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Belém, Pará CEP 66075-100, Brasil
Email: lidio@ufpa.br

danilo.duarte8@hotmail.com

2rd Roberto Célio Limão de Oliveira
Faculty of Computer Engineering-ITEC

Federal University of Pará
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Abstract—The aim of this paper is to intoduce a biologi-
cally insipired methodology for energy price prediction multi-
step ahead. The system combines a Genetic Algorithm (GA),
Lindenmayer Systems, and Deep Neural Networks (DNNs). In
the final section of the paper, we present some experiments to
investigate the possibilities of the method, especially for scenarios
in which DNNs should be evolved. The results for MLP networks
show good ability to predict spikes and satisfactory accuracy
according to error measures up to 9.8%. In 58.33% of the
cases, ADEANN-Deep provides better results than other hybrid
systems. Preliminary studies show that the LSTM network can
predict the PLD value with a percentual error of up to 2.9%,
which is lower than that obtained using multilayer perceptron
networks and other methods.

Index Terms—NeuroEvolution; Machine Learning,Time series
forecasting.

I. INTRODUCTION

Forecasting the price of electricity is an important matter
for all market participants to decide on the most appropriate
bidding strategies and establish bilateral contracts that max-
imize their profits and minimize their risks. Currently, some
forecast methods have been proposed in the literature [1], [5].
We mention the following contribuitions and advantages of
our method: ADEANN-Deep improved past applications for
working with a population of deep neural networks instead of
only one, all are trained, and those which have better predictive
capacity are selected, that is, ADEANN-Deep makes the auto-
matic design of deep neural networks, without the intervention
of the human specialist. Moreover, the novelty from a neural
network perspective is that ADEANN-Deep was designed
as an accurate automatic method for designing direct and
recurrent ANNs, thereby solving pattern recognition problems
and dynamical systems simulation, such as the prediction
of time series. In addition, our approach can be generalized

for other electricity markets, including wind power [14] and
Photovoltaics [13] and others.

Fig1 illustrates the general structure of ADEANN-Deep.
The hybrid system is described in detail in section V. In
relation to the previous version of ADEANN [4], this research
presents the following improvements: system migration to
Python language justified by its applicability and portability
in the artificial intelligence area, which enabled integration
with prominent frameworks used in the current market for
data processing, as well as data science, such as Keras and
Tensorflow.

This paper is organized as follows. Section II discusses
related work. Section III presents the features of the Brazilian
electricity market. In Section IV we describe a new approach
to formalize the problem of ADANNs (artificial development
and evolution of ANNs) as a local search based on rational
agents. Section V introduces a biologically inspired method
for automatic design of ANNs. Section VI presents Material
and Methods. Lastly, simulation results and conclusions are
presented in Sections VII and VIII, respectively.

II. RELATED WORK

The paper [6] proposes a scheme for evolving multiple-
input-multiple-output (MIMO) artificial neural networks
(ANNs) using grammatical evolution (GE). GE is a well-
known technique for program evolution. While it has also been
used for the evolution of ANN structures in the past, little work
is reported on the evolution of MIMO ANNs.

The paper [2] proposes a Deep evolutionary network struc-
tured representation (DENSER) which is a novel evolutionary
approach for the automatic generation of deep neural networks
(DNNs) which combines the principles of genetic algorithms
(GAs) with those of dynamic structured grammatical evolu-
tion (DSGE). The GA-level encodes the macro structure of
evolution, i.e., the layers, learning, and/or data augmentation
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methods (among others); the DSGE-level specifies the param-
eters of each GA evolutionary unit and the valid range of the
parameters. The use of a grammar makes DENSER a general
purpose framework for generating DNNs: one just needs to
adapt the grammar to be able to deal with different network
and layer types, problems, or even to change the range of the
parameters. DENSER is tested on the automatic generation
of convolutional neural networks (CNNs) for the CIFAR-10
dataset, with the best performing networks reaching accuracies
of up to 95.22%.

[15] used a Hybrid neural model (HIRA model) for Short-
Term Electricity price forecasting, which was also applied and
tested on two eletricity markets: German and Hungarian. In
Hungary, thermal plants have 90% of installed capacity and
represent a stable source of electricity, but generally involving
a large installed capacity per unit. Hungary uses bid-based
market, ther work calculates the electricity price forescast at
three levels: Hourly Forecasting error, Peak load Forecasting
Error and Base Load Forecasting Error. In section III, we
briefly describe the particular characteristics of the Brazilian
market.

This paper [3] proposes a new hybrid approach for
short-term energy price prediction. The approach combines
auto-regressive integrated moving average (ARIMA) and
neural network (NN) models in a cascaded structure applying
explanatory variables. A two-step procedure is applied. In
the first step, the selected explanatory variables are predicted,
while in the second one, the energy prices are forecasted by
using the explanatory variables prediction.

Function SEARCH−ANN(SearchParam, TransitionModel,
FitnessFunction) return an ANN topology

1:inputs:SearchParam, TransitionModel, FitnessFunction
2:vars:Pop, t, PopPerformances;
3:k← 0
4:ANNsPopk←Generate-ANNs(SearchParam)
5:ANNsPerformance← Evaluate-ANNs(ANNsPopk,
FitnessFunction)
6:loop do
7:if StopConditionTest(k, ANNsPerformance, SearchParam)
8:then return solution(Best-ANN(ANNsPopk,
ANNsPerformance)
9:ANNsPop(k+1)←(ANNsPop(k+1), ANNsPerformance,
TransitionModel, SearchParam)
10:ANNsPerformance←Evaluate-ANNs(ANNsPop(k+1),
FitnessFunction)
11:k ←k+1
12:end

III. BRAZILIAN ELECTRICITY MARKET

Brazil uses a cost-based market instead of a bid-based
market, and adopts a tight pool model with a centralized
and least cost dispatch organized by National System Op-
erator (ONS) [11]. This scheme is adopted due the country
peculiarities, which has an installed capacity of 121 GW
where 65.96% corresponds to hydro generation. The hydro
system is composed of several reservoirs capable of multi-
year regulation located at the same river with different owners
[3].

The difference between the quantity of energy contracted
and that effectively consumed or produced by the agents is
accounted in the short-term market based on the spot price
called PLD (settlement price for the differences) [3]. PLD
is calculated weekly, based on the system marginal cost of
operation obtained from an optimization process to dispatch
generators, at three load levels (”Medium”,”Heavy”,”Light”).
The PLD is established by the Brazilian Electricity Regulatory
Agency (ANEEL) [10] and is evaluated to each submarket
associated with the country regions: North, Northeast, Center-
west/Southeast, and South.

IV. OUTLINE OF THE APPROACH

Our approach involves the formulation of an artificial neural
network design as an optimization problem (ANNDP), that is:
given a set of L observations on the behavior of a particular
process, Ψ={(xdl, ydl)}, l = 1...L , where xdl represents a
numeric vector defined in Rn and ydl is a numeric vector
defined in Rm, the goal is to find an ANN’s topology, ycl

= ANN(w*, xdl), which minimizes the mean square error
between ydl and ycl, this is, between the desired values in
the observations set and the computed values in the neurons’
outputs situated in the ANN’s output layer.

An ANNs topology can be described as a finite set of
neurons, that is, nodes of an oriented graph Nodes ={n1, n2,
..nk}, and a finite set H ⊆ N x N of connections between
neurons, which means directed edges in graphs notation. An
input layer is a set of input units, that is, a subset of n nodes
whereas an output layer is a set of output units, namely a
subset of m nodes. In feed-forward ANNs(FANNs), the kth

layer (k > 1) is the set of all nodes ni ε Nodes . These types
of nodes have an edge path of length k - 1 between some input
unit and u. In fully connected recurrent ANNs (RANNs), all
units have connections to all non-input units.

We approach the solution of ANNDP based on the method-
ology of Russell and Norvig [7] called problem-solving-agent,
whose agent is named ADEANN (Artificial Development and
Evolution of ANNs), which encapsulates a special scheme
of solutions representation as well as a local search strategy
based on genetic algorithms to solve the problem. Regarding
the representation scheme, the approach adopts a generative
representation, which means that, instead of an encoded ANN
topology, each chromosome stores a set of production rules of
a Lindenmayer system (Fig 1 a, k, h) which, in turn, generates
ANN’s, (Fig 1 f). The SEARCH-ANN function illustrates the
structure of the program in the ADEANN agent.
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Rule Identifier Rule
1,2 S→. (axiom) (2) .→(f...f)n
3 (3.1) f→[f (3.2) f→fFf (3.3) f→fF (3.4) f→n

3,4,5 (3.5) f→f (3.6) f→fB (4) [→[Ff] (5) f→f*
TABLE I

THE PRODUCTION RULES OF THE PARAMETRIC L-SYSTEM WITH
MEMORY

The SEARCH-ANN function starts the local search process
aiming at achieving an artificial neural network topology
ycl=ANN{(w∗, xdl)}, which minimizes the mean square error
between ydl and ycl, for l = 1...L in the ANNDPs formulation
(stop condition in Fig 1). This function employs information
on the search parameters (SearchParam input term) as well as
a transition model (TransitionModel input term) to describe
how to modify current populations of ANNs and generate a
new population, (Fig 1 i, j, k), in addition to an evaluation
function (FitnessFunction input term), (Fig 1 g), to measure
the value of each ANN in a current population.

Firstly, in the beginning of the process, Generate-ANNs
function generates an initial population of ANNs, (Fig 1 a),
in which each ANN is represented by a set of production
rules codified in a chromosome (bit values 0 and 1). This
function considers the information in the SearchParam input
term on the desired number of ANNs in the populations as well
as on the desired length for the chromosomes in the popula-
tion. Evaluate-ANNs function stores in ANNsPerformace the
computed performance value of each ANN topology in the
current population based on the mean square error computed
in the output layer of the ANN-SEARCH-ANN function, (Fig
1 g), which employs an iteration counter (k) and a condition
named StopConditionTest boolean function to decide when
to stop the local search process and return a solution to a
problem (stop condition in Fig 1). The description of the stop
condition is based on a proposition relating the information on
the current iteration counter k and the information available in
the SearchParam input term. This means that the max number
of loops in its repetition scheme is central to the local search
strategy in the approach, as well as an ideal performance value
such that for an ANN to be considered a solution. Modify-
ANN function is executed repeatedly seeking to transform a
current population of ANNs in a new population of ANNs
(Fig 1 i, j, k). In our approach, this function encapsulates
the evolutionary principles of pairs selection and crossing
over pairs and individual mutation (Fig 1 j) . Central to the
approach, compact indirect encoding scheme (IES) conducts
and controls the process of mapping a set of production rules
of a Lindenmayer system (Fig 1 c) , codified in a chromosome
to an associated ANN topology (Fig 1 e). In sections V.A
and V.B the generative representation, which generates ANN’s
through production rules and the rule extraction process are
explained in details.

V. BIOLOGICALLY INSPIRED NEA

The following subsections describe the three subsystems of
ADEANN-Deep.

Fig. 1. The general structure of ADEANN-Deep.

A. L-system based artificial embryogenesis model

To mimic the mechanism of grown structures, including
neurons, we adopt a parametric L-system with memory. It
comprises a set of rules created from an alphabet. This
system can be described as a grammar G = {Σ,Π, α},
where the alphabet consists of the elements of the set Σ =
{., f, F, n, [, ], ∗, B}, and the production rules (Π) described in
Table I.

The axiom α = . is the starting point of the developmental
process, where f denotes a neuron and F is a connection
between neurons, [ and ] indicate storage and recovery, respec-
tively, of the current state of the development, * denotes that
the string is recovered from storage, and B is the connection of
a neuron with a block of neurons. The second rule .→(f...f)n,
means replace the start point by the neurons of the input layer.
Rule 3.1 (f→[f) means to store the position of the current
neuron, so as to start a new ramification from it. Rule 3.2
(f→fFf) means establish a connection between two neurons.
Rule 3.3 (f→fF) means establishing a connection from a
specific neuron. Rule 3.4 (f→n) means replace a provisional
neuron with a permanent neuron. Rule 3.5 (f→f) means to
maintain a specific neuron during development. Rule 3.6
(f→fB) means connect a neuron to a block of neurons. Rule
4 ([→[Ff]) means start the development of a new ramification

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 2. A simple example of the construction process of a branch of an
iterated ANN using the rules of the L-system is illustrated in Table ??.

from a specific neuron and recover the previous state. Rule
5(f→f*) means recover a previous ramification stored for use.

As a simple example, suppose that starting with the axiom
(α = .) twice , and applying the second production rule .→ f
to the axiom twice, the resulting string is ff. Applying the third
rule (3.1) f → [f to string ff yields a new string, [f[f].

After one, two, three and applications of the fourth rule
[→ [Ff ] on string [f[f, the string becomes [Ff]Ff]f[Ff]Ff]f.
Applying the rule (3.3) f →fFf eight time to the
previous string, the resulting string is [FfFfFf]FfFfFf]f
[FfFfFf]FfFfFf]f . After Applying the (3.6) f →fB to the pre-
vious string the resulting string is [FfBFfBFfB]FfBFfBFfB]f
[FfBFfBFfB]FfBFfBFfB]f. Finally applying the rule (3.4)
f →n to the previous string the resulting string is
[FfnFfnFfn]FfnFfnFfn]f [FfBFfBFfB]FfBFfBFfB]f. This
phenotype represents the RNA structure shown in Fig 2.

B. Rule extraction by genetic algorithms

The neurons generated in the previous subsection are devel-
oped after the following process. To formulate a biologically
realistic GA, we let the genes of the chromosomes (sequences
of hypothetical DNA) encode a recipe (the production rules
of the L-system described in subsection V.A and illustrated in
Table I). The recursive rules in Table I drive the developmental
stages of the neurons , see Fig 2.

In biological genetic processing Fig 3 (b), DNA is tran-
scribed into ribonucleic acid (RNA), and the RNA is translated
into proteins. The proteins are derived from linear sequences
of amino acids encoded by codons (groups of three nucleotides
selected among U, G, A, and G of the genetic code (Table II).
In Fig 3 (b), the protein is formed by a sequence of amino
acids starting with methionine (Met) and ending with proline
(Pro). Such protein synthesis triggers all stages of the neuronal
development (phenotypic effects), as shown in Fig 3 (b). The
elements of the alphabet Σ = {., f, F, n, [, ], ∗, B, } of the L-
system, described in subsection V.A and displayed in bold font
in Table II, are a metaphor of the genetic code. Each two-bit
sequence represents one nucleotide; for example, the set (00,
01, 10, 11) symbolizes (U, C, A, G) in the original genetic
code. Accordingly, six bits represent three nucleotides; that is,
(000000, 011111) symbolizes (UUU, CGG).

In the figure Fig3 (a), We show an example of extracting
rules, the transcription process (from binary sequence to string)
yields the string B.f[Ff.nB]Bf. We seek the shortest string
containing all valid rules; in this case, (.f[Ff *nB]). After
finding the minimum string, we identify the positions at which
the rules were found, see Fig3 (a)). For example, Rule 2 (.→f),

00 (U) 01 (C) 10 (G) 11 (A)
00 (U) f (UUU) F (UCU) n (UAU) . (UGU) 00 (U)
00 (U) n (UUC) . (UCC) f (UAC) F (UGC) 01 (C)
00 (U) F (UUA) f (UCA) B (UAA) f (UGA) 10 (A)
00 (U) [ (UUG) n (UCG) [ (UAG) * (UGG) 11 (G)
01 (C) f (CUU) ] (CCU ) n (CAU) * (CGU) 00 (U)
01 (C) * (CUC) F (CCC) f (CAC) F (CGC) 01 (C)
01 (C) ] (CUA) f (CCA) * (CAA) [ (CGA) 10 (A)
01 (C) f (CUG) * (CCG) B (CAG) ] (CGG) 11 (G)
10 (A) * (AUU) ] (ACU) n (AAU) f (AGU) 00 (U)
10 (A) f (AUC)) B (ACC) f (AAC) B (AGC) 01 (C)
10 (A) F (AUA) [ (ACA) B (AAA) n (AGA) 10 (A)
10 (A) * (AUG) f (ACG) * (AAG) ] (AGG) 11 (G)
11 (G) ] (GUU) [ (GCU) F (GAU) n (GGU) 00 (U)
11 (G) n (GUC) B (GCC) [ (GAC) . (GGC) 01 (C)
11 (G) f (GUA) ] (CGA) B (GAA) F (GGA) 10 (A)
11 (G) B (GUG) f (GCG) * (GAG) [ (GGG) 11 (G)

TABLE II
THE GENETIC CODE FROM THE PERSPECTIVE OF MRNA, TRANSLATED AS

IN FIG 3 (B). IN THE SAME TABLE, THE DNA’S METAPHOR

symbolically represented by (.f), is found at positions 1 and 2
of the string .f[Ff *nB]. Rule 3.1 f→[f is found at positions
1 and 2, and 3 and 5.

C. Neural Network

Neural Networks have been successfully aplied to a variety
of complex problems due to its ability to learn non-linear
relationships between input and output patterns, which would
be difficult to model conventional methods [3]. In this re-
search, ADEANN-Deep enables automatic design of different
recurrent and deep neural network architectures that yields the
best generalization accuracy for each submarket.

Recurrent neural networks have gained widespread use
in modeling sequential data. The Long Short-Term Memory
network (LSTM network) is a type of RNN in deep learning
because very large architectures can be successfully trained.
The work [8] shows the robustness of LSTM networks in
handling unbalanced data. The empirical studies conducted
and reported in the paper [9] show that deep learning based
algorithms such as LSTM outperform traditional-based algo-
rithms such as ARIMA model

VI. MATERIAL AND METHODS

A. Explanatory Variable Selection in Prediction Models

In prediction models, the explanatory variable can explain
or cause differences in a response variable. After the identifica-
tion of the explanatory variables, an explanatory variable selec-
tion method is applied to find the optimal set of input variables
required to describe the behavior of the energy price, which
should contain a minimum degree of redundancy. The aim is to
test how two or more variables act togheter to affect the output
variable and determine whether they improve the prediction
of the desired value. The PLDs prediction has the following
referenced variables: stored energy in reservoirs (%MLT),
inflow energy in reservoirs (%MLT), total hydro generation
(MWmed), total thermal generation (MWmed), system power
load (MWmed). Below, we detail the variables chosen in the
work of [3] for each submarket, : North:Stored energy, Inflow
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Fig. 3. (b) DNA transcription into RNA and translation of RNA into protein. (a) In the analogous artificial process, a binary string is transcribed into an
integer string and the string is translated into the production rules of the L-system.

energy and Load, Northeast:Stored energy, Inflow energy ,
Thermal generation and Load. Center-Wets/Southeast:Stored
energy, Hydro generation, Thermal generation and Load,
South:Stored Enregy, Hydro generation, Thermal generation
and load. We have used the same explanatory variables,
selected in the work [3] for each submarket.

B. Dataset Description
The dataset used in this research contains the electricity

prices data taken from Brazilian Electrical Energy Commer-
cialization Chamber website [10] presented on a weekly basis,
in addition to the explanatory variables data taken from Brazi-
lain National System Operator website [11]. In the simulations
we applied the dataset constructed by [3] (period from 2002 to
2009) to each submarket:North, Northeast, South and Center-
West/Southeast.

C. Used Metrics
The hybrid system proposed in this system is applied to

the Brazilian electricity market. Some metrics commonly used
to evaluate proce forecasting accuracy are employed in this
paper , Root mean squared error (RMSE) , Mean absolute
error (MAE) and Mean absolute percentage error (MAPE).
These quantities are calculate by:

MAE =
1

N
ΣN

i=1|pitrue− piforecast| (1)

RMSE =

√
1

N
ΣN

i=1

(
pitrue− piforecast

)2
(2)

MAPE =
100%

N

N∑
I=1

∣∣∣∣pitrue− piforecastpitrue

∣∣∣∣ (3)

Where N is the number of samples, pitrue is the actual price
and piforecast is the forecasted price.

The fitness function, given by equation 6, selects economical
deep neural networks.

FitnessI = exp(−RMSE)×
n∏

i=0

exp(−NNHL) (4)

FitnessII =
1

RMSE ×
∏n

i=0 exp(−NNHL)
(5)

Fitness = FitnessI + FitnessII (6)

where NNHL is the number of neurons in the hidden layer.

D. Statistics

We repeated each experiment five times. The independence
of the events was assured since the runs were independent and
had randomly generated initial seeds. Furthermore, to evaluate
the significance of the results obtained from ADEANN and the
other NEAs, we carried out t-tests with a confidence level of
95% (i.e., a p-value under 0.05). To statistically compare the
performances of two NEAs for the prediction problems, we
considered the three following criteria: RMSE as the primary
criterion, MAPE as the second one, and MAE as the third one.
Similarly to [12], without the occurrence of any significant
statistical differences between the RMSE, MAPE, and MAE
values of two NEAs on a given dataset, it was considered
that both algorithms performed equally well. In this case,
both algorithms receive 1 point. In contrast, if two algorithms
obtain significantly different RMSE or MAPE or MAE scores,
the better performing algorithm receive two points and the
other zero points. Consequently, H0 and accept the alternative
hypothesis H1. In deciding whether two performances differ,
we test the significance of the difference between u1 and u2
(p < 0.05). The overall performance of each NEA is then
calculated by summing all points achieved in the pairwise
comparisons.

E. Data Preparation

Many problems are involved in the analysis of rare patterns
of ocurrences. As an example, Figure 4 shows the histogram
of the PLD series for the North region. It shows that some
patterns occur more often than others. In addition, most of the
time the price remains at low values, under R$100.00 and the
energy price rarely reaches values above R$300.00. However,
neural networks are sensitive to imbalanced data sets since it
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Variable Minimun Mean Maximum Std.Deviation
Stored energy 20.71 65.30 87.64 16.7
Inflow energy 47.86 103.87 182.00 24.38

Hydro generation 8854.14 17.635.02 23.378.14 3253.84
Thermal generation 192.86 1112.57 3258.86 615.93

Load 19.295.57 28.048.88 34.668.00 3148.61
PLD 4.0 74.65 684.00 117.53

TABLE III
SUMMARY STATISTICS OF THE VARIABLES FROM
CENTER-WEST/SOUTHEAST REGION. FONT: [3]

Fig. 4. Histrogram of the PLD series to North Region.

causes difficulties in the learning process and can deteriorate
the model performance. Then the data balancing was applied in
this paper during data preparation process. Figures 5 shows the
histogram of the PLD series, before and after data balancing,
for the North region.

VII. SIMULATION RESULTS

The methodology proposed in this paper is applied to the
Brazilian electricity market and some criteria commonly used
to evaluate price forecasting accuracy are employed, such as
RMSE, MAE and MAPE.

Fig. 5. Histrogram of the PLD series to North Region (after data balancing).

South Region North Region
RMSE MAE MAPE RMSE MAE MAPE

Medium PLD 11.40 8.05 0.21 9.35 6.61 0.22
Light PLD 11.07 7.82 0.20 9.27 6.55 0.20
Heavy PLD 11.59 8.20 0.21 10.48 7.41 0.22
Average 11.35 8.02 0.21 9.7 6.86 0.22

Northeast Region Southeast Region
Medium PLD 9.03 6.38 0.19 15.47 10.94 0.20
Light PLD 10.21 7.22 0.21 15.47 10.94 0.20
Heavy PLD 9.01 6.37 0.18 17.15 12.13 0.22
Average 9.41 6.66 0.19 16.12 7.69 0.20

TABLE IV
ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED

HYBRID SYSTEM 36-WEEKS AHEAD - (UNBALANCED DATA)

A. Multi layer perceptron netwokws assessment for energy
price forecasting

1) Unbalanced Data: Tables IV illustrates the values of
RMSE, MAE, and MAPE obtained from ADEANN-Deep for
the South, North, Northeast and Southeast regions. Figure 6
shows the short-term price observed and predicted with the
proposed hybrid system 36-weeks ahead to Northeast region.
For the Southeast region, the RMSE and MAE obtained
from ADEANN-Deep 16.12 R$/Mwh and 7.69 R$/ Mwh
were higher than those obtained from the Hybrid System 9
R$/Mwh and 3 R$/Mwh [3]. However, the value of MAPE
0.20 R$/Mwh reached using ADEANN-Deep was below that
obtained from the Hybrid System [3], which generated a
MAPE value equal to 5 R$/ Mwh. For the Northeast region,
the RMSE and MAE achieved using ADEANN-Deep 9.41
R$/Mwh and 6.66 R$/ Mwh were higher than those from the
Hybrid System 9 R$/Mwh and 3 R$/Mwh [3]. However, the
value of MAPE 0.19 R$/Mwh generated from ADEANN-Deep
was below that from the Hybrid System [3], which reached a
MAPE value equal to 4.5 R$/ Mwh.

Figure 7 shows the short-term price observed and predicted
with the proposed hybrid system 36-weeks ahead to North
region. For the South region, the RMSE and MAE generated
from ADEANN-Deep 11.35 R$/Mwh and 8.02 R$/ Mwh
were above those from the Hybrid System 9 R$/Mwh and
3 R$/Mwh [3]. However, the value of MAPE 0.21 R$/Mwh
reached using ADEANN-Deep was lower than that achieved
using the Hybrid System [3], which generated a MAPE value
equal to 5 R$/ Mwh. For the North region, the RMSE and
MAE obtained from ADEANN-Deep 9.70 R$/Mwh and 6.86
R$/ Mwh were higher than those from the Hybrid System 7.5
R$/Mwh and 2.5 R$/Mwh [3]. However, the value of MAPE
0.20 R$/Mwh generated using ADEANN-Deep was below that
obtained from the Hybrid System [3], which reached a MAPE
value equal to 4.8 R$/ Mwh.

2) Balanced Data: Table V illustrates the values of RMSE,
MAE, and MAPE obtained from ADEANN-Deep for the
South, North, Northeast and Southeast regions. The analysis
of the results for the South region revealed a mean square
error (RMSE) generated using ADEANN-Deep of 8.20 R$
Mwh, lower than 9 R$/Mwh, obtained from the Hybrid model
[3]. The MAE and MAPE generated using ADEANN-Deep
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Fig. 6. Energy price observed and predicted with the hybrid model to
Northeast Region (Light PLD) - UnBalanced Data

South Region North Region
RMSE MAE MAPE RMSE MAE MAPE

Medium PLD 7.52 5.31 0.18 4.22 2.98 0.11
Light PLD 8.52 6.02 0.20 5.2 3.68 0.13
Heavy PLD 8.57 6.06 0.19 5.64 3.99 0.14
Average 8.20 5.80 0.19 5.02 3.55 0.12

Northeast Region Southeast Region
Medium PLD 5.86 4.14 0.17 9.91 7.01 0.15
Light PLD 5.70 4.03 0.16 9.95 7.03 0.15
Heavy PLD 5.84 4.13 0.17 9.55 6.75 0.14
Average 5.80 4.10 0.17 9.8 6.93 0.14

TABLE V
ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED

HYBRID SYSTEM 36-WEEKS AHEAD - (BALANCED DATA)

were 5.80 R$/ Mwh and 0.19 R$/Mwh, respectively, while
the values obtained from the hybrid method [3] were 3 R$/
Mwh and 5 R$/ Mwh, respectively. Therefore, our MAE
value was higher than that obtained from the hybrid system,
while our MAPE value was below it. For the North region,
the mean square error (RMSE) generated from ADEANN-
Deep was 5.02 R$/Mwh, lower than 7.5 R$/Mwh, reached
using the hybrid system [3]. The MAE and MAPE obtained
using ADEANN-Deep were 3.55 R$/ Mwh and 0.12 R$/
Mwh, respectively, while the values generated using the hybrid
model [3] were 2.5 R$/Mwh and 4.8 R$/Mwh, respectively.
Therefore, our MAE value was higher than that from the
hybrid system and our MAPE value was below it. The analysis
of the results for the Southeast region revealed a mean square
error (RMSE) using the ADEANN-Deep of 9.8 R$ Mwh,
higher than 9.4 R$/Mwh, obtained from the Hybrid model
[3]. The MAE and MAPE reached using ADEANN-Deep
were 6.93 R$/ Mwh and 0.14 R$/Mwh, respectively, while the
values from the hybrid method [3] were 5 R$/ Mwh and 4 R$/
Mwh, respectively. Therefore, our MAE value was higher than
that obtained from the hybrid system and our MAPE value
was below it. For the Northeast region, the mean square error
(RMSE) generated from ADEANN-Deep was 5.8 R$/Mwh,
lower than 8 R$/Mwh, obtained from the hybrid model [3].
The MAE and MAPE generated using ADEANN-Deep were
4.1 R$/ Mwh and 0.17 R$/ Mwh, respectively, while the values
obtained from the hybrid model [3] were 4 R$/Mwh and 5
R$/Mwh, respectively. Therefore, our MAE value was higher
than that reached using the hybrid system and our MAPE
value was below it. It is noteworthy that all other models
are forecasting 12 weeks ahead, however, ADEANN-Deep is

Fig. 7. Energy price observed and predicted with ADEANN-DEPP for the
North region (Light PLD) - Unbalanced Data.

Fig. 8. Energy price observed and predicted applying ADEANN-DEPP for
the Southeast region (Heavy PLD) - Balanced Data - MLP network

forecasting 36 weeks ahead.

B. LSTM networks assessment for energy price forecasting

After simulations with feedforward neural networks, pre-
sented in sections VII.A.1 and VII.A.2, using unbalanced and
balanced data, respectively, we started simulations with LSTM
networks, which are more robust for time series prediction.
For purposes of verifying the robustness of LSTM networks,
our simulations did not use data balancing, since it is more
relevant for the MLP neural networks, which are sensitive to
imbalanced data sets for causing difficulties in the learning
process and possibly deteriorating the model performance.
Table VI illustrates the values of %Error, MAE, in addition to
the MAPE obtained from ADEANN-Deep for the Northeast
and Southeast regions.

The analysis of the results for the Northeast region, con-
sidering only heavy PLD, revealed a MAE and MAPE using
the ADEANN-Deep of 5.17 R$/ Mwh and 0.19 R$/ Mwh
, respectively, lower than the values from simulations with
multilayer perceptron networks (MLPs), see Table IV , 6.66
R$/ Mwh and 0.19 R$/ Mwh, respectively. The neural network
architecture returned by ADEANN-Deep had the following
parameters: Number of inputs = 5, number of neurons in the
first hidden layer = 100, number of neurons in the second
hidden layer = 100, number of outputs = 1, function of
activation of the neurons of the first hidden layer = hyperbolic
tangent, function of activation of the neurons of the second
hidden layer = hyperbolic tangent, function of activation of
the output layer = LINEAR, optimizer = RMSPROP, Batch=32
and number of epochs = 2000.

The analysis of the results for the Southeast region, con-
sidering only heavy PLD a MAE and MAPE using the
ADEANN-Deep of 7.38 R$/Mwh and 0.21 R$/Mwh, respec-
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Southeast Region Northeast Region
%Error MAE MAPE %Error MAE MAPE

12 weeks ahead 0.16% 2.5 0.15 2.9% 0.12 0.007
24 weeks ahead 4.6% 8.73 0.52 10.4% 3.43 0.21
36 weeks ahead 6.9% 7.38 0.21 8.83% 5.17 0.19

TABLE VI
ENERGY PRICE ERROR MEASURES OBTAINED WITH THE PROPOSED

SYSTEM FREE SIMULATIONS FOR 12, 24 AND 36 WEEKS AHEAD - HEAVY
PLD - (UNBALANCED DATA)

Fig. 9. Energy price observed and predicted applying ADEANN-DEPP for
the Southeast region (Heavy PLD) - Unbalanced Data - LSTM network

tively, lower than the values from simulations with multilayer
perceptron networks (MLPs), see Table IV , 7.69 R$/Mwh
and 0.20 R$/Mwh, respectively. Figure 9 shows the short-term
price observed and predicted with the proposed hybrid system
36-weeks ahead to Southeast region using LSTM network.

The results using HIRA model [15] in the Hungarian
market, three days in advance for day d, at the 3rd interval
for base load energy price (is the average hourly price for
all 24 h) and peak (is the delivery of the same amount of
energy in the period from 08:00 to 20:00) indicate a percentage
error around 0.56% to 2.96%. The percentage hourly price
forecast error is around 4.55% to 11.37%. Our results for the
Northeast and Southeast regions, twelve weeks in advance for
week w, considering only heavy PLD, revealed a percentage
error around 0.16% to 2.9%, lower than the values from HIRA
model [15]. In addition, our predictions encompass the period
of 12 weeks ahead, while the predictions of the HIRA method
correspond to three days ahead.

VIII. CONCLUSIONS

This paper proposes a hybrid approach for a short-term
energy price prediction. The model considers multi-step ahead
price prediction and is applied to the Brazilian electricity
market. The results obtained using MPLs networks are com-
pared with the study of [3] and others methods in section
VII.A. The results obtained from ADEANN-Deep applied to
the Brazilian market presented a sufficiently good accuracy
level compared to other methods. Data balancing and the use
of explanatory variables proved essential for having improved
the results generated using ADEANN-Deep, according to the
results presented in section VII.A.2. Statistical test with a
confidence level of 95% shows that in 58.33% of the cases,

ADEANN-Deep provides better results than the hybrid system
[3].

Our simulations with LSTM networks are still at an early
stage. It can be concluded from the results presented in section
VII.B for the southeastern region (heavy PLD) that the LSTM
Network can predict the value of the PLD with an error of
up to 2.9%, which is lower than with the value generated
from multilayer perceptron networks and HIRA model [15].
In addition, the new version of the hybrid system (ADEANN-
Deep) using Keras enhances the possibilities of using multiple
deep recurring Neural Network architectures. We proved the
applicability of our method to forecast electricity prices and
enable effective hedging of price risk in the production.
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