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Abstract—This paper introduces, explores and shows a new
way to optimize the weights of a neural network. This new
technique does not use back propagation or relies on gradient
descent. The core idea is to combine both Game Theory and Re-
inforcement Learning to train a Neural network. We structure a
game of learning automata agents, specifically Continuous Action
Learning Automata (CALA) agents, that iteratively converges to
a global minimum. Each CALA agent is associated with a weight
in a neural network, and when the game converges to a global
minimum, we can say that the neural network has been trained.
By using a game of CALA agents we can deal with input that
has been corrupted by noise, do not have to worry about the
vanishing gradient problem or worry about over fitting and is
structured better for parallel computing.

Index Terms—Neural Networks, Learning Automata, CALA,
Non-Gradient descent training methods, Deep Learning, Machine
Learning

I. INTRODUCTION

Since 2006, deep learning has exploded and now is used
in most industries [1]. Deep learning uses Artificial Neural
Networks (ANNSs) that have more than one hidden layer [2].
As more and different applications use ANNSs, the chances of
the training data being corrupted by noise increases. Therefore,
for the success of deep learning to continue, one must solve
the training issues associated with ANNS.

In Santharam et al. [3], it is proposed that one could use
a game of CALA agents to derive the weights of an ANN,
instead of the traditional way of updating the weights with
gradient descent. However, to the authors’ knowledge, no one
has ever actually done this for a real ANN. Since no one has
actually used a game of CALA agents to derive the weights of
an ANN, there is no literature on the best ways to implement
and optimize the CALA game for an ANN. The intent of this
paper is to show that it is possible to train an ANN with a
CALA game and to explore the advantages and disadvantages
of using a CALA based techniques compared to standardized
gradient descent. The approach we will take is to build ANNS,
for all the Hebbian perceptron gates (AND gate, NOT gate,
OR gate, XOR gate). Then we will train those ANNs and
derive weights found using CALA games. If we can show
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that we can approximate all the hebbian perceptrons, then it
is possible to build an ANN, and train it with a CALA game
that can approximate any possible circuit.

Since a game of CALA agents does not use gradient descent
or back-propagation, many the the problems associated with
back-propagation and gradient descent go away. As well, since
this is a new way of training ANNSs, the paper explores both
the positive and negative aspects to this new approach.

It should be noted that the intent of this paper is just to
show that training an ANN with a game of CALA agents
is possible. Subsequent research is required to optimize this
technique. Once optimized, it can be used to train deep ANNS.

The paper is organized as follows. In Section II, we discuss
the background of the main topics that this paper touches on,
and discuss the training issues that are present in gradient
descent training methods. Section III, explores how the ex-
periments will be conducted, to prove that the new method is
possible. Section IV shows the results of experiments. Section
V compares the results against the established method of
gradient descent. Finally, section VI talks about future work
and concludes the paper.

II. BACKGROUND
A. Problems with Back-propagation and Gradient descent

Gradient descent is a popular optimization algorithm and is
the most common way to optimize the weights of an ANN [4].
It is an iterative optimization algorithm that is used to find the
minimum of a cost function.

Gradient descent has been widely successful, especially
when used to training ANNs. However, gradient descent does
have some draw backs that makes it unsuitable for some
problems. The biggest problems from which gradient descent
suffers are the vanishing gradient problem, the exploding
gradient problem, and over fitting .

1) Vanishing Gradient Problem: The vanishing gradient
problem is found in the training of deep ANNs with back
propagation. When training a deep neural network, if the
derivatives of the original error are less than one, then the



activations of layers further down the network can get expo-
nentially small and thus making training difficult. The training
is more difficult since the deep ANN will keep taking smaller
and smaller steps and therefore, it will take a long time for
gradient descent to learn anything.

There are partial solutions that do not completely solve this
problem but improves performance significantly. For example,
one can use specifically designed activation functions such
as ReLU [5]. Or one can make careful choices in how you
initialize the weights.

2) Exploding Gradient Problem: Similar to the vanishing
gradient problem, when using back propagation on a very
deep ANN, if the initial derivative is greater that one, then the
activation of the very deep layers will get exponentially large.
This means that the steps the ANN takes will be too large
and will make it extremely difficult for the ANN to converge
on an optimal solution. Like the vanishing gradient problem,
the exploding gradient problem can be mitigated by carefully
selecting how the initialization of the weights is done or by
using a specialized activation function. It should be noted that
these methods will significantly reduce the problem but not
solve it.

3) Over Fitting: Over fitting is a fundamental problem with
machine learning models, and ANNs are very prone to it [6].
Over fitting occurs when the function approximation, that the
ANN provides, is closely fit to a limited set of data points
and thus the function cannot be generalized to a wider input
set. As the number of parameters of an ANN increases, the
probability that over fitting will occur also increases. Since
deep ANNS are usually very large, with many parameters, they
are very susceptible to over fitting. There are mechanisms to
deal with this problem, such as, early-stopping [6], expanding
the input data set with noise variables [7] and dropout [8].
However there are draw backs to these mechanisms as the
dropout mechanism takes two to three times longer to train
a standard model [8] and designing the stopping criteria for
early stopping is a challenge [6].

B. Continuous Action Learning Automata (CALA)

Learning Automata is a form of Temporal Difference (TD)
learning, and TD learning is a Reinforcement Learning (RL)
methodology. The primary way Learning Automata (LA) differ
from other TD and RL methodologies is that the search for the
optimal action is conducted over the probability distribution of
the action set, rather than the action set [9]. In fact, the action
at any given time is randomly chosen, while the environment
gives feedback to change the probability distribution to reflect
reality. Due to the probabilistic nature of LA, they deal with
noisy input data very well.

LA work as follows: at each time step, the automata choose
an action at random based on probability distributions, the
response from the environment is observed, and the probability
distribution is updated based on that response. Then the
procedure is repeated.
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There are numerous sub methodologies of LAa. This paper
will only focus on Continuous Action Learning Automata
(CALA).

A CALA controller works in the continuous space of
actions. The set of actions of a CALA is the real line.
The probability distribution is the normal distribution with a
mean value and a standard deviation value that gets updated
whenever reinforcement is received from the environment.
Like all learning automata, a CALA is very good at dealing
with noisy inputs.

C. CALA Games

A CALA agent can be very effective at finding the optimiza-
tion of one parameter. However, in an ANN, each weight is
one parameter and the vast majority of ANNs have more than
one weight. Luckily we can group CALA agents in groups,
these groups of CALA agents are called a game of CALA
agents. In a game of CALA agents, each individual CALA
agent is trying to solve its own objective; while at the same
time the agent is also contributing to a global objective. Due
to the nature of game theory, we can have relatively simple
individual agent objective functions, but at the same time have
a complex global objective function [10].

In Lindsay [11], the authors used a CALA game to opti-
mize the weights of two PID controllers that controlled the
steering for a robot. To the authors knowledge this was the
first publication that showed how one could use a game of
CALA agents on a real world problem and this paper follows
similar methodologies in constructing the CALA agents and
structuring the CALA game. The paper showed how a game
of CALA agents can ingest input that that is ever changing,
dynamic and noisy but still optimize the weights better than
classical methods to derive optimal PID values.

A game of CALA agents are especially suited for common
payoff games. If the learning step-size, J, is sufficiently small
then a CALA team will converge to a modal point. That
means a game of CALA agents can be efficiently used in
solving optimization problems of regression functions in a
noisy environment. In our case the weights of an ANN even
when the training samples are noisy [9]. As well, due to the
probabilistic nature of the CALA agents, this technique should
be resistance the problem of over fitting [7].

In a game of CALA agents, the agents are completely de-
centralized, so there is no requirement to exchange information
or even know about the players or if they are part of a game.
This decentralized, no information sharing features approach
lends itself to run on parallel computing infrastructure. As
well, no matter the size of the game, the game only needs to
calculate the global objective function once, at each time step.
Therefore, a game of CALA agents trying to find the weights
of an ANN should never run into the vanishing gradient
problem and there is no theoretical limit on how large the
game can be, thus there is no theoretical limit on how large,
or deep, the ANN could be.



D. Other approaches to solving the problems posed by Back-
propagation and Gradient descent

The problems posed in section II-A are well known and
many algorithms can be used to mitigate them. Some of the
more popular algorithms are: Heuristically Enhanced Gradient
Approximation (HEGA) [12]; weight perturbation [13] and
Alopex [14]. These algorithms differ from conventional back-
propagation and gradient descent in many ways; however,
they still utilize some aspects of back-propagation or gradient
descent. For example, Both HEGA and weight perturbation,
do not use gradient descent but does use back propagation.
Whereas, using a game of CALA agents to train an ANN
does not require either back-propagation or gradient descent.

III. PROOF OF CONCEPT

Since Santharan et al. [3] only theorized that it could be
possible to optimize the weights of an ANN with a game of
CALA agents, but gave no indication how one could actually
do it, the intent of this paper is to show that the concept is
possible. The authors make no claim about the optimality of
their approach. For our proof of concept we built eight stan-
dard feed forward ANNs. Four of those ANNs perform back
propagation using a standardize method of gradient descent.
These are known to be accurate function approximations for
the four hebbian perceptron circuits (NOT Gate, OR Gate,
AND Gate, and XOR Gate). Then we built four ANNs that
approximate the four hebbian perceptron circuits, but instead
of using back propagation to tune the weights, we used a game
of CALA agents that minimized the global cost function.

In both cases (gradient descent and CALA games) we are
using an ANN to approximate logistic regression. We will
use a sigmoid activation function, which returns a number
between 0 and 1, in order the generate a prediction ¢, (1). This
prediction is then evaluated within a loss function, £(9,y),
where y is the expected output. Since this is an optimization
problem we need a loss function that is convex, to ensure that
we find the global optimum [15]. Therefore the loss function,
that is used on a single training example, is given by (2) and
the cost function, that is used for the entire training set, is
given by (3). In (1), w is the vector of weights of the ANN,
b is the bias of the ANN and m is the number of examples in
the training set.

§ = o(wz® +) ()
L(9,y) = —(ylogy — (1 — y)log(1 — 7)) (2)
Therefore, the goal of both gradient descent and CALA

game based algorithm is to find w and b values that minimize
J(w,b).

1 N
1 & R X
= —— lwilogfi + (1 = y:)log(1 = §:)] 3)
i=1
For ANNs that are approximating the NOT, AND and OR
gates, we use a two layer ANN. The NOT gate has two nodes

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

X1

Zy = WixX1 + WaXp + by > = olzy)
X2
T LG )
L
Zy = WXy + WopXo + by > V= a(z)
= ——— [,
[ LGy
ﬁ\'
CALA Agent | | cataAgent || catangent | |
w1 w2 b
W
L

Fig. 1. Computational graph for a 2 layer ANN, tuned by a CALA game

in the input layer (a bias plus one input node) and one node
in the output layer, for a total of two weights. The AND and
OR gate have three nodes in the input layer (a bias node plus
two input nodes) and one node in the output layer, for a total
of three weights. Fig. 1 is the computational graph for a two
layer, three node ANN, that we built. The XOR gate requires
a three layer ANN, that has three nodes in the input layer (a
bias plus two input nodes), four nodes in the hidden layer, and
one node in the output layer for a total of thirteen weights.

As illustrated in Fig. 1, in the CALA approach, each weight
of the ANN will be associated with a CALA agent. At the
start of each training iteration (an iteration is defined as the
four possible input/output pairings for the hebbian gates),
the CALA agents will select a random value based off each
agents’ mean and standard deviation. Also, a separate ANN
is generated that uses the mean of each CALA agent as the
weight. These two ANNs then use the cost function (3) to
generate two output signals used as feedback to generate the
next CALA game that will be used in the next iteration.

The CALA game takes the two output signals, which are in-
terpreted as reinforcement signals 3,(x) and 3, (r) respectively.
Each CALA agent then updates the mean, p(k), and standard
deviation, o(k), with the following learning algorithms [9]:

-
Bak) = Bugw) [(x(k) — (k) 1]

¢(o(k)) ¢(o(k))
—AK(o(k) —or) (5)

“4)

olk+1)=0(k)+ A

where A is the learning parameter (A = 0.05), K is a constant
(K =0.5), o1, = 0.0005 is the lower bound on o, and ¢ is a
function that returns the standard deviation o(k) but bounds
the standard deviation to o [9]. This process then repeats
itself at each time step until the cost function converges to a
value that is under a certain threshold.

Each CALA agent starts with a mean, 1(0), of 0.0 and a
standard deviation, o(0), of 0.25.
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Fig. 2. NOT Gate CALA results

IV. RESULTS

We ran four experiments, where we trained ANNs to
approximate the four hebbian perceptron gates. Figs. 2 to
5 show the results of the NOT, AND, OR and XOR gates.
In each ANN we assigned a CALA agent to a weight and
then updated the CALA agents with (4) and (5). Every time
step consists of the four possible states a gate could be in
(10,01,[0,11,[1,01,[1,1]). We calculate the loss function, (2), for
each state and at the end of the time step calculate the cost
function, (3). We set a threshold of 0.35 on the cost function
and used that as our stopping criterion. At every time step in
a game of CALA agents, two signals are recorded, the cost
function of the prediction, 3, and the cost function of the
mean, [3,. As well, Figs. 2 to 4 show how the algorithm works.
The mean stays somewhat constant only slowly moving in the
direction of convergence, while the prediction is exploring all
the possibilities and some times getting a very high or low
score.

As can be seen in Fig. 3, and in an extreme case, Fig. 5, the
cost function of the mean, (3, can spike. When we examine
(4), this happens when the standard deviation becomes very
low. Spiking of the mean signal is problematic, since without
the spike we would have a faster rate of convergence. However,
the more interesting thing about the spikes of the mean is
how fast the mean returns to its original position. This can
be seen in Fig. 5, although the mean is constantly spiking, it
quickly returns to a value between 0.3 and 0.4. This is a good
indication of the robustness of the algorithm we are using.

Fig. 6 is the graph of a NOT gate focused on one of these
spikes. The graph includes the cost functions of both the mean,
By, and prediction, ;, as well as the standard deviation of
the CALA agents that are associated with the two weights.
Between time step 121 and 122, the mean value spikes. It
can be seen that at time step 121 the standard deviation is at
it lower bound. The standard deviation is at its lower bound
because at time step 120, the difference between z(k) — (k)
is a large negative number, in this case —2.248 and, when
substituted in (5) it drives the standard deviation to oy,.
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TABLE 1
NOT GATE
[ Method [[ Time step | Standard Deviation ||
A =0.05 79 37.63
A=0.01 367 177
—1.0 < ((k) — u(k)) < 1.0 || 72.6 30.97

There are two ways that we tried to solve this “spike”
problem. The first way is to lower the learning rate (\) to
0.01. The second way is to bound the x(k) — p(k) term to
-1.0 to 1.0. We ran the method identified in section III, and
the two methods mentioned above, a total of 10 times. Table
I shows the averages and the standard deviations. Although
lowering the learning rate, decreased the amount of spikes, it
did not eliminate the problem while also adding a significant
amount of time steps to convergence. As well, bounding the
variables that were problematic did not give us a significantly
better result and did not eliminate the spiking problem.

V. COMPARISON AGAINST GRADIENT DESCENT

As discussed in section III, we built a series of CALA games
that generated the weights of the ANN s that approximated the
hebbian perceptron gates. We trained those same ANNs with
standardized gradient descent. Table II contains the results of
both methods and compares them.

TABLE II
COMPARING CALA METHOD WITH GRADIENT DESCENT
Gate Type || Average Standard Time Standard
Time Step | deviation step for | Deviation
for CALA (for Gradient (for
CALA) descent Gradient
descent)
NOT 79 37.63 23 0
AND 330 141.2 349 0
OR 59 26.2 212 0
XOR 270,201 228,189 6,998 233.3
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TABLE III

GRADIENT DESCENT WITH RANDOM PROBABILITY

Gate Type || Time step for Gradient | Standard Deviation (for
descent (random start) Gradient descent)
NOT 23.4 0.7
AND 356.8 10.14
OR 204.9 15.97
3.0 4
—— mean value
Gradient Decent value
2.5
= 2.0
“; 151
8
104
0.5
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Fig. 7. NOT Gate CALA mean and gradient descent results

As can be seen in table II, there is no standard deviation
for the gradient descent method for the NOT, OR, and AND
gates. These gates behaved in a deterministic manner, because
there was no random variables within the code. Since a core
feature of a CALA agent is that the agent selects actions
based on random variables, it would be interesting to add
a bit of randomness to the gradient descent gates. Table III
contains results, where the weights are initialized with a
random variable between 0 and 0.5

As can be seen in table II, the XOR takes significantly more
time steps before it reaches convergence. This is primarily due
to the fact that thirteen weights make up this ANN, while only
three weights make up the ANN that approximates the OR
gate. Due to the exponential increase in complexity with the
addition of new perceptron, additional work should explore
bounding the CALA game where each layer of ANN has its
own independent constraint.

It can also be seen that the ANNs that have a smaller number
of weights on average converge faster than gradient descent
algorithms. However, the standard deviation is far higher. In
order to visualize this, figures 7 to 10 are the cost function
for the four hebbian perceptron gates, with both the gradient
descent and the mean value from the CALA game. It should be
noted that since we chose to display experiments where both
the cost functions converges in roughly the same amount of
time steps, in most figures the CALA game had a higher cost
function score. As well, by inspection, we can also conclude
that the “spikes” in the CALA mean are an issue for all the
gates. More research needs to be done to smooth these spikes.
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Fig. 10. XOR Gate CALA mean and gradient descent results
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VI. CONCLUSION AND FUTURE WORK

The paper has shown that it is possible to train a ANNs
with a game of CALA agents. As the field of deep learning
keeps expanding, ANNs are going to grow at an exponential
rate. The major benefits of using this technique is that it solves
many of the problems that deep ANNs will encounter in the
future, mainly, the vanishing/exploding gradient problem, over
fitting and input data that is corrupted by noise.

Another advantage of using a game of CALA agent method-
ology is that each agent is decentralized and relatively simplis-
tic. Therefore, computing time can be significantly cut down
by using parallel computing infrastructure. More research is
required to figure out the optimal way to make use of parallel
computing infrastructure.

Future work should include optimizing the algorithms pre-
sented in this paper. This optimization should include ensuring
that the mean of the CALA agents does not spike, and finding
a way to run each layer of the ANN as its own game. After
this is done, a game of CALA agents should be run on a deep
ANN.
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