedded in data. It shows that dividing
the problem into sub problem is easier to optimize. by breaking
the objective function into sub-problems that are easier to
optimize. We can observe that MSMM-CE converges to the
global optimum in only few iterations.

B. Parameter Setting
There are four terms in objective function that are nuclear

norm, Forbenius norm, cooperative penalty term (introduce
later) and hinge loss function. We can see that there are several
parameters (learning rate η, τ ,q, p, t and C) are required to
be optimized. q determine the penalty on the classess that
does to fit together. It helps to maximize the inter-class margin
for multiclass classification problem. Smaller the value of q
results in much smaller penalty and vise verse. In case of few
classes, the cooperative penalty on classes is simple and effect,
however, the problem get complicated and affect the results
as the number of classes increase as the decision boundary
get complex. τ controls the correlation of data matrix. It is
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TABLE I
KAPPA/ERROR RATE %: CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON DATA-SET IIIA

Subject BCI Competation KNN MSVM SCSSP SMM BSMM MSMM MSMM-CE
k3b 0.83/18.6 0.81/14 0.89/8.3 0.71/22.3 0.852/11.1 0.94/4.4 0.948/3.9 0.952/4.4
l1b 0.74/22.1 0.49/38 0.68/24.2 0.69/36.2 0.71/21.7 0.8/15 0.811/14.2 0.831/11.9
avg 0.78/19.8 0.65/26 0.78/16.3 0.64/23.6 0.78/16.4 0.87/9.7 0.88/9.0 0.884/10.1

TABLE II
KAPPA/ERROR RATE%: CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON DATASET IIA

Sub BCI Competation KNN MSVM SCSSP BSMM SMM MSMM MSMM-CE
S1 0.68/24 0.71/22 0.72/21 0.62/26 0.73/21 0.69/0.23 0.73/20 0.75/21
S2 0.42/44 0.4/45 0.37/47 0.28/54 0.4/45 0.23/0.58 0.43/43 0.43/41
S3 0.75/19 0.77/17 0.76/17 0.6/26 0.75/19 0.69/0.24 0.84/11 0 0.84/10.6
S4 0.48/39 0.45/41 0.36/48 0.33/51 0.51/37 0.54/0.35 0.59/31 0.61/30
S5 0.4/45 0.38/47 0.42/43 0.15/64 0.39/46 0.32/0.51 0.5/38 0.52/40
S6 0.27/55 0.24/57 0.19/61 0.25/56 0.32/51 0.15/0.63 0.41/44 0.43/39
S7 0.77/17 0.69/23 0.66/25 0.41/44 0.81/14 0.72/0.21 0.85/12 0.86/11
S8 0.76/18 0.62/29 0.45/41 0.6/31 0.71/22 0.71/0.22 0.77/17 0.78/13.7
S9 0.61//26 0.48//39 0.56/33 0.66/25 0.62/29 0.63/0.27 0.72/21 0.75/14
avg 0.57/32 0.53/36 0.5/37 0.44/42 0.58/31 0.52/0.36 0.65/26 0.69/16

difficult to determine the level of structural information that
can provide optimal results. We observe that the larger value
of τ impose heavy penalty on the structure information thus
setting most of the singular values to zero as a result, we can
lose most of the structural information. We can notice that
MSMM-CE degenerates to the problem [13] for vector data
for the value of τ = 0.

Fig. 2. Behaviour of cooperative penalty term q on on the classication
performance for IIa and IIIa datasets

C. Computational Complexity

AS our major objectives in this work is to overcome the
computational complexity. The existing multiclass support
matrix approaches required c(c−1)

2 support matrix thus are
computationally expensive. To overcome this complexity, we
have decomposed the problem into smaller sub problem and
solved them individually.This simultaneous optimization of
multiclass problem makes is much faster as compared to OvO
and OvA methods. To observe the gain in computational
efficiency, we have compared the run time of the algorithms
that are based on matrix data only. We conducted the
experiments Intel 3.7GHz, 16GB RAM, Window 7. Table V

describe the average testing and training time. Notice that
MSMM-CE is much faster in both training and testing.

D. Discussion

Notice that, the proposed MSMM-CE showed better results
in comparison to state-of-the-art. We can notice from the
results that MSMM-CE is better able to find best representative
and discriminant patters from high-dimensional data. We
can observe that Nuclear norm promotes the structural
sparsity as well as shares similar sparsity patterns across
multiple predictors. τ controls the structural information in
the classication i.e. it controls the number of singular value
(rank) of the regression parameter. This means greater the
value of τ could account more structural information encoded
in the matrix results in improving the classication accuracy.
MSMM-CE reveals the geometric structure embedded in the
data due to the fact that it select the features by maintaining
the spatial structural information of the matrix. q determine
the penalty on the classess that does to fit together. It helps to
maximize the inter-class margin for multiclass classification
problem. Smaller the value of q results in much smaller
penalty and vise verse. In case of few classes, the cooperative
penalty on classes is simple and effect, however, the problem
get complicated and affect the results as the number of classes
increase as the decision boundary get complex.

Comparing with aforementioned experimental evaluation,
we have the following interesting observations

(I) Larger value of q results powerful penalty on the
multiclass classification error (the classes that does
not fit together). However, too large value of q results
affect the the performance due to the fact that high
value of q results in penalizing the other classes that
leads to biased problem, this could be solved using
variable q based on error.
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TABLE III
COMPARATIVE EVALUATION OF CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON IIIA DATA-SET

Method Kappa Precision Recall F1 Score
KNN 0.732 0.768 0.799 0.804
MSVM 0.784 0.85 0.838 0.844
BSMM 0.871 0.91 0.903 0.906
SMM 0.782 0.847 0.836 0.841
MSMM 0.880 0.916 0.91 0.913
MSMM-CE 0.907 0.927 0.918 0.922

TABLE IV
COMPARATIVE EVALUATION OF CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON IIA DATA-SET

Method Kappa Precision Recall F 1 Score
KNN 0.527 0.684 0.645 0.663
MSVM 0.499 0.689 0.624 0.653
BSMM 0.581 0.715 0.686 0.7
SMM 0.519 0.674 0.64 0.656
MSMM 0.648 0.751 0.736 0.744
MSMM-CE 0.656 0.793 0.766 0.761

TABLE V
COMPARISON OF AVERAGE TRAINING AND TESTING TIME (IN SECONDS)

ON IIIA AND IIA DATA-SETS

Classifier IIIa IIa
Training Testing Training Testing

SMM 21.995 0.0594 64.198 0.243
BSMM 20.381 0.0636 65.198 0.243
MSMM 22.257 0.0541 65.528 0.230
MSMM-CE 19.42 0.0496 62.261 0.20

(III) We noticed that MSMM-CE performed slightly bet-
ter for imbalance classification problem and in the
presence of outliers.

(IV) MSMM-CE similar to MSMM, SMM in term of
support vectors and learn the simpler function with
better and complex decision boundaries (unlike OvO
and OvA, the decision boundaries boundries does not
overlap as optimized simultaneously by considering
the information from other classes.) thus MSMM-CE
is able to learn the support vectors that can be use
to measure the complexity of the model.

VI. CONCLUSION

In this work, we presented an novel classifier name Multi-
class Support Matrix Machine (MSMM-CE) by decomposing
the complex multiclass classification problem into sub problem
and solve them individually in cooperative fashion. Unlike
the decomposition based multiclass classification approaches,
MSMM-CE optimizes the objective function in single model
leading to simple decision function as compared to OvO
and OVA SVM. We combined the hinge loss, nuclear and
Forbenius norm and followed the idea of cooperative evolution
in natural fashion by penalizing the classes that does not fit
together. Hence, resulted in an improved classification perfor-
mance supported by the experimental evaluation. Furthermore,
it not only leveraged the structural information and avoided the
inevitable upper bound for the number of selected features but

have the property of low rank. Results showed considerable
gain in performance as compared to state-of-the-art classifiers.
In conclusion, the numerical results suggested that MSMM-CE
is advantageous to previous approaches. It shows the promise
of MSMM-CE on real-world applications.
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