
Convergence Rate Analysis of Viscosity
Approximation based Gradient Algorithms

Prayas Jain1, Mridula Verma2 and K.K Shukla3

Indian Institute of Technology (BHU) Varanasi1,3

Institute for Development and Research in Banking Technology (IDRBT), Hyderabad2

prayas.jain.cse14@iitbhu.ac.in1, vmridula@idrbt.ac.in2, kkshukla.cse@iitbhu.ac.in3

Abstract

Proximal Algorithms are known to be popular in
solving non-smooth convex loss minimization framework
due to their low iteration costs and good performance.
Convergence rate analysis is an essential part in the process
of designing new proximal methods. In this paper, we
present a viscosity-approximation-based proximal gradient
algorithm and prove its linear convergence rate. We also
present its accelerated variant and discuss the condition
for the improved convergence rate. These algorithms are
applied to solve the problem of multiclass image classi-
fication problem. CIFAR10, a popular publicly available
benchmark real image classification dataset is used to
experimentally validate our theoretical proofs, and the
classification performances are compared with that of the
state-of-the-art algorithms. To the best of our knowledge,
it is the first time that the viscosity-approximation concept
is applied to a multiclass classification problem.

I. INTRODUCTION

The problem of image/object categorization has been consid-
ered to be an important problem in the field of machine learning
and computer vision. Among a number of frameworks for this
problem, we consider the regularized convex loss minimization
framework designed as follows:

min
x∈Rd

F (x) = h(x) + λg(x). (1)

where d is the dimension of each sample, h(·) : Rd → R
is a smooth convex loss function with L-Lipschitz continuous
gradient, g(·) : Rd → Rd may be a non-smooth convex
regularization function and λ is a regularization parameter.

It is assumed that the regularization function g(·) is a simple
function, i.e. the exact value of its proximity operator can be
computed. A number of first order optimization techniques are
available to solve this framework, such as incremental method
[1], coordinate descent [2], mirror descent [3], smoothing [4],
homotopy [5] and proximal methods [6], [7] to mention a
few. In addition, the convergence analysis of such algorithms
has also been an important research direction [8], [9], [10],
[11]. We concentrate on the proximal methods, where the
convergence rate of traditional proximal gradient algorithm
(PGA) is O(1/k), where k is the number of iteration. In
past decade, acceleration gradient algorithm (AGA) with a
number of variants have been proposed with the convergence
rate O(1/k2). Vast applications of AGA for the purpose of
classification include [12], [13], [14]. In literature there exists

a number of application areas where proximal algorithms are
being successfully applied, such as [15], [16], [17], [18].

Various advantages of forward backward algorithms (FBA)
motivated researchers to further explore various modifications
and generalizations of such methods. Recently, in [19], authors
proposed the viscosity-approximation-based proximal gradient
algorithm (VGA) as well as its accelerated variant viscosity-
approximation-based accelerated gradient algorithm (VAGA)
to solve the problem of multitask regression. Although, a
number of research has been done in viscosity-approximation-
based methods, the analysis of the asymptotic rate of conver-
gence of the viscosity-approximation-based accelerated gradient
algorithm is still an open problem. In this paper we not
only analyzed the convergence rate of VAGA, we take the
experimental results with this algorithm to the next level and
present a detail empirical result analysis with the multi-class
image classification problem as well.

The contribution of this paper is three-fold:
• We discuss the boundedness of the sequence generated by

the new VGA and VAGA algorithms using an approach
different from [19].

• We present detailed proof of convergence rates for both
the algorithms.

• Both of these algorithms are applied to the multi-class
image classification problem and experimental results
with a publicly available benchmark image classification
dataset, CIFAR10 are presented.

The organization of the paper is as follows. In the next section,
we will discuss the mathematical background of the problem
in hand, the related concepts and notations used throughout
this paper. In section 3, we will introduce the VGA and the
VAGA algorithm for the problem of image classification, and
present the boundedness property and convergence rate of the
algorithm. The experimental setup and result analysis will be
given in section 4. Finally we conclude our work in section 5.

II. PRELIMINARIES

Let H be a Hilbert space and T : H → H be an operator.
T is called an L−Lipschitz operator if there exists L ∈ [0,∞)
such that

‖Tx− Ty‖ ≤ L‖x− y‖, x, y ∈ H.

An L−Lipschitz operator is called a non-expansive operator if
L = 1 and contraction if L < 1. T is monotone if it satisfies,

(x, y), (x′, y′) ∈ G(T)⇒ 〈x− x′, y − y′〉 ≥ 0,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

where G(T) = {(x, y) ∈ H × H : x ∈ D(T), y ∈ Tx}
is its graph, which is also a monotone set in H × H, and
D(T) is the domain of operator T . Operator T is maximal
monotone operator if the graph G(T) is not properly contained
in the graph of any other monotone operator. An example of
maximal monotone operator is the sub-differential of a convex
function. It is well-known that for any c > 0, the resolvent JTc
defined as JTc = (I + cT)−1 of a maximal monotone operator
T is a non-expansive operator. Consider A : H → 2H and
B : C → H are two maximal monotone operators, where B
satisfies the property (N) on (0, γH,B). In order to solve the
problem of finding zeros of sum of A and B using forward-
backward operator splitting technique, for r ∈ (0, γH,B), the
forward-backward operator JA,Bcn is defined by

JA,Bcn x = JAcn(I − cnB)x, x ∈ C. (2)

With respect to problem (1), the forward backward operator
JA,Bcn is written as follows:

Jh,gρcn(xi) = proxρcng(xi − cn∇h(xi)), (3)

where cn is a regularization sequence in (0, γH,∇g). With
x1 ∈ Rd, the traditional proximal gradient algorithm is defined
as the following iterative algorithm,

xn+1 = Jh,gρcn(xn) (4)

In order to accelerate the convergence of traditional proximal
gradient algorithm, accelerated proximal gradient algorithm is
proposed as follows,

yn = xn − βn(xn − xn−1)
xn+1 = Jh,gρcn(yn)

(5)

where βn = tn−1
tn+1

with tn+1 =
1+
√

1+4t2n
2 as defined in [6]. In

this paper, we present a viscosity-approximation based proximal
gradient algorithm and its accelerated variant and discuss their
convergence rates.

III. VISCOSITY-APPROXIMATION-BASED GRADIENT
ALGORITHMS

Let proxcg be the proximity operator w.r.t. g in (1), f be
a contraction mapping with contraction factor κf ∈ [0, 1),
{αn} is a sequence in (0, 1] and c is a value in (0, 2/L). We
define T = proxcg(I − c∇h) and Tn = proxcng(I − cn∇h),
where lim

n→∞
cn = c. For any x0 and x1 ∈ Rd, we define

iterative schemes for VGA and VAGA [19] for sequence {xn}
as follows: {

xn+1 = Tnyn

yn = (1− αn)xn + αnf(xn)
(6)

xn+1 = Tnyn

yn = (1− αn)zn + αnf(zn)

zn = xn − (xn − xn−1) tn−1tn+1

tn+1 =
1+
√

1+4t2n
2

(7)

The viscosity can be adjusted by the parameter κf . The pseudo
code of the corresponding proximal algorithms are given in
algorithms 1 and 2.

Algorithm 1: VGA
Data: Data, ρ
Result: xn+1

begin
x0 = x1 ∈ Rd, c0 = 1, n = 0, α0 = 0;
repeat

n = n+ 1;
Find cn using backtracking step-size rule and compute αn;
yn = (1− αn)xn + αnf(xn);
xn+1 = proxρcn‖·‖2yn;

until converge;

Algorithm 2: VAGA
Data: Data, ρ
Result: xn+1

begin
x0 = x1 ∈ Rd, c0 = 1, t0 = 0, n = 0, α0 = 0;
repeat

n = n+ 1;
Find cn using backtracking step-size rule and compute αn;

tn+1 =
1+

√
1+4t2n
2 ;

zn = xn − (xn − xn−1)
tn−1
tn+1

;
yn = (1− αn)zn + αnf(zn);
xn+1 = proxρcn‖·‖2yn;

until converge;

A. Mathematical analysis

It has been proved that the following result holds in [6],
where L ≥ L(h) , L(h) being the lipschitz continous gradient
of the optimization function.

F (x)− F (T (y)) ≥ L

2
‖T (y)− y‖2 + L〈y − x, T (y)− y〉

(8)

B. Boundedness Proof of VAGA

Theorem 3.1: Let xn, yn, zn be the sequence generated from
VAGA. Then for n>=1, xn, yn, zn are bounded. Boundedness
of a sequence is defined as follows: A sequence {an} is said
to be bounded if and only if ∃M ∈ R such that

‖an‖ ≤M ∀n ∈ N

Let βn = tn−1
tn+1

. We take tn as the nesterov acceleration
sequence. However, the boundedness is independent of the
choice of acceleration sequence, and an alternate sequence
might be experimentally chosen for better results. In order to
prove the boundedness of the generated sequence, we initiate
as follows,

‖xn+1 − x∗‖ = ‖Tnyn − x∗‖ ≤ ‖yn − x∗‖
≤ (1− αn)‖zn − x∗‖+ αn‖f(zn)− x∗‖
≤ (1− (1− κf)αn)‖zn − x∗‖+ ‖f(x∗)− x∗‖

≤ max{‖zn − x∗‖,
‖fx∗ − x∗‖

1− κf
}

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Now, from 7, we can write,

‖zn − x∗‖ = ‖xn +
tn − 1

tn+1
(xn − xn−1)− x∗‖

= ‖(1 + βn)xn − βnxn−1 − x∗‖
≤ (1 + βn)‖xn − x∗‖+ βn‖xn−1 − x∗‖
≤ (1 + 2βn)max{‖xn − x∗‖, ‖xn−1 − x∗‖}

Let the upper bound of our momentum sequence {βn} (a hyper-
parameter) be µ1. Note: In most of the latest implementations,
like deep learning models or other computational frameworks,
it has been observed that momentum is generally kept constant,
closer to 1 (around 0.9). Keeping it around 0.9 works well
and almost no improvement is observed in shifting it. Hence,
models use a constant sequence as the momentum sequence,
where βn = µ1. Let µ2 be another constant. Then by replacing
1 + 2βn ≤ µ2, we get,

‖zn+1 − x∗‖ ≤ max{µ2‖xn − x∗‖, µ2‖xn−1 − x∗‖}

‖xn+1 − x∗‖ ≤ max{µ2‖xn − x∗‖, µ2‖xn−1 − x∗‖,
‖fx∗ − x∗‖

1− κf
} (9)

Extrapolating, and replacing, we will get

‖x1 − x∗‖ ≤ max{µ2‖x0 − x∗‖, µ2‖x−1 − x∗‖,
‖fx∗ − x∗‖

1− κf
Since, during initialization x0 = x−1 = Initialization

‖x1 − x∗‖ ≤ max{µ2‖x0 − x∗‖,
‖fx∗ − x∗‖

1− κf
}

And similarly,

‖x2 − x∗‖ ≤ max{µ2‖x0 − x∗‖,
‖fx∗ − x∗‖

1− κf
}

Hence,

‖xn+1 − x∗‖ ≤ max{µ2‖x0 − x∗‖,
‖fx∗ − x∗‖

1− κf
}

Thus, {xn} and similarly {yn} , {zn} are bounded.

IV. PROOF CONVERGENCE RATE VGA

Theorem 4.1: Let xn, yn be the sequence generated from
VGA. Then for n>=1,

F (xn)− F (x∗) ≤
C

n

where C ≥ 0 , ∀x∗ ∈ X∗
Proof: Consider βL(f) < Ln < ψL(f)∀n. Substitute, x = x∗,
y = yn and L = Ln+1 in (8), using pythagoras theorem

2

ψL(f)
(F (x∗)− F (xn+1)) ≥ ‖xn+1 − x∗‖2 − ‖yn − x∗‖2

(10)

≥ (‖xn+1 − x∗‖2 − ‖xn − x∗‖2)
+ αn(‖xn − fxn‖2 + 2〈xn − fxn, fxn − x∗〉)

Substitute x = xn, y = yn and L = Ln+1 in 8, we get
2

βL(f)
(F (xn)− F (xn+1)) ≥ ‖xn+1 − xn‖2 − ‖yn − xn‖2

≥ ‖xn+1 − xn‖2 − αn‖fxn − xn‖2

≥ ‖xn+1 − fxn‖2 + 2〈xn+1 − fxn, fxn − xn〉

Case 1: RHS is positive, i.e.,
‖xn+1 − fxn‖2 + 2〈xn+1 − fxn, fxn − xn〉 ≥ 0. Then,

2

βL(f)
(nF (xn)− (n+ 1)F (xn+1) + F (xn+1))

≥ n(‖xn+1 − fxn‖2 + 2〈xn+1 − fxn, fxn − xn〉)

Summing over n = 0 · · · k − 1,

2

βL(f)
(−kF (xk) +

k−1∑
n=0

F (xn+1)) (11)

≥
k−1∑
n=0

n(‖xn+1 − fxn‖2 + 2〈xn+1 − fxn, fxn − xn〉)

Multiplying both sides by β
ψ ,

2

ψL(f)
(−kF (xk) +

k−1∑
n=0

F (xn+1) (12)

≥ β
k−1∑
n=0

n(‖xn+1 − fxn‖2 + 2〈xn+1 − fxn, fxn − xn〉)

Similarly, from (10),
2

ψL(f)
(F (x∗)− F (xn+1)) (13)

≥ (‖xn+1 − x∗‖2 − ‖xn − x∗‖2)
+ αn(‖xn − fxn‖2 + 2〈xn − fxn, fxn − x∗〉)

Summing over n = 0, · · · k − 1,

2

ψL(f)
(kF (x∗)−

k−1∑
n=0

F (xn+1)) (14)

≥ ‖xk − x∗‖2 − ‖x0 − x∗‖2 +
k−1∑
n=0

αn(‖xn − fxn‖2

+ 2〈xn − fxn, fxn − x∗〉)

Also, since the RHS is -ve, we can write,

‖x0 − x∗‖2 ≥‖xk − x∗‖2 +
k−1∑
n=0

αn(‖xn − fxn‖2+ (15)

2〈xn − fxn, fxn − x∗〉)

Adding 14 and 12, we get,

2

ψL(f)
(kF (x∗)− kF (xk)) ≥

β
k−1∑
n=0

n(‖xn+1 − fxn‖2+

2〈xn+1 − fxn, fxn − xn〉) + ‖xk − x∗‖2 − ‖x0 − x∗‖2

+
k−1∑
n=0

αn(‖xn − fxn‖2 + 2〈xn − fxn, fxn − x∗〉)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

2k

ψL(f)
(F (xk)− F (x∗)) ≤ −

β
k−1∑
n=0

n(‖xn+1 − fxn‖2+

(16)

2〈xn+1 − fxn, fxn − xn〉)− ‖xk − x∗‖2

+ ‖x0 − x∗‖2 −
k−1∑
n=0

αn(‖xn − fxn‖2+

2〈xn − fxn, fxn − x∗〉)

≤ ‖x0 − x∗‖2 − ‖xk − x∗‖2 −
k−1∑
n=0

αn(‖xn − fxn‖2)

(17)

From 16 and 15, we can write,

2

ψL(f)
(kF (x∗)− kF (xk)) ≤ C (18)

where C = ‖x0 − x∗‖2 − ‖xk − x∗‖2 −
∑k−1
n=0 αn(‖xn −

fxn‖2 + 2〈xn − fxn, fxn − x∗〉) ≥ 0 .
Also, since xk converges to x∗, loss function F will trivially
satisfy, F (xk)− F (x∗) >= 0. That is, C >= 0 Thus,

F (xk)− F (x∗) ≤
CψL(f)

2k
(19)

Case 2: RHS is negative, i.e., ‖xn+1 − fxn‖2 + 2〈xn+1 −
fxn, fxn − xn〉 ≤ 0. Since LHS is +ve,

2

βL(f)
(F (xn)− F (xn+1)) ≥ 0

Summing over n = 0, · · · k − 1,

2

βL(f)
(−kF (xk) +

k−1∑
n=0

F (xn+1) ≥ 0 (20)

From 20 and 14,

2k

ψL(f)
(F (xk)− F (x∗)) ≤‖x0 − x∗‖2 − ‖xk − x∗‖2−

k−1∑
n=0

αn‖xn − fxn‖2 (21)

From 15 and 21, we again get,

2

ψL(f)
(kF (x∗)− kF (xk)) ≤ C

Case 3: RHS assumes both positive and negative values in
different iteration steps
In this case, the proof given for cases 1 and 2 can be combined
to get the same result.

V. PROOF CONVERGENCE RATE VAGA

Theorem 5.1: Let xn, yn, zn be the sequence generated from
VAGA. Then for n>=1,

F (xn)− F (x∗) ≤
2αL(h)‖x0 − x∗‖2

(k + 1)2
,∀x∗ ∈ X∗

if t2n+1
t2n

tntn+1
tn+1
tn
1

T 2 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0
−2 2 0 −1 1 −1 0 1
0 1 0 −1 0 −1 1 0
0 −1 0 1 0 1 −1 0

〈xn, yn〉
‖xn‖2

‖yn‖2
〈xn, x∗〉
〈xn−1, yn〉
〈xn, xn−1〉
〈xn−1, x

∗〉
〈yn, x∗〉

≥ 0 (22)

Proof: let vn = F (xn) − F (x∗). Substituting x = x∗,
y = yn in 8 , we get

−2L−1n+1vn+1 ≥ ‖xn+1 − x∗‖2 − ‖yn − x∗‖2

Using the expression ‖b−a‖2+ 〈b−a, a− c〉 = ‖b− c‖2−
‖a− c‖2,

−2L−1n+1vn+1 ≥ ‖xn+1 − yn‖2 + 2〈xn+1 − yn, yn − x∗〉

Similarly, substituting x = xn, y = yn in 8, we get,
2

βL(f)
(F (xn)− F (xn+1)) ≥ ‖xn+1 − xn‖2 − ‖yn − xn‖2

(23)

2L−1n+1(vn − vn+1) ≥ ‖xn+1 − yn‖2 + 2〈xn+1 − yn, yn − xn〉
(24)

Multiplying (24) by (tn+1 − 1) and adding to (10), we get,
2

Lk+1
((tn+1 − 1)vn − tn+1vn+1) ≥ tn+1‖xn+1 − yn‖2+

2〈xn+1 − yn, tn+1yn − x∗ − (tn+1 − 1)xn〉

2

Lk+1
(t2nvn − t2n+1vn+1) ≥ ‖tn+1xn+1 − yn‖2+ (25)

2tn+1〈xn+1 − yn, tn+1yn − x∗ − (tn+1 − 1)xn〉
≥ ‖tn+1xn+1 − (tn+1 − 1)xn − x∗‖2− (26)
‖tn+1yn − (tn+1 − 1)xn − x∗〉

let un = tnxn− (tn− 1)xn−1−x∗. Substituting in (25) we
get,

2

Lk+1
(t2nvn − t2n+1vn+1) ≥ ‖un+1‖2

−‖tn+1yn − (tn+1 − 1)xn − x∗‖2

≥ ‖un+1‖2 − ‖un‖2 + ‖un‖2−
‖tn+1yn − (tn+1 − 1)xn − x∗‖2

In order to meet the requirement, we need to prove that the
LHS is greater than the quantity ‖un+1‖2 − ‖un‖2, for which
we need to prove that the quantity ‖un‖2−‖tn+1yn− (tn+1−
1)xn − x∗‖2 is positive. Or in other words,

‖tnxn − (tn − 1)xn−1 − x∗‖2−
‖tn+1yn − (tn+1 − 1)xn − x∗‖2 ≥ 0

Again using the expression ‖b − a‖2 + 〈b − a, a − c〉 =
‖b− c‖2 − ‖a− c‖2, we get,

‖tnxn − (tn − 1)xn−1 − tn+1yn − (tn+1 − 1)xn‖2

+ 2〈tnxn − (tn − 1)xn−1 − tn+1yn − (tn+1 − 1)xn,
(27)

tn+1yn − (tn+1 − 1)xn − x∗〉 ≥ 0

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE I
COMPARISON OF ACCURACY AND COMPUTATIONAL TIME OF DISCUSSED ALGORITHMS

Optimization
Algorithm

Accuracy Avg. Computational Time (sec)
Training Validation Testing Total Per Epoch

SGA 0.3737 0.3298 0.3572 162.49 10.83
PGA 0.4110 0.3660 0.3667 161.96 10.79
VGA 0.3922 0.3764 0.3845 164.71 10.98

FISTA 0.4102 0.3693 0.3802 166.37 11.09
VAGA 0.4104 0.3895 0.3989 168.80 11.25

Since the first term will be always positive, we now need to
prove,

〈(tn+1 + tn − 1)xn − (tn − 1)xn−1 − tn+1yn,

tn+1yn − (tn+1 − 1)xn − x∗〉 ≥ 0

Solving the above equation, we get the final condition for
the O(1/k2) for algorithm as given in equation (22).

VI. EXPERIMENTAL SETUP AND RESULT ANALYSIS

The Viscosity based Accelerated Gradient Algorithm
(VAGA) was compared with three other proximal gradient
based algorithms and one non-proximal based algorithm
(Stochastic Gradient Descent) on CIFAR-10 dataset. We also
experimentally verify the proposed condition of convergence
for VAGA. We describe the dataset and our model in the next
sub-section followed by the results.

A. Dataset Description

The CIFAR-10 dataset [20] consists of 60,000 RGB colored
32×32 pixel images equally distributed into 10 classes. We
use 40,000 examples for training, 10,000 for validation and
10,000 for testing the model. We use raw pixel information as
features for the model. The pixel value can range from 0-255
for each color. As a pre-processing step, the mean image is
subtracted from the dataset, and a bias feature of value 1 is
added. Hence, we have a total of 3073 (32×32×3 + 1) input
features for the model.

B. Model Description

The model used to show experimental results can be
considered as the baseline model for the problem of Image
Classification. We use a multi-class logistic regression frame-
work as our model. The framework uses Softmax function as
the activation function. The number of classes for the CIFAR-
10 dataset are 10. The model returns a score (between 0 and 1)
for each class. We mark the class with the highest score as the
predicted class, and use it to calculate the accuracy of the model.
We optimize the model on cross entropy loss and `2 regularizer.
The reason for using `2 regularizer is the fact that Stochastic
Gradient Descent requires smooth optimization functions, and
`1 regularizer adds non-smoothness to the optimization function.
Further, we also observe similar results for `1 regularizer for
proximal algorithms. The cross-entropy loss for the ith example,
having yi class has the form:

Li = − log(
efi∑
j e
fj
)

or equivalently

Li = −fyi + log
∑
j

efj

where fj(z) is the softmax function defined as

fj(z) =
ezj∑
k e

zk

We train the model in a stochastic fashion, with a batch
size of 250 images for 15 epochs. We also experimented with
higher epochs, which resulted in no significant increase in
accuracy or decrease in loss for any of the discussed algorithms,
hence sticking with 15 epochs for comparison. The number of
iterations per epoch are equal to the total size of the training
dataset divided by the batch size of each iteration, 160 in
our experiments. Hence we train for 2400 iterations for each
algorithm. The models were trained on Intel(R) Xeon(R) E5-
2420 v2 CPU with a 2.20 GHz clock speed. The images for each
batch are chosen randomly, using a uniform distribution from
the set of training images. Hyper-parameter optimization is done
using random search. After reducing the optimal parameters
for each algorithm, we run the experiments 30 times and show
the training and validation accuracy statistics using box-plots
shown below. 1

The deduced condition for convergence is checked in each
iteration for VAGA and is found to be satisfied for 99.75%
of the total iterations. The optimization algorithms may be
applied and compared on complex deep learning systems to
challenge the state of the art. We leave that as future work, and
focus on establishing the competitiveness of our optimization
algorithm.

The detailed results are presented in table I. We report
median training and validation accuracies along with the
final testing accuracy. We observe better results show by
VAGA optimization scheme compared to other techniques by
a slight margin. Simple stochastic gradient descent show lesser
validation and testing accuracy compared to other techniques.
Both VGA and VAGA perform the best, highlighting the
usefulness of the viscosity based component in the optimization
techniques.

We also report the average computational time elapsed by
the iterations in terms of the total and per epoch time taken
by the different algorithms. While SGD has least total and

1To ensure our experiments and results are reproducible, we will be releasing the Python Code of our experiments along with all the fine-tuned hyperparameters.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

(a) Box Plots for Training Accuracy (b) Box Plots for Validation Accuracy (c) Convergence of Optimization Function

Fig. 1. Accuracy and Convergence Results for the CIFAR10 dataset. 1(a) and 1(b), Experiments repeated 30 times for generation of BoxPlots. 1(c) The
optimization function used is cross entropy loss combined with l2 regularizer.

per epoch time, due to its relative simplicity, the time for the
proposed technique is also comparable, as shown in I. The
higher per epoch cost arises due to extra computation while
calculating the acceleration step. We also report the graph for
the convergence of algorithms. It should be noted that since
the algorithms are used in a stochastic fashion, and the training
is done in batches due to complexity issues, the training loss
might increase for some iterations, but the general trend is of
convergence. VAGA and VGA algorithm convergence faster
than other algorithms, and all the proximal algorithms converge
much faster than standard SGA.

Due to the faster convergence of VAGA algorithm, the overall
computational cost of training a model might be lower than
using other non-accelerated variations due to lesser number
of epochs despite having a higher per epoch cost. We leave
experimentation with bigger data-sets for future work.

VII. CONCLUSION

In this paper, we present a viscosity-approximation based
gradient and accelerated gradient algorithm to solve the multi-
class image classification problem and discuss the convergence
rates of both the algorithms. We performed experiments on
the real benchmark CIFAR10 dataset. We conclude that the
theoretical convergence rates of VGA and VAGA is similar as
that of PGA and AGA, however the practical performance of
these algorithms are better than the state-of-the-art algorithms
in terms of classification accuracy. In future, we aim to apply
these algorithms to the popular deep learning frameworks.

REFERENCES

[1] D. P. Bertsekas, “Incremental proximal methods for large scale convex
optimization,” Mathematical programming, vol. 129, no. 2, p. 163, 2011.

[2] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[3] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected
subgradient methods for convex optimization,” Operations Research
Letters, vol. 31, no. 3, pp. 167–175, 2003.

[4] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathe-
matical programming, vol. 103, no. 1, pp. 127–152, 2005.

[5] D. L. Donoho and Y. Tsaig, “Fast solution of ell1-norm minimization
problems when the solution may be sparse,” IEEE Transactions on
Information Theory, vol. 54, no. 11, pp. 4789–4812, 2008.

[6] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009. [Online]. Available:
http://dx.doi.org/10.1137/080716542

[7] A. Chambolle and C. Dossal, “On the convergence of the iterates
of the ”fast iterative shrinkage/thresholding algorithm”,” Journal of
Optimization Theory and Applications, vol. 166, no. 3, pp. 968–982,
2015. [Online]. Available: http://dx.doi.org/10.1007/s10957-015-0746-4

[8] D. Yang and Y. Liu, “L1/2 regularization learning for smoothing interval
neural networks: Algorithms and convergence analysis,” Neurocomputing,
vol. 272, pp. 122–129, 2018.

[9] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu, “Convergence
analysis of distributed stochastic gradient descent with shuffling,”
Neurocomputing, vol. 337, pp. 46 – 57, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231219300578

[10] M. Verma, P. Jain, and K. K. Shukla, “A new faster first order iterative
scheme for sparsity-based multitask learning,” in 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), 2016, pp. 001 603–
001 608.

[11] M. Verma and K. Shukla, “Convergence analysis of accelerated
proximal extra-gradient method with applications,” Neurocomputing,
vol. 388, pp. 288 – 300, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231220301004

[12] S. Bubeck, Y. T. Lee, and M. Singh, “A geometric alternative to nesterov’s
accelerated gradient descent,” arXiv preprint arXiv:1506.08187, 2015.

[13] A. Fawzi, M. Davies, and P. Frossard, “Dictionary learning for fast
classification based on soft-thresholding,” International Journal of
Computer Vision, vol. 114, no. 2-3, pp. 306–321, 2015.

[14] N. Ito, A. Takeda, and K.-C. Toh, “A unified formulation and fast
accelerated proximal gradient method for classification,” Journal of
Machine Learning Research, vol. 18, no. 16, pp. 1–49, 2017. [Online].
Available: http://jmlr.org/papers/v18/16-274.html

[15] Y. Zhang, G. Zhou, Q. Zhao, A. Cichocki, and X. Wang, “Fast nonnegative
tensor factorization based on accelerated proximal gradient and low-rank
approximation,” Neurocomputing, vol. 198, pp. 148–154, 2016.

[16] S. F. Mahmood, M. H. Marhaban, F. Z. Rokhani, K. Samsudin, and O. A.
Arigbabu, “Fasta-elm: a fast adaptive shrinkage/thresholding algorithm
for extreme learning machine and its application to gender recognition,”
Neurocomputing, vol. 219, pp. 312–322, 2017.

[17] B. Xu and Q. Liu, “Iterative projection based sparse reconstruction for
face recognition,” Neurocomputing, vol. 284, pp. 99–106, 2018.

[18] T. Lin, L. Qiao, T. Zhang, J. Feng, and B. Zhang, “Stochastic primal-dual
proximal extragradient descent for compositely regularized optimization,”
Neurocomputing, vol. 273, pp. 516–525, 2018.

[19] M. Verma, D. R. Sahu, and K. K. Shukla, “Vaga: a novel viscosity-based
accelerated gradient algorithm,” Applied Intelligence, Dec 2017. [Online].
Available: https://doi.org/10.1007/s10489-017-1110-1

[20] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1007/s10957-015-0746-4
http://www.sciencedirect.com/science/article/pii/S0925231219300578
http://www.sciencedirect.com/science/article/pii/S0925231220301004
http://jmlr.org/papers/v18/16-274.html
https://doi.org/10.1007/s10489-017-1110-1

