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Abstract—In recent years, deep learning has reached ex-
ceptional accomplishment in diverse applications, such as vi-
sual and speech recognition, natural language processing. The
convolutional neural network represents a particular type of
neural network commonly used for the task of digital image
classification. A common issue in deep neural network models
is the high variance problem, or also called over-fitting. Over-
fitting occurs when the model fits well with the training data
and fails to generalize on new data. To prevent over-fitting,
several regularization methods can be used; one such powerful
method is the dropout regularization. To find the optimal value
of the dropout rate is a very time-consuming process; hence,
we propose a model to find the optimal value by utilizing a
metaheuristic algorithm instead of a manual search. In this
paper, we propose a hybridized bat algorithm to find the optimal
dropout probability rate in a convolutional neural network and
compare the results to similar techniques. The experimental
results show that the proposed hybrid method overperforms other
metaheuristic techniques.

Index Terms—convolutional neural network, dropout regu-
larization, swarm intelligence, bat algorithm, hybridized bat
algorithm

I. INTRODUCTION

Deep learning has successful applications in various fields,
such as natural language processing, speech processing, visual
recognition. A convolutional neural network (CNN) [1] is
a type of deep neural network used for different image
processing tasks, such as object detection, image classification,
pose estimation [2], scene labeling [3], face recognition [4],
[5], etc. The CNN architecture consists of more layers and it
mimics the visual cortex mechanism in the brain. Some of the
famous architectures are LeNet [1], AlexNet [6], ZFNet [7],
VGG [8], GoogleNet [9], ResNet [10], DensNet [11], SENet
[12].

CNN structures have diverse alternatives in the literature;
however, all of them have the same essential components.
The essential components are the convolution layer, pooling
layer, and fully-connected layer (FC-layer in short, or so-

called dense layer). The convolution layer consists of the set
of filters, and by performing convolution operation, the filters
extract features from the input. On the convolved output, the
activation function (transfer function) is applied. Sigmoid, tanh
and ReLU [13] are the typically used activation functions.
Each layer in the CNN takes an input from the previous layer.
Filters in the CNN extracts information from the images; initial
layers identify more general features such as edges, later layers
discover more precise features, part of objects, then even later
layers may detect complete objects, such as faces, or other
complex patterns [14]. The filter size should be smaller than
the size of the input; most commonly used filter sizes are 3×3,
5×5, and 7×7. The convolution operation on the input vector
can be represented mathematically as follows:

z
[l]
i,j,k = w

[l]
k x

[l]
i,j + b

[l]
k (1)

where z
[l]
i,j,k is the output feature value of the k-th feature

map (kernel) at i, j location. The input is denoted by x at i, j
location, the filters are denoted by w, and b is the bias. The
superscript l represents the l-th layer.

In the next step, the activation function is applied:

g
[l]
i,j,k = g(z

[l]
i,j,k) (2)

where g(·) denotes a non-linear activation function, applied on
the output z[l]i,j,k, which results with non-linear output.

The pooling layer is used between two convolution layers
for reducing the resolution.

y
[l]
i,j,k = pooling(g

[l]
i,j,k) (3)

The two most common types of pooling layers are max and
average pooling.

The architecture, in the end, has one or more fully-
connected layers, and the last one represents the output layer;
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for example, in the case of the image classification task,
typically softmax [15] is used.

A common issue in deep neural network models is the high
variance problem (overfitting). Overfitting occurs when the
model fits well with the training data and fails to generalize on
the new, unseen data. In order to prevent overfitting, different
regularization techniques can be used. Some of the effective
regularization techniques are L1 regularization, L2 regular-
ization (weight decay) [16], dropout [17], data augmentation,
drop connect [18], early stopping and batch normalization
(BN) [19] also has regularization effect.

In this work, we focus on the dropout regularization and
optimizing its probability rate. This is an NP-hard optimization
problem. Metaheuristic algorithms confirmed to be powerful in
tackling such problems; therefore, we propose a metaheuristic
approach to discover the optimal dropout rate. Metaheuristics
are successfully applied to different real-life problems, some
examples can be found [20], [21] [22], [23], [24], [25]. They
have also proven to be successful in automatic CNN design
[26], [27].

Metaheuristic algorithms are stochastic algorithms, and they
have two major stages, namely exploration and exploitation
(diversification and intensification). In the stage of exploration,
the algorithm locally explores the search area; on the other
hand, the exploitation process is responsible for the solution
space investigation on a global scale. It is crucial to secure
the right balance between these two processes. To enhance
their performance, a number of hybridized versions were
developed, some of them are [28], [29], [30], [31], [32], [33],
[34]. Hybridized versions are developed by combining the
advantages of one or more algorithms or part of the algorithms,
which results in a synergistic effect.

The rest of this paper is organized as follows: Section II
describes the dropout regularization. Section III describes the
proposed method as well as the original bat algorithm. The
experimental results are presented in Section IV, and the last
section, Section V, concludes the paper.

II. DROPOUT REGULARIZATION

Dropout [17] is a regularization technique, which is used to
prevent overfitting in neural networks. The idea behind dropout
is to randomly drop hidden units from the network during
the training, in case of convolutional neural networks, it only
applies to last fully-connected layers, before the classification
layer.

The feed-forward operation of a neural network can be
described as:

z
[l+1]
i = w

[l+1]
i yl + b

[l+1]
i , (4)

y
[l+1]
i = g(z

[l+1]
i ) (5)

where the superscript l denotes the l-th hidden layer in the
network, The input vector is denoted by z, the output vector
is y. The weights and bias terms are denoted by w and b,
respectively, and g is an activation function.

After applying the dropout regularization technique, the
feed-forward operations can be described mathematically as
follows:

r
[l]
j ∼ Bernoulli(p) (6)

ỹ[l] = r[l] ∗ y[l], (7)

z
[l+1]
i = w

[l+1]
i ỹl + b

[l+1]
i , (8)

y
[l+1]
i = g(z

[l+1]
i ) (9)

where r represents a vector of independent Bernoulli random
variables.

It is important to not use the dropout at test time, but only
in the neural network training.

III. PROPOSED METHOD

This section describes the proposed method for the dropout
probability selection in Convolutional Neural Networks. The
learning process in CNN has four parameters:

1) the learning rate α,
2) penalty parameter (momentum) β,
3) weight decay λ,
4) dropout ratio p.
The purpose of this paper is to attain the optimal value

of p; therefore, the 3-tuple (α, β, γ) is fixed, likewise in
[35]. To find the optimal value of the dropout, we introduce
a metaheuristic approach, the hybridized bat algorithm. The
original Bat Algorithm (BA) [36] was proposed by Yang in
2010, and the procedure of the algorithm is explained in
the next subsection, after that the hybridized algorithm is
described. The hybridized algorithm has also been successfully
applied to other real-life optimization problems [37].

A. Original Bat Algorithm

The bat algorithm simulates the echolocation behavior of
bats. BA follows three simple rules:

1) Bats use echolocation to locate the prey and to assess
the distance of an object and prey. When they broad-
cast noises, from the reflected echo, they can identify
different objects.

2) Each bat, in the group, flies randomly while looking for
the prey, the bats’ position is xi, they fly with velocity
vi, fixed frequency fmin, varying wavelength λ and
loudness A0. Depending on the target’s closeness, the
bats are able to adjust the pulse emission rate of r, which
values are between 0 and 1.

3) For the sake of simplicity, the loudness ranges from a
large positive value A0 to a minimum constant Amin.
The loudness parameter is used to control the exploration
and exploitation process.

In the BA, positions of bats represent solutions. Movement
of each bat is controlled by the following parameters: velocity,
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frequency, pulse rate, loudness nd wavelength. These parame-
ters are used to define movements that ensure proper balance
between exploration and exploitation. Initially, the algorithm
generates N random solutions. The population of solutions is
represented as a matrix X:

X1,1, X1,2, ..., X2,1, X2,2, ...XN−1,k−1 (10)

If the objective function should be minimized, it can be
described as follows:

min f(x), x = (x1, x2, x3, ..., xj , xD) ∈ S, (11)

where x denotes a real vector with D ≥ 1 parameters. S ∈ RD

is a D-dimensional search space, which values are within the
lower (lb) and upper bounds (ub).

lbi ≤ xi ≤ ubi, i ∈ [1, D], (12)

The solutions are generated randomly by the following
equation:

xi,j = lbj + φ ∗ (ubj − lbj), (13)

where the j-the parameter of th i-th solution is represented by
xi,j . Parameter φ is a random number drawn from the uniform
distribution. The lower and upper bound of the j-th parameter
are denoted by ubj and lbj , respectively.

Similarly, the velocity is calculated by using the following
formula:

vi,j = lbj + φ ∗ (ubj − lbj), (14)

The position and the velocity of each solution, at time step
t, are updated by using the following equations:

fi = fmin + (fmax − fmin)β, (15)

vti = vt−1
i + (xt−1

i − x∗)fi, (16)

xti = xt−1
i + vti , (17)

where the frequency is denoted by fi, the value of β is drawn
from the uniform distribution. The global best solution is
indicated by x∗. The velocity of i-th solution at iteration t
is represented by vti . The location of the bat i at iteration t is
denoted by xti.

The exploration process in the algorithm is executed by
a random walk which can be specified mathematically as
follows:

xnew = xold + εAt, (18)

where At represents the mean value of all solutions’ loudness
and it is scaled by ε, which is a random number, generated
between -1 and 1.

When a solution hits a promising area, the parameter that
represents a pulse rate increases and, on the other hand,

the loudness decreases, and it is mathematically defined as
follows:

At
i = αAt−1

i , rti = r0i [1− exp(−γt)], (19)

At
i → 0, rti → r0i , while t→∞ (20)

where the loudness of i-th solution, at time step t is denoted
by At

i, the pulse rate is expressed by r. α and γ are constant
values.

The pseudocode of the BA is detailed in Algorithm 1. More
details about the original BA can be found in [36].

Algorithm 1 BA pseudocode
Randomly initialize the population of N solutions (bats) xi, for i =
0, . . . , N
Initialize the algorithm’ parameters for each solution: velocity (vi), pulse
emission rate (ri) and loudness (Ai)
Define the frequency of pulse (fi) for each solution xi
Set the iteration counter (t) to 0.
while t < MaxIter do

for i = 1 to N (all N solutions in the population) do
Update the frequency, velocity and location by utilizing Eq. (15),
Eq. (16) and Eq. (17)
if rand > ri then

Find the best solution xbest
Perform the exploration process by using Eq. (18)

end if
Generate new random solutions
if (rand < Ai and f(xi) < f(x∗) then

The newly generated solution is accepted
Reduce Ai and increase ri by using Eq. (19)

end if
end for
Find the best current solution x∗

end while
Return the best solution

B. Hybridized Bat Algorithm

The BA is well studied and used swarm intelligence algo-
rithm. Various modified version can be found in the literature
[38]–[40]. In [38] it was proposed to dynamically adjust
the BA parameters by using fuzzy-logic while that work
was extended by proposing interval 2-type fuzzy logic in
[39]. Comparison between swarm intelligence algorithms that
use interval 2-type fuzzy logic for a dynamic parameters
adjustment was presented in [40]. Another modification of
the BA was proposed in [41] where in order to make BA
more efficient and to improve the performance, the original BA
is hybridized with the ABC (artificial bee colony) algorithm
[42]. The authors adopted the onlooker bee mechanism from
the ABC algorithm. The aim of using this mechanism was
to improve the exploration in the BA and to speed up the
convergence process. In return, runtime will be reduced. Detail
analysis of the hybridized BA algorithm can be found in [42].

The hybridized algorithm adopts the intensification process
by the mechanism of onlooker bee from the ABC algorithm
while keeping the BA exploitation mechanism too. These two
mechanisms were performed alternately, in one iteration the
BA exploitation was used while in the next iteration the ABC
exploitation mechanism was performed.
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Exploitation process in the ABC algorithm was imple-
mented by using onlooker bees. Onlooker bees mechanism
chooses a food source for exploitation in the next iteration
with probability proportionate to the food source fitness [?].

The fitness function of each solution is assessed by:

Fi =

{
1
fi

if fi ≥ 0

1 + |fi| otherwise,
(21)

where the value of the objective function is denoted by fi.
The selection probability is performed by the following

equation:

pi =
Favg∑m
i=1 Fi

(22)

where the selection probability is denoted by pi. The average
of all fitness values is represented by Favg.

The intensification process is performed by:

xi,j = xi,j + φ · (xi,j − xk,j), (23)

where the j-the parameter of th i-th solution is represented
by xi,j , φ is a random number drawn from the uniform
distribution and xk,j is j-th parameter of a neighbor bat k.

If the new solution has a better fitness value than the
older one, then it replaces the old solution; contrarily, the old
solution is kept.

If the number of time step t is even, then the onlooker search
is conducted in the algorithm, if t is odd, the bat algorithm
search is performed.

In this hybridized BA, the diversification process is not
changed which means that is performed by the utilization of
random walk defined by Eq. (18).

The pseudocode of the hybridized bat algorithm is described
in the Algorithm 2.

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed method for dropout rate optimization is tested
on two different image classification tasks, on the MNIST
[43] and CIFAR-10 [44] datasets, sample pictures of both
datasets are given in the Fig. 2 and Fig. 1. The achieved
results are compared to the ones in [35], where three other
swarm intelligence approaches were used on the equivalent
datasets. To make a fair comparative analysis, in this study,
we use a similar parameter configuration to [35]. The com-
parison is made with the following metaheuristics: particle
swarm optimization (PSO) [45], firefly algorithm (FA) [46],
cuckoo search algorithm (CS) [47], bat algorithm (BA) and
the proposed approach, the hybridized enhanced bat algorithm
(BA-OM).

The hybridized BA was implemented in Java SE 10 (18.3),
and for the proposed method, Deeplearning4j library was
utilized. The simulation tests were performed on NVIDIA
GTX 1080 GPU and machine with Intel® CoreTM i7-8700K
CPU, 32GB RAM, Windows 10 OS.

Algorithm 2 Hybridized BA pseudocode
Objective function f(x) = (x1, x2, x3, ...xD)
Randomly initialize the population Xi,j(i = 1, 2, 3, ...N)(j =
1, 2, 3, ...D)
Initialize the velocity (vi), pulse emission rate (ri) and loudness (Ai)
At position xi, define the frequency of pulse (fi)
Set the iteration counter (t) to 0
while t < MaxIter do

for i = 1 to N (all N solutions in the population) do
if t is even then

Perform bat search procedure using Equation (15), (16) and (17)
else

Apply the onlooker search procedure by using Equation (23)
end if
if rand > ri then

Choose the best solution
Perform the exploration process by using Equation (18)

end if
Generate new random solutions
if (rand < Ai and f(xi) < f(x∗) then

The newly generated solution is accepted
Reduce Ai and increase ri by using Equation (19)

end if
end for
Find the best current solution x∗

end while
Return the best solution

Fig. 1. CIFAR-10 sample pictures

Fig. 2. MNIST sample pictures

1) Experimantal Setup: In this study, we used the same
CNN architecture, like in [35]. For the CIFAR-10 dataset, a
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CNN structure is utilized, which is deeper than the one used
for MNIST. This network consists of three convolution layers,
three pooling layers, and, at the end of the network, it has
two FC-layer, the last FC-layer is the classifier (Figure 3).
The network for MNIST dataset has two convolutional layers,
two pooling layers, and one fully-connected layer; the last
fully-connected layer is the classifier (Figure 4). Before the
classification layer, the dropout regularization is employed.

Fig. 3. CNN structure for the CIFAR-10 dataset

Fig. 4. CNN structure for the MNIST dataset

Both datasets are divided into training, validation and test
set; the dataset configuration is presented in the Table I, where
the number of images is specified and the batch size of each
set; the CNN parameter configuration is shown in the Table
II, and the metaheuristics control parameter setup is presented
in the Table III.

TABLE I
CONFIGURATION OF THE DATASETS

Dataset Training set Validation set Test set
CIFAR-10 20000 (100) 30000 (100) 10000 (100)

MNIST 20000 (64) 40000 (100) 10000 (100)

Since the dropout rate should be between 0 and 1, these
two values are set up as lower and upper bound, respectively.

2) Experimental Results: In this paper we compared our
proposed hybridized BA for the dropout rate optimization with

TABLE II
CONFIGURATION OF THE CNN PARAMETERS

Dataset α β λ p Iteration

CIFAR-10 0.001 0.9 0.004 [0, 1] 4000

MNIST 0.01 0.9 0.0005 [0, 1] 10000

TABLE III
CONFIGURATION OF THE METAHEURISTICS’ CONTROL PARAMETERS

Method Parameters
PSO ω = 0.7, c1 = 1.7, c2 = 1.7

FA α = 0.2, β0 = 1.0, γ = 1.0

CS α = 0.8, β = 1.5, p = 0.25

BA A = 0.5, rand = 0.5, fmin = 0, fmax = 2

BA-OM A = 0.5, rand = 0.5, fmin = 0, fmax = 2

the methods presented in [35]. The obtained results and the
comparison analysis is presented in the Table IV and Table V,
and the results are visualized in Fig. 5 and Fig. 6.

Based on the results presented in Table IV it can be
concluded that the improved BA approach produces better
results than other counterparts in dropout rate optimization for
CIFAR-10 dataset. The accuracy was improved in comparison
of the original BA and the proposed BA-OM method, 71.43%
versus 71.76% which justifies the usage of the hybridized
BA. The BA-OM algorithm resulted with 71.76% accuracy
on the test set with dropout probability of p = 0.6710 in
case of CIFAR-10 dataset while the second best method was
the particle swarm optimization that achieved the accuracy of
71.55%. It should be mentioned that the main focus in this
paper was optimizing the dropout rate while it is well-known
that the success of the classification by the CNN depends also
on various other parameters as well as on the chosen structure.
To provide a fair comparison of the dropout rate optimization,
all CNN’s parameters and CNN structure were the same as
in [35]. Due to a very specific research, the difference in the
accuracy is not large. The third rated metaheuristic is the firefly
algorithm that found dropout probability to be 0.6629 and the
accuracy was 71.52%.

The accuracy on the MNIST dataset achieved by the pro-
posed BA-OM is 99.19% with p = 0.5216 while the second
rated algorithm is again the PSO that obtained the accuracy of
99.17% whith the p = 0.4559. Same as in the case with the
CIFAR-10 dataset, the third rated metaheuristic is the firefly
algorithm with the accuracy of 99.16%.

It should be noticed that, in practice, the commonly used
default dropout rate is 0.5. Based on the presented results and
by interpreting the them, it can be seen that the best accuracies
are obtained when the dropout rate is greater than 0.5 and even
0.6 in the case of the CIFAR-10 dataset.

V. CONCLUSION

Overfitting is a common issue in deep neural networks. In
order to prevent over-fitting, different regularization techniques
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TABLE IV
CIFAR-10 ACCURACY ON THE TEST SET

Method α β λ p Accuracy(%)

PSO 0.001 0.9 0.004 0.6655 71.55%

FA 0.001 0.9 0.004 0.6629 71.52%

CS 0.001 0.9 0.004 0.6270 71.16%

BA 0.001 0.9 0.004 0.6430 71.43%

BA-OM 0.001 0.9 0.004 0.6710 71.76%

Fig. 5. CIFAR-10 accuracy comparison

TABLE V
MNIST ACCURACY ON THE TEST SET

Method α β λ p Accuracy(%)

PSO 0.01 0.9 0.0005 0.4559 99.17%

FA 0.01 0.9 0.0005 0.4630 99.16%

CS 0.01 0.9 0.0005 0.4883 99.14%

BA 0.01 0.9 0.0005 0.4988 99.13%

BA-OM 0.01 0.9 0.0005 0.5216 99.19%

Fig. 6. MNIST accuracy comparison

can be used, one such powerful method is the dropout regular-
ization, where the optimal probability should be determined.
To find the optimal value by exhaustive search is a time-
consuming process; therefore, in this research, we recommend
the dropout probability fine-tuning by the hybridized bat
algorithm. The obtained results are compared to similar meta-
heuristic techniques, PSO, BA, FA, and CS. The performance
of the proposed method exceeds other approaches.

The approach is very promising, and in future work, we are
going to investigate more algorithms for the same issue, as
well as to implement it on other datasets.
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