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Abstract—Recent work has shown that convolutional neural 
network models, especially end-to-end models, perform significant 
better over traditional methods on stereo matching. However, 
these models neglect that the information at coarse and fine scales 
is processed interactively when dealing with matching problems in 
human visual mechanisms, which can help improve the 
performance of the model. To solve this problem, we propose 
CSCNet based on mixed spatial pyramid module and cross-scale 
correlation volume. In the mixed spatial pyramid module, we 
propose a way to extract multi-scale context information by 
mixing pooling and dilated convolution. The cross-scale 
correlation volume perform cross-computation to obtain full 
correlation of different scales and the best scale of matching, which 
reduce the matching ambiguity by imitating the human visual 
mechanism, and it also provide more similarity information for 
the subsequent regularization process. Experiments on the KITTI 
and Scene Flow datasets show that our model outperforms the 
previous methods. 

Keywords—stereo matching, mixed spatial pyramid, cross-scale 
correlation 

I. INTRODUCTION 

Depth estimation from stereo images is essential to many 
computer vision applications, including autonomous driving, 
robot navigation, and 3D model reconstruction. Given a pair of 
rectified stereo images, the goal of stereo matching is to compute 
the disparity d for each pixel in the reference picture. Disparity 
refers to the horizontal distance between a pair of corresponding 
pixels on the left and right images. 

Traditional stereo matching pipelines usually consist of the 
following four steps: matching cost computation, cost 
aggregation, disparity estimation and disparity refinement [15]. 
The learning-based methods use CNN to extract unary features 
of image and compute the matching cost accordingly. DispNetC 
[12] computes the correlation cost volume from the left and right 
feature maps, and then utilizes CNN directly regress disparity 
map. The full correlation cost volume provides an intuitive and 
efficient way to measure similarities between features, but it 
loses a lot of information because it produces only a single 
channel correlation map for each disparity level. GC-Net [7] and 
PSMNet [1] concatenate the left and right feature maps at each 
disparity level to form a concatenate cost volume, and then 
obtain disparity map through 3D CNN regularization and 
regression. The concatenate cost volume provides rich features 
for the subsequent regularization, but since the subsequent 

network needs to restart learning the similarity measurement 
method between features so that more parameters are needed to 
learn. 

According to a stereo vision mechanism [11], information at 
coarse and fine scales is processed interactively in the human 
visual system. Inspired by this mechanism, in this paper, we 
propose a simple but effective cross-scale correlation volume to 
solve the above drawbacks. The left and right images yield high 
level and robust unary features after simple CNNs. In order to 
get multi-scale context information, we proposed mixed spatial 
pyramid module, using different sizes of global pooling and 
dilated convolution with different dilated rates to extract context 
information at the same time, while outputting scale feature 
maps and fusion feature maps. Subsequently, the scale feature 
map is segmented by scale in the channel dimension, and the 
features of each scale on the left image of all disparity levels are 
cross-correlated with the features of all scales corresponding to 
the right image to obtain the cross-scale correlation volume, 
which is then packaged together with concatenate cost volume 
from fusion features to form a 4D cost volume. In this way, we 
can use the cross-scale correlation volume to provide similarity 
measurement for the subsequent 3D aggregation network, which 
can be regarded as scale proposals, while the concatenate cost 
volume retains rich features. 

Our main contributions can be summarized as follows: 

� We proposed cross-scale correlation to construct cost 

volume to provide more effective similarity measures. 

 

Fig. 1. Our source of inspiration. The characteristics of different scales of 

the same object can make people roughly feel the concept of distance. 
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� We proposed the mixed spatial pyramid module for 

incorporating multi-scale context information which further 

improve performance. 

� Our method performs better than previous methods on the 

KITTI and Scene Flow datasets.  

II. CROSS-SCALE CORRELATION STEREO NETWORK 

We propose CSCNet, which uses a mixed spatial pyramid 
module to extract multi-scale context information, and then form 
a fused matching cost volume, including proposed cross-scale 
correlation volume and concatenate cost volume, followed by a 
stacked hourglass 3D aggregate module mentioned in PSMNet 
to regularize the cost volume. The structure of CSCNet is 
illustrated in Figure 2. 

A. Network Architecture 
The network consists of four parts: feature extraction, cost 

volume construction, 3D aggregation and disparity estimation. 

In the feature extraction part, three small convolution kernels 
and four basic residual modules are cascaded to extract the unary 
features. The last two residual modules [4] use dilated 
convolution to enlarge the receptive field. The output feature 
map size is 1/4�1/4 of the input image size. The MSP module 
produces four feature maps of different scales with 32 channels. 
These feature maps form two different cost volumes through two 
methods and the process is detailed in the next section. A stacked 
hourglass structure (encoder-decoder) is then used to normalize 
the cost volume to produce the output with the size of 
1/4H�1/4W�1/4D, and the final disparity map with the size of 
H�W is obtained by upsampling, bilinear interpolation, and 
disparity regression. 

B. Mixed Spatial Pyramid Module 
It is difficult to obtain accurate disparity estimation in ill-

posed areas such as textureless regions and reflective surfaces 
by simply considering the characteristics of a single pixel such 
as color gradient and intensity. Therefore, the relationship 
between objects and the rich features of each sub-area should be 
considered. SPP [5] was originally proposed to solve the 
problem that different input size cannot produce the same output 
size. ParseNet [10] further adds global pooling to merge context 
information. PSPNet [16] adds variable global pooling based on 
ParseNet to generate feature maps of different size and then 
reduce dimension with 1�1 convolution kernel. The feature 
map becomes the original size by bilinear interpolation. 

Based on the above work, we proposed mixed spatial 
pyramid module(MSP). The structure of our proposed MSP 
module is shown in Figure 3. 

The MSP module is mainly composed of four MSP blocks. 
Each MSP block contains a dilated convolution part and a global 
average pooling part. Rich contextual information can be 
extracted from different perspectives. In the ablation experiment 
we compared our MSP module with spatial pyramid pooling 
module(SPP) and atrous spatial pyramid pooling mudule(ASPP). 

C. Cross-Scale Correlation Volume 
We use  and  to represent the unary feature maps prod-

uced by the feature extraction in the left and right images, 
respectively. Recent work directly produces matching cost 
volumes by concatenating left and right feature maps at different 
disparity levels or calculate the cost volume by the full 
correlation of the left and right feature maps. The concatenate 
cost volume has lots of feature information, but lacks a direct 

Fig. 2.  Architecture overview of proposed CSCNet. 

 

Fig. 3.  Architecture of proposed MSP module. 
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measure of feature similarity. The subsequent 3D aggregation 
network needs to learn the similarity function from scratch. The 
full correlation cost volume can be directly used to measure 
feature similarity, but it only produces a single channel 
correlation map for each disparity level, and all the feature 
information is lost. In our work, we use a cross-scale correlation 
volume(CSCV) combined with a concatenate cost volume to 
solve the above problem. 

The idea of cross-scale correlation volume is to divide the 
feature map according to different scales in the feature 
dimension. For the segmented feature map, not only the 
similarity between the same scales but also the similarity 
between different scales is calculated.  is used to represent the 
number of channels of the unary feature map, and  is the scale 
space of the feature map which is determined by the MSP 
module. The number of feature channels included in each scale 
is Nc Ns, and the feature channel range included in the scales is 
[ Nc Ns , Nc Ns Nc Ns ]. The method of compute 
cross-scale matching cost volume is shown in figure 4 and 
Algorithm 1. 

When Ns = 1, the cross-scale matching cost volume becomes 
a full correlation cost volume. Cross-scale matching cost volume 

can be treated as Ns
2 cost volume proposals, each of which is 

calculated from the corresponding feature map. To further 
improve performance, cross-scale correlation volume can be 
used with concatenate cost volume. Subsequent 3D aggregation 
networks can regularize combined cost volumes based on these 
proposals, which reduce the difficulty of learning parameters 
from scratch. In the experiment, we can see that the two cost 
volumes are complementary to each other. 

D. 3D CNN 
In order to learn more contextual information, we use a 

stacked hourglass (encoder-decoder architecture), consisting of 
repeated top-down and bottom-up 3D CNNs with intermediate 
supervision which was also mentioned in PSMNet. The stacked 
hourglass architecture consists of three hourglass networks. The 
output of each sub-network is upsampled to the size of 
H�W�D by bilinear interpolation. After regression, the 

corresponding disparity maps are obtained. The regression 
method is introduced in the next section. Therefore, the three 
subnets have three outputs and losses (Loss_1, Loss_2, and 
Loss_3), all of which are in the same form as described in 
formulas (1) and (2). During the training, the final loss function 
is obtained by adding the above three parts by weight. When 
testing, we select the last output as the final disparity map. Due 
to the change in the cost volume, in the ablation experiment, we 
again set different weights for the three losses to choose the best 
result. 

E. Disparity Regression 
We use the soft argmin function mentioned in GCNet to 

generate the final disparity map. For the cost volume W�H�D 
generated by 3D aggregation, the softmax operation (�(�)) is 
performed on the D dimension to obtain the probability cd  
corresponding to each disparity level d , and then the average of 
all the disparities is obtained in the D dimension. The formula is 
as follows: 

� d = d � � (-cd )Dmax
d=0 � ����

Compared to the argmin operation, its output is affected by 
all disparity, and it is fully differentiable, ensuring end-to-end 
training of the network. On the other hand, due to its smooth 
estimation, sub-pixel precision disparity regression can be 
obtained. 

F. Loss Function 
We use the smooth L1 loss function to train the proposed 

CSCNet. Compared to L2 loss, the L1 loss function is widely 
used due to its robustness and low sensitivity to outliers. The 
function in CSCNet is defined as: 

� L (d ,d )= 1
N

smoothL1 (di- di)N
i=1 � �	��

in which 

Fig. 4.  The flowchart of cross-scale correlation. The blue arrow represents an 

intra-scale correlation, while the green dash arrow denotes an inter-scale 

correlation. 

Algorithm 1 Cross-Scale Correlation  

Input: Feature map Fl and Fr with shape (1/4H, 1/4W,

Nc) 

1 Cross-scale correlation volume Cs = [] 

2 Pad Fl to the shape (1/4H, 1/4W+1/4D, Nc) with 0 

3 For d from 1/4D to 0 

Fr
t  = Fr [:, d:d+1/4W, :] 

Ft = [] 

For Sl from 0 to Ns 

For Sr from 0 to Ns 

Fl
c = Fl [:, :, Sl�Nc/Ns:Sl�Nc/Ns+Nc/Ns-1] 

Fr
c = Fl [:, :, Sl�Nc/Ns:Sl�Nc/Ns+Nc/Ns-1] 

Ft
c = <Fl

c, Fr
c> 

Ft 
 Ft
c 

Cs 
 Ft 
Output: Cross-scale correlation volume Cs with shape

 (1/4D, 1/4H, 1/4W, Ns
2) 
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 smoothL1 x = 0.5 x2,if  x <1
x - 0.5, otherwise

 

 
where N is the number of pixels, d is the true disparity value of 

the pixel, and d  is the corresponding predicted disparity value. 

III. EXPERIMENTAL RESULTS 

A. Datasets 
We evaluated our method on three stereo datasets: 

Scene Flow [16] is a large scale synthetic dataset divided 
into three parts: Flyingthings 3D, Monkaa and Driving. There 
are a total of 35,454 training images and 4,370 test-ing images, 
each with a height of 540 and a width of 960, while providing a 
dense and detailed disparity map. 

KITTI is a real-world dataset from a driving car that includes 
street views. It includes two versions, KITTI2012 [2] and 
KITTI2015 [13]. The image size of both datasets is H = 376 and 
W = 1240. The training images have sparse disparity value from 
LiDAR, and the test images has no real disparity value. 
KITTI2015 has 200 training images and 200 testing images. We 
took 40 images from the training set as a validation set. 
KITTI2012 contains 194 training images and 195 test images. 
We took 34 images from the training set as a validation set. 

B. Implementation details 
Our architecture was implemented using Tensorflow, trained 

in an end-to-end manner, with the Adam [8] optimizer set to β1 

= 0.9 and β2  = 0.999. During training, images are randomly 

cropped to H = 256, W = 512, and the maximum disparity value 
is 192. Points exceeding the maximum disparity value are not 
included in the error calculation. For Scene Flow, we performed 
a total of 20 epochs, using a constant learning rate of 0.001 for 
the first 10 epochs and a half of the learning rate for the 15th and 
20th epoch. For Scene Flow, we use the trained model directly 
to test. For KITTI2015 and KITTI2012, we fine-tuning 300 
epochs of the trained model in Scene Flow. The first 200 epochs 
learning rates are set to 0.001 and 0.0001 for the last 100. 
Training was performed on a single Nvidia RTX GPU with 
batch size set to 5. The training process on Scene Flow took four 
days and KITTI took 10 hours. 

C. Ablation study 
1) Loss Weight: The 3D stacked hourglass module has three 

outputs during training. Due to changes in the SPP module and 

the matching cost volume, the optimal settings in PSMNet need 

to be changed. As shown in the Table Ⅰ, we experimented with 

different combinations of loss weights between 0 and 1(The 

wight setting is just to reflect the importance of different Loss, 

so the sum of weights is not set to 1). The results show that the 

performance of the network is best when Loss_1, Loss_2, and 

Loss_3 are set to 0.7, 0.9, and 1, and the error rate was 1.57% 

on the KITTI2015 dataset. 
2) MSP module: We use PSMNet as base model to test our 

proposed MSP module. The experiment results in Table Ⅱ show 

that MSP module outperforms the SPP module and ASPP 

module because it combined the advantage of SPP and ASPP, 

which could produce richer contextual features. 
3) Cross-scale correlation volume: In order to prove the 

effectiveness of our proposed cross-scale correlation volume, 

we use PSMNet as the basic model (base), based on which we 

use 100-channel concatenate cost volume (cat100) to eliminate 

the effect of increasing volume channel numbers on results. 

MSP module, cross-scale matching cost volume(CSCV) and 

combined cost volume(cat) are used at the same time. The 

experiment results in Table Ⅲ show that the cross-scale 

correlation volume combined with concatenate cost volume are 

better than concatenate cost, because the cross-scale volume 

introduces useful information. The three-pixel-error rate for the 

combined cost volume on the KITTI2015 dataset is only 3.30%, 

which is 0.5% less than PSMNet. 

D. KITTI 
We compared our model with deep stereo methods such as 

GC-Net, PSMNet, CRL, iResNet, GwcNet and DispNetC on 
KITTI2015 and KITTI2012, respectively. The results are shown 
in Table Ⅳ and Table Ⅴ. As shown in Tables, the overall three-
pixel-error of our proposed CSCNet significantly exceeding the 
previous method. 

The figure 5 shows some disparity and error maps estimated 
by our model, PSMNet and GC-Net. Our proposed CSCNet has 
gotten more robust results, especially in some complex areas. 

TABLE II.  EVALUATION OF MSP MODULE 

Model KITTI2015 error(%) 

PSMNet(SPP) 2.34 

PSMNet(ASPP) 2.30 

PSMNet(MSP) 2.22 

 

TABLE III.  ABLATION STUDY RESULTS OF PROPOSED NETWORKS ON THE 

SCENEFLOW DATASETES. 

Model SPP 
Concat 

volume 
CSCV >1px >2px >3px 

base  �  9.46 5.19 3.80 

cat(100)  �  9.45 5.19 3.77 

CSCV ours  � 11.20 8.34 6.11 

cat+CSCV ours � � 8.01 4.39 3.30 

TABLE I.  INFLUENCE OF WEIGHT VALUES FOR LOSS_1, LOSS_2, 
LOSS_3 ON VALIDATION ERRORS. 

Loss weight KITTI2015 

error(%) Loss_1 Loss_2 Loss_3 

0.0 0.0 1.0 1.94 

0.1 0.3 1.0 1.72 

0.3 0.5 1.0 1.69 

0.5 0.7 1.0 1.64 

0.7 0.9 1.0 1.57 

1.0 1.0 1.0 1.59 
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E. Scene Flow 
We compared the performance of CSCNet with other state-

of-the-art methods on the Scene Flow test set, including 
DispNetC, GC-Net, CRL, PSMNet. As shown in Table Ⅵ, 
CSCNet outperforms other methods in terms of accuracy. 

IV. CONCLUSION 

In this paper, we proposed CSCNet for stereo matching, 
which uses multi-scale feature maps to generate cross-scale 
matching cost volumes by cross-scale correlation, providing 
scale proposals for subsequent 3D regularization net-works. We 
have also proposed mixed spatial pyramid module to further 
improve the performance. The experiment results demonstrate 
the validity of CSCNet. 
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