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Abstract—In recommender systems, the user uncertain
preference results in unexpected ratings. Previous approaches
(e.g., BiasMF) only adjust the rating value based on the
bias vector, ignoring the uncertainty of rating. This paper
makes an initial attempt in integrating the influence of
user uncertain degree and user rating bias into the matrix
factorization framework, simultaneously. An approach based
on fuzzy set, called fuZzy Matrix Factorization (ZMF), is
proposed. Specifically, a fuzzy set of like is defined for each
user, and the membership function is utilized to measure the
degree of an item belonging to the fuzzy set. Then, the user
uncertain preference matrix is obtained, which could explain
and represent the user bias and uncertainty effectively.
Furthermore, to enhance the computational impact on sparse
matrix, the uncertain preference is formulated as a side-
information for fusion. Besides, the proposed approach could
be extended to others due to independency on additional
data sources. Experimental results on three datasets show
that ZMF produces an effective improvement.

Keywords-Recommender Systems, Fuzzy Set, Uncertain
Preference, Rating Bias

I. Introduction
With the growing number of products and services,

recommender systems have become necessary tools to
discover information of interest for users. Many recom-
mendation approaches have been proposed and made
breakthroughs in various applications. Matrix Factoriza-
tion (MF) [1] is one of the most famous and successful
approaches, which learns the discriminative latent fac-
tors for users and items by factorizing user-item inter-
action matrix. However, there still exist two drawbacks
of the above approaches: 1) The rating information is
uncertain and imprecise. Different users have various
evaluation criteria, and different ratings also have differ-
ent degrees of preferences. 2) The rating matrix is always
sparse in the realistic world, which may compromise the
performance of recommender systems.

To handle the uncertain and imprecise information
of rating, the user/item bias vector is utilized to adjust
original ratings, such as BiasMF [1]. Nevertheless, the
impact of uncertain ratings is neglected. Specifically, as
shown in Figure 1, items with very low/high ratings
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Fig. 1: Illustration of rating bias

explicitly indicate that users really dislike/like them,
whereas the majority of intermediate ratings are uncer-
tain. The same rating may represent different meanings
since the evaluation concepts of users are different. For
an item with rating = 4, it is uncertain to determine
the preference of user i, while it indicates that the
user j dislikes this item clearly. For an item rating =
7 rated by users i and j, we are not sure whether
they like it. But the degree of preference is measurable
that user i may be more prone to like this item than
user j. To our best knowledge, previous approaches
based on a crisp data model fail to capture the notions
of uncertainty. A sharp boundary is often defined to
discriminate members belonging to the set of like (e.g.,
rating>4) from non-members. Such approaches have a
drawback: it is rough to choose a global boundary value
for all users. To overcome above limitations, we represent
the notion of like for each user by fuzzy set theory
[2], [3]. First, we divide the original rating into three
groups (i.e., dislike,uncertain,like), according to the user
rating bias. Note: the same rating may correspond to different
users’ groups. Then, we calculate the possibility of each
rating which belongs to the fuzzy set like, avoiding the
limitations of the sharp boundary.

To alleviate the sparsity problem, existing approaches
often construct a hybrid model by combining the auxil-
iary information to MF, such as Collaborative Topic Re-
gression (CTR) [4], Collaborative Deep Learning (CDL)
[5] and Convolutional Matrix Factorization (ConvMF)
[6]. Above approaches provide a new perspective to
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alleviate the sparsity problem and achieve significant
improvement. Nevertheless, further optimization is not
effective due to the limitation of the data source. Thus,
the view of reconstructing information from original
data is proposed. In [7]–[9], the item co-occurrence
matrix is utilized as side-information. Our work is moti-
vated by exploring some potential information from the
original information without any additional data source.

Given the above two considerations, an approach
based on fuzzy set, called fuZzy Matrix Factorization
(ZMF), is proposed. More specifically, ZMF first explores
the user uncertain preference information by using fuzzy
set, and then make them as the side-information for
jointly matrix factorization. The user uncertain prefer-
ence matrix of ZMF is constructed according to the
user-item interaction information, where each element
indicates the degree of one item belonging to a user like
set. Moreover, we extend our user uncertain preference in-
formation strategy to ConvMF (i.e., ZMF-C). Experiments
show that our proposed approach consistently achieve a
stable improvement on three real-world datasets.

The main contributions of this paper are summarized
as follows:
• User uncertain preference is introduced to eliminate

the effect of fuzzy information. To the best of our
knowledge, this is an initial attempt to measure
the user bias by fuzzy set theory in recommender
systems.

• Jointly matrix factorization based on fuzzy set
(ZMF) is proposed to integrate user uncertain pref-
erence and rating information, which could remit
the uncertain ratings and data sparsity problems.

• On three public explicit feedback datasets, extensive
experimental results demonstrate that our proposed
approach produces competitive performances from
multiple perspectives.

II. Related Work
This paper focuses on modeling user uncertain pref-

erence by fuzzy sets based on matrix factorization in
recommender systems. Thus, we will first discuss the
related work of matrix factorization, and then introduce
the fuzzy tools in recommender systems.

A. Matrix Factorization
Probabilistic Matrix Factorization [10] models the

user-item rating matrix as a product of two lower-rank
user and item matrices. The fact that much of the ob-
served variation in rating values is due to effects associ-
ated with either users or items, known as biases or in-
tercepts. Thus, BiasMF breaks down the observed rating
into four components, i.e., global average, item bias, user
bias, and user-item interaction. To alleviate data sparsity
problem and cold-start problem, many hybrid models
have been proposed by combining the auxiliary infor-
mation (review comments, social relationships, etc.) to

the PMF. Convolutional Matrix Factorization (ConvMF)
[6] is the representative work, which mixes PMF and
CNN [11]. ConvMF can learn an efficient representation
for item with the item side-information by utilizing the
network of CNN due to the advantages of mining the
local features. ConvMF makes superior improvement to
PMF, and it shows the significant impact of the side-
information. Our work is also a jointly matrix factoriza-
tion. But it is different from all the above works, our work
focuses on handling the rating bias and uncertain degree
only depending on the original rating information rather
than additional data sources.

B. Fuzzy Tools in Recommender Systems
Fuzzy tools [12] are beneficial for improving the per-

formance of recommender systems. The item features
and user feedback are often subjective, imprecise and
uncertain in real-world applications. In this case, the
fuzzy linguistic approaches [13], [14] could be utilized
to address the vague text information. Besides, the fuzzy
representation and fuzzy similarity metrics approaches
[15], [16] are presented by fuzzy set theory and focus
on the text information in Content-Based recommender
systems. In the early days, most of above fuzzy based
approaches are focused on modeling the attributes of
items, instead of the preferences for each user. How-
ever, the preferences are the main source of uncertainty
in recommender systems. In the following study, the
collaborative filtering approaches with fuzzy tools [17]
is proposed to make full use of the preference values
without any additional information, from which the
rating information is formulated by global map function
without considering the user-specific bias. In this paper,
both the rating bias and uncertainty are comprehensively
considered by fuzzy set theory, aiming to explain and
represent the original imperfect rating information.

III. Proposed Approach
As aforesaid, above approaches have less space for

improvement due to a limited data source, meanwhile,
they could not capture the uncertain preference of users.
To address this problem, we exploit the user uncertain
preference information from the original data, and then
make it as the side-information for modeling. In this
section, we first introduce the fuzzy set theory. Then,
the construction of user uncertain preference matrix is
described. After that, the jointly matrix factorization
approach ZMF is proposed to realize the integration
of different information. Finally, we will show our ad-
vancement that an expansion to ConvMF by employing
the user uncertain preference for more comprehensive
recommendation.

Suppose there are N users, M items, and a user-item
rating matrix R ∈ RN×M . Let Ri,j represents the rating
of user i on item j; U ∈ RN×K and V ∈ RM×K be latent
user and item feature matrices, with column vectors Ui
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and Vj representing user-specific and item-specific latent
feature vectors respectively, where K � min(M,N).

A. Fuzzy Set Theory
To deal with fuzzy information, [18] presents fuzzy set

theory, which has been proved as a successful technique
for modeling the fuzzy information in many areas such
as publish/subscribe system [19], semantic web [3], [20]
and database [21].

Definition [2]: Let U be a universe of discourse. A
fuzzy value on U is characterized by a fuzzy set F̃ in U .
A membership function

ψF̃ : U → [0, 1] (1)

is defined for the fuzzy set F̃ , where ψF̃ (u) for each
u ∈ U , denotes the degree of membership of u in the
fuzzy set F̃ . For example, ψF̃ (u) = 0.5 means that u
is “likely” to be an element of F̃ by a degree of 0.5.
As the generalization of the characteristic function in
classical mathematics set theory, the membership func-
tion allows to express gradual set membership, which
can eliminate the adverse effect of the sharp boundary.
The membership function can be defined according to
specific problems, in which the most popular approaches
are normal distribution curve and S-type distribution.

B. User Uncertain Preference Matrix
Users have different evaluation criteria, and different

ratings have different degrees of preferences. Thus, we
handle the rating bias by the fuzzy set. In this paper,
we define a specific fuzzy set of the concept of like for
user i, denoted as F̃i, F̃ = {F̃i|i = 1, . . . , N}. We use the
S-type function to metric the membership degrees of F̃i:

ψF̃i
(Ri,j) =


0 Ri,j ≤ µiinf

1+ξi
1+a(Ri,j−µi

inf )b
µiinf < Ri,j < µisup

1 Ri,j ≥ µisup

(2)

where a > 0, b < 0, ξi > 0, and µiinf and µisup is the
infimum and supremum of user i, respectively. As shown
in Figure 2, the <infimum, supremum> of user i and j
is < µiinf , µ

i
sup > and < µjinf , µ

j
sup >, respectively. For

an item with a rating equal to r1, the user i explicitly
dislikes it because of r1< µiinf , while user j likes it with
a possibility of 0.4. When the rating of an item is equal
to r2, we could know that both users may like this item
with larger probability.

Selection of a and b: For the uncertain member, the
possibility is formulated as the scope of [0, 1]. The
membership function is to map the original score to this
continuous interval. The higher possibility denotes the
larger original score. Therefore, the membership function
should satisfy the following conditions:
(i) the membership function should be monotonic non-

decreasing;

Fig. 2: The membership function representation for user
like

(ii) the membership function must be continuous
(smooth) and gradual (non-saturated);

(iii) the lower bound of membership function value
tends to 0, while the upper bound tends to 1.

First, for the condition (i), we set a > 0, b < 0. Second,
for the condition (ii) (Especially, the function cannot be
increased too violently.), we discuss the value of a and
b, respectively. For parameter b, the function tends to
be more easily saturated when b is much smaller. Thus,
b cannot be too small. For parameter a, it determines
the length of the gentle gradient interval. Because the
uncertainty score interval is different for each user. The
selection of the parameter a should be related to the
infimum and supremum for each user. Finally, for the
condition (iii), we set an additional variable epsilon.
Moreover, the value of < µiinf , µ

i
sup > is set based on

the experimental verification, which is analysed in the
corresponding experimental section. In summary, we
choose S-type function as the membership function, from
which the parameters a = µisup − µiinf + 1,b = −3, and
ξi = a(µisup − µiinf )b for our proposed approach. In this
way, it can be realized a trade-off between the nature of
fuzzy set theory and the actual scene, simultaneously.

According to above map function, we can construct
a user uncertain preference matrix S ∈ RN×M , which
indicates the degree of user preference (like) on each
item. And each entry of S can be computed as:

Si,j = ψF̃i
(Ri,j) (3)

C. ZMF
To integrate the user uncertain preference information

into MF framework, we consider to jointly decompose
the user-item interaction matrix and the user uncertain
preference matrix. However, there are two problems:
rating information is not in the same space as the user
uncertain preference information (the former is in the
real number space, and the latter is in the probability
space); the user latent factors in the user uncertain
preference information represent the possibility of user
preference, and thus we should ensure that it is non-
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negative. To address above two problems, we present
an approach of joint orthogonal non-negative matrix
factorization that measures the latent factors of users
in Public spaces (ZMF). Essentially, this approach is
to obtain a more accurate user potential representation
vector by increasing the user regular constraints. This
approach refers the technology of non-negative matrix
factorization [22] and orthogonal non-negative matrix
factorization [23]. The objective function of ZMF can be
expressed as follows:

min
U,V,P,Q,D

L =||W � (R− UV T )||2F + ||W � (S − PQT )||2F

+ ||U −D||2F + ||P −D||2F + λU ||U ||2F
+ λV ||V ||2F + λQ||Q||2F + λP ||P ||2F

s.t. DTD = I,D ≥ 0, U ≥ 0, P ≥ 0 (4)

where U and P respectively represent the user char-
acteristics in the rating information and preference in-
formation; D is the public space shared by U and
P . What’s more, in order to ensure the uniqueness of
the space, we force to D to satisfy the orthogonal
conditions. The problem in Eq.(4) could be solved by
the block-coordinate descent algorithm [24], due to the
same status of them and separating easily.

Optimize U . By fixing V, P,Q,D, the optimization
problem becomes:

min
U≥0
||W � (R− UV T )||2F + ||U −D||2F + λU ||U ||2F (5)

Following the standard theory of constrained optimiza-
tion, the Lagrangian function can be defined as follows:

min
U
L(U) = ||W � (R− UV T )||2F + ||U −D||2F

+ λU ||U ||2F − Tr(ΓUT ) (6)

where Γ ∈ RN×K is the Lagrangian multiplier. We take
the gradient ∇UL(U) = 0, and use the Karush-Kuhn-
Tucker (KKT) complementarity condition Γi,kUi,k = 0,
we can obtain:

[−RiWiV + UiV
TWiV + (1 + λU )Ui −Di]kUi,k = 0

i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (7)

where Wi ∈ RM×M is a diagonal matrix with Wi,j as its
diagonal element, Ri is a vector with Ri,j for user i, Si
is a vector with Si,j for user i. Let (Xi,k)+ = (|Xi,k| +
Xi,k)/2, (Xi,k)− = (|Xi,k| −Xi,k)/2, and X = X+ −X−.
So the Eq.(7) can be writed as:

{−[(RiWiV )+ +Di + Ui(V
TWiV )−] + [(RiWiV )−

+Ui(V
TWiV )+ + (1 + λU )Ui]}kUi,k = 0 (8)

According to the [22], the update rule for Ui is:

Algorithm 1: ZMF
Input: R,W, λU , λV , λP , λQ
Output: U, V

1 Construct user uncertain preference matrix S by
Eq.(3);

2 Initialize U, V, P,Q,D,Ψ by uniform(0, 1);
3 repeat
4 for i ∈ {1, . . . , N} do
5 Update Ui using Eq.(9);
6 Update Pi using Eq.(10);
7 Di ← Di �

√
Ui+Pi+(DiΨ)−

2Di+(DiΨ)+ ;
8 end
9 for j ∈ {1, . . . ,M} do

10 Update Vj using Eq.(11);
11 Update Qj using Eq.(12);
12 end
13 until L is convergent;

Ui ← Ui �

√
(RiWiV )+ +Di + Ui(V TWiV )−

(RiWiV )− + Ui(V TWiV )+ + (1 + λU )Ui
(9)

Optimize P . Similar to Ui, the update rule for Pi can
be obtained as follows:

Pi ← Pi �

√
(SiWiQ)+ +Di + Pi(QTWiQ)−

(SiWiQ)− + Pi(QTWiQ)+ + (1 + λP )Pi
(10)

Optimize V ,Q. Similarly, setting the gradient
∇V L(V ) = 0, and ∇QL(Q) = 0, respectively, we can get
their update rule as:

Vj ← (RjWjU)(UTWjU + λV EK)−1 (11)
Qj ← (SjWjP )(PTWjP + λQEK)−1 (12)

where the definitions of Wj , Rj and Sj are similar to Wi,
Ri and Si, respectively.

Optimize D. By fixing U, V, P,Q, the optimization
problem becomes:

min
D≥0
||U −D||2F + ||P −D||2F

s.t. DTD = I (13)

Because Eq.(13) contains the equality and inequality
constraints simultaneously, we use Lagrangian multi-
pliers and KKT condition to solve this problem. The
Lagrangian function is:

min
D
L(D) = ||U −D||2F + ||P −D||2F

+Tr(Ψ(DTD − I))− Tr(ΦDT ) (14)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



where Φ ∈ RN×K , Ψ ∈ RK×K(a symmetric matrix).
Making the gradient ∇DL(D) = 0 and using the KKT
condition Φi,kDi,k = 0, we can obtain:

(−U − P + 2D +DΨ)i.kDi,k = 0 (15)
{−[U + P + (DΨ)−] + [2D + (DΨ)+]}i.kDi,k = 0 (16)

where Ψ = DT (U + P ) − 2I . D can be updated by the
rule:

Di,k ← Di,k

√
[U + P + (DΨ)−]i,k

[2D + (DΨ)+]i,k
(17)

D. Extensions
As mentioned, various side-information have been

introduced to alleviate the data sparsity problem. The
user uncertain preference information could be inter-
preted as an extension of side-information. Thus, we
could integrate this information to further improve the
performance of recommendation. For example, ConvMF
utilizing user reviews as side-information has made a
great success, and we could boost the performance by
extending ConvMF with fuzzy information. Therefore,
the objective function of the extension approach ZMF-C
could be defined as:

min
N∑
i=1

M∑
j=1

Wi,j

((
Ri,j − UiV Tj

)2
+
(
Si,j − PiQTj

)2)
+

M∑
j=1

(
λV ||Vj − cnn(Θ, Xj)||22 + λQ||Qj ||22

)
+ λΘ||Θ||2F

+
N∑
i=1

(
λU ||Ui −Di||22 + λP ||Pi −Di||22

)
s.t. DTD = I,D ≥ 0, U ≥ 0, P ≥ 0 (18)

where Xj is the textual information for item j. We can
obtain the update rule for V as:

Vj ← (RjWjU + λV cnn(Θ, Xj))(U
TWjU + λV EK)−1

(19)
And variable Θ can be learned by the back propagation
algorithm, the remaining variables can be updated as
above. The complete optimization algorithm is presented
in Algorithm 1. For the extension model of ConvMF, we
need to input the side-information X and replace the
step 10 of Algorithm 1 with Eq.(19).
E. Complexity Analysis

For each iteration of Ui and Vj , the major cost is
computing the matrix inversion and matrix multiplica-
tion. We assume the time complexity of matrix inversion
(V TWiV )−1 is O

(
K3
)
. Thus, in ZMF and ZMF-P, the

running time of Ui is O
(
K3 +K2ni

)
and O(K2ni), re-

spectively, where ni is the number of items rated by user

TABLE I: Statistics of three datasets

Datasets #Users #Items #Ratings Density
ML-1M 6,040 3,544 993,482 4.641%
ML-10M 69,878 10,073 9,945,875 1.413%

AIV 29,757 15,149 135,188 0.030%

i. Analogously, the running time of Vj and Qj are both
O(K3 + K2mj), where mj is the number of users who
rated item j. Consequently, for N users and M items,
the total time complexity is O

(
K3 (N +M) +K2`

)
and

O
(
K3M +K2`

)
for ZMF and ZMF-P respectively, where

` is the overall number of observation, that is ` =
∑
i ni =∑

jmj .
In summary, the proposed approaches and the re-

spective base model (BiasMF/ConvMF) belong to the
same order of magnitude, i.e., it is linear with the input
size. Moreover, the space complexity of the proposed
approaches is also same as the respective base model,
without any additional space cost.

IV. Experiments
In this section, we evaluate the proposed approach

from the following perspectives: 1) the effectiveness
compared with other approaches; 2) the performance
in sparse data situation; 3) the impact of fuzzy set
parameters.

A. Datasets
We conduct experiments on three public real-world

datasets: Movie-Lens 1M (ML-1M)1, Movie-Lens 10M
(ML-10M), and Amazon Instant Video (AIV)2. Table
I summarizes the statistics on experimental datasets.
These datasets all contain explicit feedback ratings on a
scale of 1 to 5. For the approaches such as ConvMF, ZMF-
C, we need to collect item reviews information. The item
reviews of AIV are provided by itself. While Movie-Lens
does not contain this information, we use the description
information of item instead which could be acquired
from IMDB3. In addition, we remove the users that have
less than 3 ratings for AIV to improve the performance.
In this paper, we split the original dataset into training,
validation and testing sets with the 80%:10%:10% split.
To demonstrate the effectiveness of the evaluation, we
make sure that each part contains all users with one
rating at least. Interested readers can also refer to paper
[6] for other experimental details.

B. Metrics
We adopt the Root Mean Squared Error (RMSE) [25] to
measure the divergences between the predicted rating
and ground-truth rating. Besides, we use the Recall@m

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/
3http://www.imdb.com/
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TABLE II: Comparison of the Used Information in Each
Approach

Approaches Rating Text Bias Uncertainty
First Group

PMF � \ \ \
WNMF � \ \ \
BiasMF � \ � \
ZMF � \ � �

Second Group
CTR � � \ \
CDL � � \ \

ConvMF � � \ \
ZMF-C � � � �

to evaluate the performance in the top-m recommenda-
tion. They are defined as follows:

RMSE =

√√√√ 1

|T |
∑

Ri,j∈T
(R̂i,j −Ri,j)2 (20)

Recall@m =
1

N

N∑
i

min
(∑M

j sign
(
R̂i,j − µiinf

)
,m
)

min
(∑M

j sign
(
Ri,j − µiinf

)
,m
)

(21)

where T is the test sets, |T | is the total number of rating;
sign(x) = 1 if x > 0, otherwise, sign(x)=0. And we note
user i likes the item j if Ri,j > µiinf . We can obtain the
final result of Recall@m by computing the average of all
users.

C. Comparison Approaches

For a fair comparison, we divide the comparison ap-
proaches into two groups. In the first group, only the
rating information is adopted, such as PMF [10], WNMF
[26], BiasMF [1], and ZMF. In the second group, both
the rating and textual information are adopted, such
as CTR [4], CDL [5], ConvMF [6], and ZMF-C. The
characteristics of the comparative approaches are listed
in Table II.

D. Parameter Settings

The hyper parameter plays a vital role in the final
performance. The PMF and ConvMF parameters are
derived from the references [6]. Other model hyper
parameters are obtained by the grid approach, as shown
in Table 1. What’s more, we reproduce the approaches
of PMF, ConvMF, BiasMF, and WNMF. The experimental
results of CTR and CDL are taken directly from [6]. In
this paper, all variables of our approach are randomly
initialized to [0.001, 1]. For ZMF-C, we use the CNN
model, which has the same specific parameters as in
ConvMF.

E. Experimental Results

In this subsection, we will show the experimental
results and make some analysis. All experimental results
are average values of 5 trials.

1) The effectiveness compared with other approaches: Rat-
ing Prediction. In Table III, we evaluate the proposed
approach at different latent factors dimensions K, pro-
viding a comparison with other approaches on the three
recommendation datasets. We can observe that proposed
approach could achieve more excellent performance than
other comparing approaches. For the First Group, taking
the potential factor K = 50 for example, it can be
observed that ZMF achieves the best result. Specifically,
comparing with PMF, RMSE has decreased by 2.6% on
ML-1M, 1.8% on ML-10M, and 7.8% on AIV. Besides,
the strong baseline of BiasMF makes a more excellent
performance than PMF on ML-1M and ML-10M datasets,
which shows that the bias of user and item do affect
the performance of the model. It must be said that ZMF
makes a further improvement than BiasMF, i.e., RMSE
has decreased by 1.6% on ML-1M, 1.5% on ML-10M,
and 10.8% on AIV. The experimental results demonstrate
that the user uncertain information plays an important
role and brings a significant improvement. For the Second
Group, taking the potential factor K = 50 for exam-
ple, it can be observed that extension approach ZMF-
C is also good. Comparing the results of above two
group approaches, these approaches with massive side-
information make a great promotion, indicating that the
auxiliary information is meaningful. We also investigate
the effect of the latent factors dimension K by setting
K from {30, 50, 100}. It can be observed that these ap-
proaches of each group have achieved consistent results,
i.e., the performance continues to improve as D increases.

Top-m recommendation. In recommender system, the
users often pay more attention to the results listed in the
top. Besides, the evaluation of recall denotes the purpose
of recommendation. To further evaluate the effective-
ness of the proposed approach, the top-m performance
are shown in Fig. 3 for recommendation system. The
performance is often measured by the recall rate and
denoted as Recall@m. We can observe from Figure 3(a)
that both ZMF and ZMF-C have obvious advantages on
above three datasets. For the First Group, the recall of
ZMF is improved by 5.6% than PMF when m = 20 on
ML-1M. For the Second Group, ZMF-C also outperforms
ConvMF by 8.9% when m = 20. Analogously, the recall
of proposed approach has a consistently better than base-
lines (i.e.,PMF, ConvMF) on ML-10M and AIV datasets.
Besides, m is set from {3, 5, 10, 15, 20, 25, 30, 40, 50}. We
can observe that our proposed approach has a stable
improvement. It must be said that the higher accuracy is
required under the smaller value m for the top-m recom-
mendation system. Therefore, the performance should
be discussed when m = 2. For the First Group, ZMF
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TABLE III: The performance in terms of RMSE on three datasets

Approaches ML-1M ML-10M AIV
K=30 K=50 K=100 K=30 K=50 K=100 K=30 K=50 K=100

First Group
PMF 0.9037 0.8971 0.8894 0.8311 0.8287 0.8255 1.2008 1.1889 1.1409

WNMF 0.9365 0.9296 0.9212 0.8907 0.8834 0.8793 1.2372 1.2062 1.1840
BiasMF 0.8881 0.8875 0.8743 0.8298 0.8258 0.8214 1.2206 1.2189 1.1901
ZMF 0.8718 0.8703 0.8629 0.8115 0.8110 0.8064 1.1523 1.1110 1.0995

Second Group
CTR N/A 0.8969 N/A N/A 0.8275 N/A N/A 1.5496 N/A
CDL N/A 0.8879 N/A N/A 0.8186 N/A N/A 1.3594 N/A

ConvMF 0.8646 0.8531 0.8525 0.7978 0.7958 0.7885 1.1365 1.1337 1.1111
ZMF-C 0.8501 0.8410 0.8402 0.7878 0.7840 0.7796 1.1000 1.0710 1.0612

outperforms PMF by 3.9% and 3.3% on the ML-1M and
ML-10M, respectively. For the Second Group, ZMF-C is
also more excellent than ConvMF by 6.4%, 8.5% and 4.5%
on three datasets respectively. The experimental results
show that the proposed approach are more effective and
increase the number of recalled items which user really
likes.

In general, our approach achieve a promising improve-
ment on RMSE, and recall@m compared with other ap-
proaches. And it’s worth mentioning that our approach
can be easy to extend to other existing approaches based
on MF framework.

2) Evaluation of Alleviating the Data Sparsity :
In Figure 4, the effect of data sparsity is investigated

for recommendation performance on ML-1M dataset.
By sampling randomly from ML-1M, five additional
datasets are obtained, where the proportion of the
training set in each dataset is denoted as x, and x ∈
{0.2, 0.4, 0.5, 0.6, 0.8}. We can observe from Figure 4 that
the proposed approach has a more excellent performance
than baselines obviously. For the First Group,when x =
0.2, the RMSE of ZMF is about 2.1% lower than PMF,
and 6.4% lower than BiasMF. For the Second Group, ZMF-
C makes the best performance and outperforms ConvMF
by 6.1% on RMSE. With the number of data increases,
there are abundant reviews and rating behavioral infor-
mation. In this situation, more precise item/user latent
factors could be obtained, resulting in more excellent
performance for recommendation. Above experimental
results demonstrate that the derived information is im-
portant for alleviating the problem of data sparsity and
improving the quality of recommender systems.

3) Impact of the Fuzzy Set Parameters:
In Table IV, the affect of fuzzy set parameters is eval-

uated on model performance. The most important pa-
rameters are the infimum and supremum of each user’s
preference. First, we sort the rating record of each user.
Then, the minimum, maximum, quartile, and average
value (i.e., mini, maxi, [ 1

4 ]
i
or[ 3

4 ]
i, averagei) are obtained.

In this section, four pairs of parameters are utilized to

TABLE IV: The affect of the <µiinf ,µisup> on ML-1M and
ML-10M (K = 30).

<µiinf ,µisup >* ZMF
ML-1M ML-10M

<averagei,averagei> 0.8777 0.8201
<mini,maxi> 0.8774 0.8180

<averagei,maxi> 0.8737 0.8150
<[ 1

4 ]
i,[ 3

4 ]
i
> 0.8718 0.8115

* Each user has specific value, which repre-
sents the bias of each user.

evaluate ZMF, respectively. When µiinf=µisup=averagei,
it indicates that the model only considers the rat-
ing bias of user and ignores the uncertainty of the
middle rating. When <µiinf ,µisup> is <mini,maxi>, it
shows that all of the ratings are uncertain. Moreover,
<averagei,maxi> and <[ 1

4 ]
i,[ 3

4 ]
i
> are all the general

cases, which consider the explicit preference and un-
certain preference simultaneously. It can be observed
from Table IV that ZMF has obvious advantages on the
parameters of <[ 1

4 ]
i,[ 3

4 ]
i
>. Specifically, the experimental

results of <averagei,averagei> and <averagei,maxi>
show that the uncertainty of middle rating is beneficial to
the improvement of the model performance. Comparing
with <mini,maxi> and <averagei,maxi>, we know that
very lower ratings usually have represented the dislike of
user in most cases. Above experimental results demon-
strate that the user uncertain preference information is
critical for recommender systems.

V. Conclusion
In this paper, we makes an initial attempt in inte-

grating the influence of user uncertain preference infor-
mation by rating bias for fuzzy recommender systems.
Specifically, ZMF are proposed for formulating the rating
bias and rating uncertainty into the matrix factorization
framework. ZMF-C are proposed for extending the un-
certain preference information into ConvMF. The uncertain
preference information could reflect the user-specific

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



(a) ML-1M (b) ML-10M (c) AIV

Fig. 3: The performance in terms of Recall@m on three datasets

Fig. 4: The performance on various ratio of training set
on ML-1M

taste accurately without introducing additional data.
Experimental results show that the proposed approach
produces an effective improvement compared to other
approaches. In the future, the emotional polarity of user
reviews will be exploited for recommendation system,
simultaneously.
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