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Abstract—Human activity recognition (HAR) has gained inter-
est in the research communities in order to know the behavior
and context of users for medical, sports performance evaluation,
ambient assisted living and security applications. Recent works
suggest that convolutional neural networks (CNN) are very
competitive machine learning techniques for HAR. Nevertheless,
CNN require many computational resources, high number of
parameter tuning, and many data samples for training. In this
paper, we present a comparative analysis of a novel technique,
artificial hydrocarbon networks (AHN), with CNN on human
activity recognition classification task. We choose to compare
AHN with CNN given that it is a very well-suited machine
learning technique for HAR. We show that AHN architecture
is simpler to set up than CNN, it needs less hyper-parameter
configuration and has a slightly better accuracy performance.

Index Terms—artificial hydrocarbon networks, convolutional
neural networks, machine learning, hyper-parameters, model
performance

I. INTRODUCTION

Research on human activity recognition (HAR) has received
growing attention given the success of its use in medical,
sports, security, ambient assisted living, and diverse mobile
applications. These systems gather information in order to
know the behavior and context of the user mainly using two
approaches for HAR: vision based [1] and sensor based [2].

There is a trend towards implementing online human activ-
ity recognition on smartphones given that they have become
more powerful in terms of CPU, memory and battery [3].
Online activity recognition means been able to identify dif-
ferent activities with a mobile device, but it can also mean
online machine learning for adaption. In both cases, there
is a need of light weight models to perform HAR that can
be easily deployed [4]. Deep learning models high level
features in data and deep learning structure is more feasible
to perform unsupervised and incremental data [4]. Therefore,
deep learning has become an important trend recently in
human activity recognition [5].

Convolutional Neural Network (CNN) [6] is one of the
most researched learning techniques in image classification,
speech recognition, and recently in human activity recognition
based on mobile and wearable sensors [5]. Convolutional
neural networks are specially attractive for HAR due to its
general architecture: convolutional layer, pooling layer, and

fully connected layer [7]. CNNs have the ability to extract fea-
tures stacking several convolutional operators to create more
abstract feature hierarchies [8]. Thus, a main goal of applying
a CNN in accelerometer signal would be to learn multiple
discriminative features useful for HAR classification process
[9]. Moreover, the advantage of using CNN for human activity
recognition (HAR) is that it captures local dependencies of an
activity signals and preserves feature scale invariant [10] [4].
CNN are able to capture local data patterns and variations,
which is particularly useful for HAR using accelerometer time
series where the form and size of periods are defined by the
activity type [7].

On the other hand, a novel supervised machine learning
method called artificial hydrocarbon networks (AHN) was
presented and applied for human activity recognition in [11]
[12]. In [11], Ponce et al. experiment results over the raw
public Physical Activity Monitoring Data Set proved that
the artificial hydrocarbon networks-based classifier is suitable
for human activity recognition when compared to the other
fourteen well-known supervised classifiers. We considered
flexibility of the approach regarding the ability to support
new users (user-independent) in paper [12] using AHN. The
AHN-classifier performance was compared with eighteen well-
known supervised techniques.Its worth noticing that features
for time and frequency domain were extracted and a reduced
set of features was used for classification. Hence, AHN can
be used with raw signals of sensors or with extracted features.

Shoaib et al. [3] discussed that there is a need to implement
multiple classifiers for comparison purposes in HAR, which
includes a CPU, memory and other resources analysis. Such an
analysis is important to determine the feasibility of a classifier
implementation. The trade-off between accuracy and resource
consumption must be taken into account. [3].

In this paper, we present a comparative analysis of AHN
versus CNN in human activity recognition using the publicly
available dataset [13] for human activity recognition, which
has sensor signal recordings from accelerometer, gyroscopes
and magnetometers.

For the evaluation of the models we considered (i) the
evaluation of the performance in terms of the hyper-parameters
(ii) the optimization of the architecture of the models (iii) the
assessment of the performance of the models due to the input
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size. Our goal in this work is to present AHNs as a well suited
machine learning technique for HAR as its performance is
similar to CNN. AHN architecture is simpler to set up than
CNN, it needs less hyper-parameter configuration and shows
a slightly better accuracy performance using an optimized
architecture. We choose to compare AHN with CNN deep
learning method given that CNN is a very competitive machine
learning technique for HAR.

The rest of this paper is organized as follows. Related work
is provided in Section II. We present an overview of CNN
and AHN machine learning models in Section III .In Section
IV, we describe our comparative analysis between AHN and
CNN applied on HAR. Section V presents the results of the
comparative analysis. Section VI concludes our work.

II. RELATED WORK

In human activity recognition task, physical activities done
in daily life are identified from information extracted from
divers modalities of sensors such as cameras, wearable and
ambient sensors. Extracting knowledge from raw activity data
is critical in functional and behavioral health monitoring,
game console designing, personal fitness tracking, and sport
analytics [14].

The main goal of using deep learning for human activity
recognition is to take advantage of the fact that features can
be learned automatically through network instead of being
extracted manually [4] [5]. In particular, CNN is computational
expensive,require high number of hyper-parameter tuning to
obtain optimal features [5], and needs a very large dataset of
samples for training and testing [4].

Zeng et al. [10] proposed an approach based on CNN to
extract human activity features using different public datasets
with accelerometer recordings. Their purpose of using CNN
was to capture local dependencies and scale-invariant features
of activity signals. They used one pair convolution and max-
pooling layer and two normal fully connected neural net-
works. CNN parameters were estimated by standard forward
and backward propagation. The CNN-based algorithm was
executed on a server equipped with a Tesla K20c GPU and
48G memory. They evaluated sensitivity with different pooling
window size, weight decay, momentum and dropout. It is
worth noticing that the performance improved in the datasets
with more samples.

Ronao and Cho [15] presented a CNN as feature ex-
tractor and classifier for recognizing human activities using
accelerometer and gyroscope on a smartphone .They included
a greedy-wise tuning to assess the effects of different values
on the performance of the CNN using sensor data. They
performed experiments, varying the values for number of
layers (one to four layers), number of feature maps (10-200),
size of convolutional filter (1x3 up to 1x15) , and pooling size
(1x2 and 1x3). They incorporated max-pooling, a learning rate
of 0.01 They also increased momentum parameter from 0.5 to
0.99. They gathered a dataset with 7352 examples for training
and 2947 examples for testing.Their hardware is composed of
two Intel Xeon E5 CPU that drive two NVIDIA Quadro K5200

with six cores and twelve threads each. The authors proved that
CNNs can exploit temporal local dependency of time-series 1D
signals and translation invariance and hierarchical characteris-
tic of the performed activities without feature hand-crafting.In
their results, the accuracy of CNN outperformed other state-of-
art machine learning techniques(94.79%).Nevertheless, when
using additional information of the temporal fast Fourier
transform of data, the CNN improved almost 1% accuracy
(95.75%). Moreover, they failed to capture temporal variance
in complex activity and generalization to differ activity models
[5]. Adding time-frequency convolution would increase the
computational expense.

Yang et al. [16] proposed a method with CNN to automate
feature learning for HAR problem. They built a new deep
learning architecture for CNN which feature extraction and
classification of human activities are unified in one model.
Their results showed that CNN method consistently outper-
formed support vector machine,K-nearest neighbors, and deep
belief network when applied on Opportunity Activity Recog-
nition dataset [17]. These dataset gather data from wearable,
object and ambient sensors. It included 18 activity classes.
The experiments were conducted on Matlab codes on a PC
Intel i5-2500, 3.3 GHz CPU and 8GB RAM. They reported
the duration of 1 hour training for the dataset of only 1
subject (136,869 training samples - 32,466 testing samples).
The authors suggested parallel computation of the CNN to
reduce training and testing time. Hyper-parameter tuning was
not reported in this paper, hence their proposed method suggest
that CNN is a very competitive for HAR classification task.

In summary, related work reported in literature show that
CNN is a very competitive machine learning technique for
HAR. Nevertheless, as other deep learning methods, CNN
require many computing resources and a very large set of
samples for training. Hyper parameter tuning is needed and
how to find optimal parameters in CNN is still an open issue
[16].

III. BACKGROUND OF THE LEARNING MODELS

In this section, we present an overview of AHN and
CNN learning models with emphasis on the hyper-parameters
revised for this comparative analysis.

A. Overview of AHN

AHN is a supervised learning method, proposed by Ponce
and Ponce [18], that models data using carbon networks as
inspiration. It loosely simulates the chemical rules involved
in hydrocarbon molecules to find a way for representing the
structure and behavior of data [19]. The main feature of
this model is to package data in units so-called molecules.
Then, packages are organized and optimized through heuristic
mechanisms based on chemical assumptions that are encoded
in the training algorithm. The key features of AHN are
threefold: modular organization of data, structural stability of
data-packages and inheritance of packaging information [20].

As described above, the main unit of information is the
molecule. It consists of a kernel function parameterized with
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a set of weights, as written in (1) where x ∈ Rn is the feature
vector of the input data, Hi is a set of weights namely the
hydrogen values, σ is a vector namely the carbon value and
k ≤ 4 is the maximum number of hydrogen values associated
to one molecule. Jointly, those weights are known as molecular
parameters, and they resemble to the hydrogen and carbon
atoms of a hydrocarbon molecule in nature.

ϕ(x, k) =
n∑

r=1

σr

k≤4∑
i=1

Hirx
i
r (1)

Molecules are arranged in groups namely compounds. The
latter are structures that represent nonlinearities in molecules.
Those compounds are associated with a functional behavior
as expressed in (2), where m is the number of molecules in
the compound and Σj is a partition of the input x such that
Σj = {x| arg minj(x − µj) = j}, and µj ∈ Rn is the center
of the jth molecule [20]. In fact, Σj1∩Σj2 = ∅ if j1 6= j2. The
compound behavior written in (2) is known as linear chain of
m molecules since it is similar to organic chains in chemical
nature [19].

ψ(x) =



ϕ1(x, 3) x ∈ Σ1

ϕ2(x, 2) x ∈ Σ2

· · · · · ·
ϕm−1(x, 2) x ∈ Σm−1

ϕm(x, 3) x ∈ Σm

(2)

Compounds can interact among them in definite ratios αt,
namely stoichiometric coefficients or simply weights, forming
a mixture S(x). It is represented as shown in (3); where, c
is the number of compounds in the mixture and αt is the
weighted factor of the t-th compound [19].

S(x) =
c∑

t=1

αtψt(x) (3)

Literature has reported different training algorithms for
AHN. They differ in terms of how to approach the learn-
ing process of the molecular parameters and the centers of
molecules. For example, the simplest and original method
[19] implements the least square estimates (LSE) to learn the
molecular parameters and the gradient descent to learn the cen-
ters of molecules. In [21] the authors implement the Moore-
Penrose pseudo-inverse to find the molecular parameters and
particle swarm optimization to learn the centers of molecules.
Recently, authors in [20] implemented the stochastic parallel
extreme (SPE-AHN) training algorithm that is a fast and reli-
able method based on the latter training method, but running
parallel processing and stochastic learning.

In this work, we adopted SPE-AHN as the training al-
gorithm for AHN. It requires two hyper-parameters to set
up the training procedure: the number of molecules in a
compound (m ≥ 2), and the batch size (0 < β ≤ 1) that
corresponds to the percentage of input data computed at each
iteration of the algorithm. In a nutshell, SPE-AHN works

dividing the training phase into two hierarchical steps. On
one hand, the algorithm seeks for the centers of molecules
µj for j = 1, . . . ,m using PSO. These values are encoded in
the individual of the PSO. On the other hand, the molecular
parameters Hi and σ are learned using extreme learning
machines (ELM) through the Moore-Penrose pseudo-inverse.
This updating of the molecular parameters is done in one-
shot each time an individual of the PSO is evaluated into the
objective function. It is noticeable that the whole procedure
of tuning the parameters of the AHN-model might be time-
consuming. To overcome this issue, SPE-AHN implements
parallel processing during the objective function evaluation
of the individuals. In addition, each individual only uses a
random, possibly small enough, subset of the training data
(set up by the batch size β) to estimate the evaluation of the
objective function. To this end, SPE-AHN has reported to be
10 thousand times faster than the original training algorithm,
without decreasing the predictive power of the AHN-model
[20]. Also, SPE-AHN has been proved to be efficient during
the training procedure while using high-dimensional and big
data [20].

B. Overview of CNN

Convolutional Neural Network (CNN) is one of the most
commonly used techniques in image classification, speech
recognition, sentence modeling and lately in wearable sensors
based human activity recognition [5]. CNNs are Deep Neural
Networks with interconnected structures [6]. CNN has ”the
ability of multi-layer networks trained with gradient descent
to learn complex, high-dimensional, non-linear mappings from
large collections of examples” [22]. A CNN model nor-
mally consists of convolutional layer, pooling layer and fully-
connected layers which perform classification or regression
tasks. These multi-layer networks can extract automatic fea-
tures from raw sensor signals [8] [4]. CNN has the advantages
of local dependency and scale invariance when applied time
series classification [4]. The convolution operation effectively
exploits the local dependency of time-series [15] of wearable
sensor signals used for HAR which are probably correlated.
People usually perform the same activity differently, so scale
invariance of CNN is well suited for HAR. Most approaches
combine the convolutional layer with the pooling layer per-
forming max or average pooling, although other strategies like
stochastic pooling and spatial pooling units are also used [23].
After convolution, the pooling layer can reduce sensitivity of
the output [10], avoid over fitting and speed up the training
process [4]. The fully connected neural networks combine
local structures in the lower layers with an inference engine for
instance SoftMax. Weight sharing is a used strategy to reduce
the complexity of the network [24].

IV. COMPARATIVE ANALYSIS

This sections describes the comparative analysis between
AHN and CNN applied on HAR. First, we introduce the
factors to be studied and how to be measured them. Then,
we present the case study scenario.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



TABLE I
SETUP OF THE HYPER-PARAMETERS IN THE COMPARATIVE ANALYSIS.
FOR ALL THE CASES, THE INPUT SIZE IS 50% OF THE TOTAL TRAINING
DATA. RANGES ARE MARKED AS LOWER BOUND:STEP:UPPER BOUND.

Hyper-parameter Range Median
AHN

molecules 2 : 1 : 20 11
batch size 10 : 10 : 100 (%) 50%

CNN
section depth 1 : 1 : 20 10

initial learning rate 1E − 6 : 0.01 : 0.01 0.0055
momentum 0 : 0.01 : 0.1 0.05

A. Factors

For this comparative analysis, we consider the following
aspects to evaluate on the performance of the models: (i) the
effect of the hyper-parameters and (ii) the influence of the
input size.

1) Hyper-parameters: The training procedure in the models
highly depends on the architecture chosen and the initial set-
tings of the training algorithm. Both architecture and settings
are configured using the hyper-parameters. In this regard, we
choose the next hyper-parameters: the number of molecules
and the batch size for AHN; and the number of block layers
(section depth, as described below), the initial learning rate
and the momentum for CNN.

2) Input Size: Another factor that impacts on the perfor-
mance of the models is the amount of data for training. In this
work, we consider the percentage of the training data (input
size) used for tuning the parameters of the models.

B. Metrics

We measure the performance of the models due to the
hyper-parameters and the input size through three metrics. The
first considers the accuracy of the model, as expressed in (4),
where TP , TN , FP and FN represent the true positive, true
negative, false positive and false negative values, respectively.
The second metric evaluates the training time in seconds that
the model spends to perform accurately. The third metric
computes the number of parameters required in the proposed
architecture.

accuracy =
TP + TN

TP + TN + FP + FN
(4)

C. Experimental Setup

We compute the metrics described above by varying the
values of the hyper-parameters in a given range. Table I
summarizes the ranges for the hyper-parameters considered in
the study. We vary the hyper-parameters one at the time while
the other hyper-parameters were setup in the median value,
also shown in Table I. We perform a 5-fold cross validation
at each iteration within the range of the hyper-parameter to be
evaluated. Reported values were the mean accuracy and the
mean training time. For illustration purposes, the architectures
of the models are depicted in Fig. 1.

In addition, we conduct a Bayesian optimization [25] to find
the suitable values of the hyper-parameters in the models. This

Fig. 1. Architectures of the models implemented in this comparative study:
(a) AHN showing m molecules in a compound, and (b) CNN showing the
block and the other layers.

approach obtains an optimal architecture of the models. Then,
we measure the mean accuracy and the mean training time in
a 5-fold cross validation using these suitable architectures. In
the same architectures, we measure the number of parameters
required.

Lastly, we use the same suitable architectures to measure
the impact of the input size. For this experiment, we conduct
a 5-fold cross validation and we report the mean accuracy and
the mean training time.

All the experiments were done using a personal computer
Dell XPS 13 with Intel Core i7-8550U processor at 4.0GHz
and 4 cores, and 8GB in RAM. No GPUs were used.

D. Case Study on Human Activity Recognition

For this comparative analysis, we used the public PAMAP2
dataset [13] for human activity recognition. It consists of
sensor signal recordings from nine subjects carrying out lo-
comotion activities. These twelve classes are lying, sitting,
standing, walking, running, cycling, nordic walking, ascending
stairs, descending stairs, vacuum cleaning, and rope jumping.
For this work, we use 51 raw signals coming from the sen-
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Fig. 2. Performance of AHN in the case study.

sors: accelerometers, gyroscopes, and magnetometers. Other
measurements stored in the dataset were not be considered.

We adopted the same procedure to develop a human activity
recognition model, as in [26]. To do so, we pre-processed the
raw signals using a sliding window approach with a window
size of 3 seconds and overlapping of 50%, as in [26].

For the CNN, we also implemented the architecture sug-
gested in [26]. This architecture is built using an input layer
that receives the 51 3-second signal segments, a block layer, a
dropout layer of 50%. Then, it inputs to a fully-connected layer
with softmax function to classify the 12 different activities.
Particularly, the block layer comprises a convolutional layer
with filter size of 3 × 3, a batch normalization layer with
a rectified linear units (ReLU) layer, and a cross-channel
normalization layer of size 5 to independently treat sensor
signals over time. Moreover, we increase the number of block
layer by setting this up with the hyper-parameter section depth.
Depending on this value, the number block layers were added
accordingly. This procedure enlarges the architecture of the
CNN for evaluating the complexity of the model in those
terms.

TABLE II
COMPARISON OF FOOTPRINT IN MODELS.

Model Memory (KB) Learnable parameters (units)
AHN 53 6, 110
CNN 40 9, 004

V. RESULTS AND DISCUSSION

This section reports the results of the comparative analysis.
Three experiments were done: the first considers the evalu-
ation of the performance in terms of the hyper-parameters.
The second experiment considers to optimize the architecture
of the models using Bayesian optimization and to evaluate
the performance of the models. Lastly, the third experiment
considers to measure the performance of the models due to
the input size.

First, we measured the performance of the AHN and CNN
models depending on the variation of the hyper-parameters.
Figure 2 shows the mean accuracy and the mean training
time of the AHN model due to the variation in the number
of molecules and the batch size (first two-row graphs). As
noted, the mean accuracy slightly varies over the different
values of the hyper-parameters. But, the mean training time
decreases when the number of molecules increases, and the
mean training time increases while the batch size value also
increases. In the same way, Figure 3 shows the mean accuracy
and the mean training time of the CNN model with respect
to the variation of the section depth, the initial learning rate
and the momentum values (first three-row graphs). It can be
seen that the section depth slightly modifies the accuracy of
the model, but it highly impacts on the mean training time
(quasi-linear). The performance of the CNN reports better
mean accuracy while the initial learning rate increases; and
the mean training time decreases in the same evolution of the
initial learning rate. The momentum value does not report a
significant impact on the mean accuracy of the model, and
larger values of momentum also decreases the mean training
time.

In the second experiment, the architectures of the models
were optimized using Bayesian optimization. In Figure 2, the
3D-graph reports the estimated objective function (in terms
of the loss rate) as the hyper-parameters change. From this
analysis, the best hyper-parameter values are: molecules = 9
and batch size = 35.4%. On the other hand, Figure 3 reports
two 3D-graphs about this optimization procedure. In this case,
the optimal hyper-parameter value found are: section depth
= 4, initial learning rate = 0.0099 and momentum = 0.0659.
Lastly, it was compared the memory footprint and the learnable
parameters required in both models, as depicted in Table II.
It can be noticed that AHN requires 32.1% less learnable
parameters than CNN, but AHN requires 13 KB in memory
more than CNN.

For the third experiment, we trained the models again with
the optimal values of the hyper-parameters. Figure 4 shows
these results in terms of the mean accuracy and the mean
training time. It can be observed that the AHN-model slightly
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Fig. 3. Performance of CNN in the case study.

overcomes the performance of the CNN-model. The mean
accuracy increases while the percentage of input size increases.
Moreover, this result gives insights that AHN requires less
amount of training data (in addition to the batch size) than
CNN. In terms of the mean training time, both optimal models
perform similar behavior.

A. Discussion
Through the above experiments, AHN showed better per-

formance in terms of the mean accuracy since it was less
variable than the mean accuracy calculated in CNN. On of
the advantages of AHN is the ability to learn from smaller
size of training data than CNN. These results outperform the
implementability of AHN in problem domains with limited
data. Another advantage is the robustness of the performance
accuracy in terms of the hyper-parameters because it does not
require too much effort to set them and obtain high accuracy.
Moreover, the number of hyper-parameters in AHN are much
less than in CNN. While AHN only has two hyper-parameters,

Fig. 4. Performance of the best models of AHN and CNN.

CNN has more than eight different parameters to set, like:
number of layers, type of layers, type of activation functions,
filter size, number of filters, initial learning rate, momentum,
regularization term, among others.

Some limitations found in AHN is the number of learnable
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parameters that is larger than those required in CNN, and the
necessity of extracted features before training in contrast with
CNN. Lastly, it is worth noting to say that this comparative
analysis was done over a specific case study on human activity
recognition, and with a particular public dataset. Thus, a more
extendable experimentation and comparison should be done,
including other related HAR datasets for validation.

VI. CONCLUSIONS

We presented a comparative analysis between AHN and
CNN applied on HAR classification problem considering the
following aspects to evaluate the performance of the model:
(i) the evaluation of the performance in terms of the hyper-
parameters (ii) the optimization of the architecture of the
models (iii) the assessment of the performance of the models
due to the input size. Our results show that AHN architecture
is simpler to set up than CNN, it needs less hyper-parameter
configuration and shows a slightly better accuracy performance
using an optimized architecture. We chose to compare AHN
with CNN given that it is a very well suited machine learning
technique for HAR.

For future work, we are considering to extend the anal-
ysis increasing the number of hyper-parameters in CNN. In
addition, it is required to evaluate the performance of both
machine learning models in other related HAR datasets and
in other problem domains.
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