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Abstract—Providing user customized experience is one of the
main goals for present-day electronic smart devices. Image
polarity detection plays a crucial role in understanding users’
preferences due to the fact that information is massively rep-
resented by means of pictures. State-of-the-art frameworks are
based on deep learning networks and continue evolving adding
sophisticated structures to enhance generalization performances
of the inference systems. Recent works proved that image analysis
can be enhanced exploiting the information about salient regions.
However, better performances are obtained at the cost of a higher
computational load. This paper presents a hardware-friendly
deep learning framework for image polarity detectors based on
salient regions of an image. Experimental results show the reliable
performances of the proposed solution on real-world data.

Index Terms—image polarity detection, CNN, embedded sys-
tems

I. INTRODUCTION

Deep learning has changed the role played by Artificial
intelligence (AI) in data science. The availability of computers
with ever increasing computational capability and distributed
computing is enabling deep learning to address very complex
problems.

In this regard, sentiment analysis is one of the most
challenging benchmark for AI [1]. Sentiment analysis aims
to identify the emotional information expressed in a con-
tent. Image polarity detection, in particular, deals with the
emotional information conveyed by an image; such topic
is very interesting in that images and videos play a major
role in social networks. In fact, image polarity detection is
emphasizing all the challenges brought about by sentiment
analysis. Image polarity suffers from the so-called subjective
perception problem [2], i.e., different users perceive the same
image in different ways.

Modern polarity detectors rely on convolutional neural
networks (CNNs) to deal with the inherent complexity of the
problem at-hand, as they proved very effective in extracting
suitable features from images [3]. CNNs, though, require lot of
human effort in the architecture design; furthermore, they are
computationally hungry. Indeed, recently, several researches
showed that saliency detection plays a very important role in
predicting the polarity of an image [4]–[6]. The underlying
rationale is that the salient parts of an image are the most
informative components for sentiment analysis. Retrieving

automatically the salient components of an image, however,
is a non trivial task. Again, the literature proved that CNNs
should be adopted to implement reliable saliency detectors.
This outcome in turn emphasizes the issue of computational
complexity.

This paper focuses on the design of an image polarity de-
tector that can be deployed on resource-constrained embedded
systems. In this regard, the eventual target is represented by
mobile devices, which are expected to host on-line polarity
detectors. Actually, the goal of the present research is to show
that image polarity detection enhanced with visual attention
can be supported by hardware-friendly deep networks, which
allow one to properly balance generalization performances and
resource occupation.

A. Contribution

This work explores the use of hardware-friendly neural
networks for the development of image polarity detectors
based on salient regions of an image. The outcomes of the
proposed work can be summarized as follows:
• a study about saliency detector based on hardware-

friendly deep networks;
• a novel algorithm for image polarity detection based on

hardware-friendly architectures.

II. RELATED WORKS

Currently all the state-of-the-art implementations of image
polarity detection rely on deep learning. In the last years
several different approaches have been presented; a complete
review about this topic can be found in [2], [3], [7].

In general, polarity detection frameworks exploit the low-
level features extracted by a CNN trained on object recog-
nition; fine-tuning is adopted to adjust network parameters
for the specific task. The approaches existing in the literature
mainly differ in: a) the adopted CNN, b) the transfer learning
technique, and c) the training data domain. Most of the
approaches fine-tuned pre-trained object classifiers. In this
regard, Campos et al. [8] adopted the AlexNet architecture for
feature extraction; the paper proposed an interesting analysis
on the effects of layer ablation and layer addition on the even-
tual generalization performances of the fine-tuned network.
Ontology-based representation have been widely explored on
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top of object recognition models [9]. Interestingly, a few
custom architectures were proposed: You et al. [10] proposed
an architecture in which a pair of convolutional layers and
four fully connected layers were stacked.

In the last few years the focus has moved to augmenting the
basic solutions based on a fully convolutional architecture. In
some variants of CNN architectures for polarity detection, both
the image and a set of additional features formed the network
inputs. In the work of Fan et al. [11], the Vgg 19 architecture
processed an image along with its focal channel, to model hu-
man attention. Likewise, others works studied the role played
by art features [12], context information [13], salience [4]–[6],
attention mechanisms [14]–[16] and combinations of the last
two [17]. Rao et al. [18] exploited a faster-RCNN to locate
the distinctive parts of an image.

Finally, previous works proved that multimodal approaches
can enhance the overall performances of sentiment classifiers
[19]. However, these models critically rely on the perfor-
mances of the feature extractors for different information
sources and require additional computations for the fusion of
the extracted features.

Little attention, though, has been paid to the deployment
of image polarity classifiers on resources constrained devices.
This topic has been recently addressed in [20], where the au-
thors analyzed solutions employing hardware-friendly neural
networks and weights truncation. The next section extends the
the study proposed in [20] by including automatic saliency
detection to the purpose of enhancing polarity detection per-
formances.

III. HARDWARE-FRIENDLY DEEP NETWORKS

Deep networks embrace different architectures, which bring
about several design issues when targeting hardware imple-
mentations. Actually, one needs to properly balance accuracy,
memory consumption and computational cost.

Recently, Ragusa et. al [20] empirically proved that it
is possible to implement polarity detection with hardware
friendly CNNs without significantly affecting the eventual
generalization performances. Such goal can be reached when
a large dataset is available for fine-tuning. Notably, effective
results were achieved with MobileNetV1, i.e., an architecture
specifically designed for embedded systems.

Such outcome is interesting as state-of-the art saliency
detectors derive from object detection meta-architectures [21],
[22]. Indeed, according to [23], the framework combining
MobilenetV1 and Single Shot Detector (SSD) represents the
best option when one wants to implement object detection
on resource-constrained devices. In fact, in [23] it has been
empirically proved that such setup lies on the pareto-optimally
surface in a latency versus accuracy analysis of more than 100
different configurations.

Thus, MobilenetV1 proved able to effectively support hard-
ware deployment of both the core tasks investigated in this
paper, i.e., image polarity detection and saliency detection
(via object detection). The Depthwise Separable Convolution
(DSC) is one of key features of MobilenetV1 [24]–[27]. In

DSC, a standard convolutional operator is replaced by two
separate layers, which represent a factorized version of the
original convolution operation. The first layer supports a depth-
wise convolution and involves a single convolutional filter per
input channel. The second layer is a 1× 1 convolution, called
point-wise convolution; it extracts a new set of features by
computing linear combinations of the input channels.

Figure 1 [25] schematizes the overall concept. Figure 1(a)
sketches the representation of a standard kernel. Instead,
Figure 1(b) shows the two components of the depth-wise
kernel, i.e. the M kernels that convolute the input data and
the N 1-D kernel used to merge the information retrieved
from the single channel kernels.

Fig. 1. Pictorial representation of depth-wise convolution [25]

This decomposition remarkably reduces computational
costs: given an input of size H×W ×M and a convolutional
layer characterized by N kernels of size Dk × Dk, the
computational cost Csc of standard convolution is

Csc = H ×W ×M ×N ×Dk ×Dk. (1)

Conversely, when using the factorized version, the cost CDSC

becomes

CDSC = H ×W ×M × (D2
k +N). (2)

which is significantly smaller than (1).
Many CNN architectures exploiting DSC can yield on

object detection the same performances of state-of-the-art
architectures in terms of accuracy [24]–[28]. In the meanwhile,
DSC reduces memory consumption. Standard deep learning
algorithms need devices with GBs of dedicated memory, as
an example Movidius Neural Computing Stick offers 4GBs
of memory dedicated to model parameters, meanwhile, Jetson
TX2 hosts 8 GBs of Ram [20]. Conversely, most of the com-
mercial devices such as smartphones or smart devices dedicate
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Fig. 2. Complete schema showing the classification flow for the whole
system.

only few MBs for model parameters. As an example, micro-
controller Cortex M7, largely employed in IoT applications,
devotes only 2 MBs for parameters’ storing. In these cases,
DSC based solutions are the only option to cope with memory
constraints.

IV. PROPOSAL

The present paper approaches the problem of enhancing
image polarity detection by splitting the overall problem into
sub-tasks, thus exploiting a bottom-up approach. Such setup
follows a common setup adopted in the literature [6]. However,
in this work, each module of the proposed architecture has
been designed by taking into account hard constraint in terms
of memory consumption, power consumption and number of
floating point operations.

Figure 2 summarizes the overall processing flow. The sys-
tem is organized into four logical blocks and two branches.
The upper branch coincides with the standard classification
scheme exploited in polarity detection literature: the input
image feeds an image classifier that outputs the polarity (Ptot)
computed on the overall image. The lower branch firstly
elaborates the input images using the Saliency Detector block.
This module produces a set of patches, extracted from the
original image, containing the salient part of the pictures.
The figure shows the output of this block by using a sample
image as input; in this example, the patches of the two salient
objects are generated. The patches feed the Patches Classifier,
which assigns a polarity to each patch. Finally, a Fusion Block
analyzes the output of the Image Classifier and the Patches
Classifier; this block is entitled to produce the label to be
assigned to the input image.

A detailed description of the four blocks is given in the
following. It is assumed that the output of each polarity
classifier is a scalar ∈ [−1, 1], where−1 means totally negative
and +1 means totally positive.

A. Image Classifier

The Image Classifier approaches the image polarity clas-
sification problem by using a single CNN; it receives as
input the whole image without additional information. Thus,
a pre-trained CNN architecture provides the starting point.
A fine tuning procedure is applied to address image polarity
detection.

This work adopted a MobileNetV1 as CNN. The archi-
tecture is characterized by 4.2M parameters; an inference
phase requires 569M multiplication and addition operations.
The most commonly adopted architecture for image polarity,
VGG 16, involves 138M parameters; it requires 15300M mul-
tiplication and addition operations for completing an inference
[25]. In other words, MobilenetV1 is about 32 times smaller in
terms of memory consumption and 27 times more efficient in
terms of floating point operations. Nonetheless, MobileNetV1
has proved able to reach almost the same accuracy of VGG 16
in polarity detection [20].

B. Saliency Detector

Saliency detection is a sub-task of computer vision that aims
to individuate automatically the salient part of an image, i.e.,
the parts that are more interesting for a human. Recent works
[6] approached this specific task adopting some strategies
from object detection [23]. In principle, the inference strategy
employed by deep networks for object detection can be divided
into two logical parts: 1) a meta-architecture that produces
box proposal, and 2) the backbone CNN that performs feature
extraction on the boxes. Examples of meta-architectures are
external proposal generators, like R-CNN and Fast R-CNN,
or part of an architecture, like SSD or YOLO. Examples of
CNNs usually exploited for feature extraction are VGG16
and ResNet50. Again, the starting point is a pre-trained
network targeted on object detection. A fine-tuning procedure
is adopted to shift the domain to saliency detection.

In the present work, the Saliency Detector is handled
with the SSD-MobileNetV1 architecture. SSD is a meta-
architecture that merges box proposal and classification steps,
thus reducing consistently the overall computational cost. In
fact, this model uses 1.2 billions multiplication and addition
operations and stores 6.8 M parameters. The equivalent pro-
cess using Fast R-CNN as meta-architecture and VGG 16 as
feature extractor involves 64.3 billions operations and 138.5M
parameters.

C. Patches Classifier

The Patches Classifier is entitled to assign a polarity to each
patch forwarded by the Saliency Detector. Basically, it has
the same structure of the Image Classifier. However, the fine-
tuning procedure is performed over patches extracted from
image polarity datasets. The details of this procedure will be
discussed in Section V-B.

D. Fusion Block

The Fusion Block processes the outcomes of the Image
Classifier and the Patches Classifier to assign a polarity to
the input image. In the proposed system, this block adopts an
hard coded algorithm; hence, it is not subject to training.

The procedure is summarized in the following points:
• Salient patches are divided in 5 cluster Cj , j = 1, ..., 5 on

the basis of the ratio between the area of the i−th patch
Ai and the area of the overall image Atot. The five ranges
are: (0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1). In
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practice, small patches are in the set C1 with range
0.0 < Ai/Atot < 0.2 and big patches are in the set C5

with range 0.8 ≤ Ai/Atot < 1.
• the polarity of each cluster is obtained adding together

the polarity of all the patches inside a cluster: PCi
=∑

j∈Ci
Pj . For example, if a cluster contains only two

patches having polarity −0.4 and +0.1, respectively, the
overall polarity of the cluster is −0.3.

• The final prediction is computed considering
the element with maximum absolute value
h = [PC1

, PC2
, PC3

, PC4
, PC5

, Ptot]. Thus,
argmaxj(|hj |) is the magnitude of the eventual
prediction. Then, one assigns positive or negative
polarity according to the sign of hj . For example if an
images has PC1

= −0.1, PC2
= −0.7, PC3

= −0.3,
PC4

= +0.5, PC5
= −0.2 and Ptot = 0.3, hj is −0.7

thus the eventual polarity is negative.

V. EXPERIMENTAL RESULTS

Experiments aimed at evaluating the accuracy of the pro-
posed method. The experimental setup has been divided in
three sessions. The first session focused on the performance
of the Saliency Detector. The second session assessed the
performance of the Image Classifier and the Patches Classifier.
Finally, the third session evaluated the performance of the
whole framework.

A. Saliency Detector

The training of the Saliency Detector has been implemented
by following the setup proposed in [6]. The training involved
a SSD MobileNet COCO model1, i.e., the SSD MobileNet
architecture trained for the object detection task using COCO
dataset [29]. All the training parameters have been inherited
from the configuration file of the original model. Only the
number of iterations has been changed to 50,000.

Two datasets for saliency detection have been utilized in this
experimental campaign. Both of them are collections of images
paired with information about salient contents. The fine-tuning
procedure has been divided in two phases. First, the original
model has been fine-tuned by using the ILSVRC-2014 dataset,
which contains 127030 images. Then, a second fine-tuning
process has been completed by using the SOS dataset [2],
which contains 3951 images. Standard hold-out procedure has
been applied to evaluate generalization performances: 90% of
the data made the training set while the remaining 10% of the
data were included in the test set. Accordingly, the test set was
never employed for tuning any parameter or hyper-parameter.

Table I summarizes the results of the experimental ses-
sion. The first column lists the two models resulting from
the two fine-tuning processes. SSD MobileNet ILSVRC is
the model trained by using only the ILSVRC dataset;
SSD MobileNet SOS is the model that underwent a second
fine-tuned process by adopting the SOS dataset. The second
column gives the number of true boxes contained in the test

1https://github.com/tensorflow/models/blob/master/research/object
detection/g3doc/detection model zoo.md

set. The third column gives the number of boxes proposed
by the fine-tuned models. Finally, the last column provides
to IoU75 measure. The IoU75 mAP indicator [29] usually
assesses the performance of object detection models. The IoU
takes into account the set A of pixels associated to a box
proposed by the detector and the ground-truth set of pixels B.
It can be formalized as:

IoU(A,B) =
A ∩B

A ∪B
(3)

IoU75 means that a prediction is classified as correct if
IoU(A,B) > 0.75. Informally speaking, this quantity consid-
ers as correct only predictions that are sufficiently overlapped
with respect to the real position of the salient region.

TABLE I
SALIENCY DETECTOR PERFORMANCES

Saliency detector True boxes Predicted IoU > 75%
SSD MobileNet ILSVRC 13982 13118 10207

SSD MobileNet SOS 13982 14723 9272

The outcomes of the experimental campaign confirm that
the number of predicted boxes for the test set is close to
the ground-truth. Moreover, the IoU measure asserts that
the predicted boxes are sufficiently overlapped with the real
positions. IoU is greater than 75% in the 77.8% of the cases
for SSD MobileNet ILSVRC and in the 63.0% of cases for
SSD MobileNet SOS. Such results are very interesting when
considering that an hardware-friendly architecture has been
utilized.

B. Image Classifier and Patches Classifier

The second session aimed at characterizing the performance
of two classification modules involved in the proposed frame-
work, namely Image Classifier and Patches Classifier. Both
these modules are based on the MobileNetV1 architecture.

The CNN training for image polarity detection requires
a large size dataset. In this work a pruned version of the
adjective-noun pairs (ANP) dataset [30] has been utilized as
training set. The original dataset holds more than 1 million
images crawled from Flickr by an automatic system. This
paper relied on ANP40 [3], which focuses only on the 20
most positive and the 20 most negative adjective noun-pairs.
The corresponding images have been split in the corresponding
subsets (positive and negative samples). Eventually ANP40
contains 10,516 images.

The Image Classifier and the Patches Classifier share the
same architecture: the MobileNetV1 model trained on the
ILSVRC-2012-CLS dataset2. Indeed, the two classifiers have
been fine-tuned separately. Hence, the Image Classifier has
been trained on the entire ANP40 dataset. The Patches Clas-
sifier has been trained only on the patches extracted from
the ANP40 dataset. In the following, PC ILSVRC will refer
to the Patches Classifier fine tuned on the patches extracted

2https://github.com/tensorflow/models/tree/master/research/slim
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via SSD MobileNet ILSVRC, while PC SOS will refer to
the Patches Classifier fine tuned on the patches extracted via
SSD MobileNet SOS (as per Sec. V-A).

The classifier have been evaluated on two well known
datasets: Twitter (Tw) [10] and Multi-view (Mv eq and
Mv maj) [31]. Notably, these datasets have been utilized only
as test sets. Neither parameters tuning nor model selection
were performed by using these data. The two datasets have
been selected because the images were manually annotated
from a pool of human users. For Tw the all-agreed version
has been considered. Two versions of MVSA have been
considered: MVSA eq, which is the all-agreed version of
MVSA; MVSA maj, where the eventual label is assigned by
majority voting of the human annotators.

The performances of the classifiers -given a test set- have
been assessed by applying the following procedure. First, for
each image in the test set the patches have been extracted. Sec-
ond, the patches have been split into five categories according
to their relative size with respect to the source image (as per
Sec. IV-D). Third, for each category two groups have been
generated: the group of patches belonging to that category and
the group of images from which that patches were extracted.

Table II reports the outcomes of the tests involving the
Tw dataset; here, the Patches Classifier was supported by
PC ILSVRC. The table compares the performance of the Im-
age Classifier and the Patches Classifier on the five categories
separately, based on the area covered by the patches: C1

contains patches that cover from 0% to 20% of the area of
the entire image meanwhile C5 includes patches that cover
from 80% to 100% of the original image. Accordingly, the
second column indicates the input provided to the classifier,
given a category: the set of patches or the set of images.
Columns from 3 to 7 refer, respectively, to the five categories.
Thus, given a classifier and an input set, column 3 gives
the average accuracy -expressed in the range [0, 1]- over the
patches/images belonging to the category C1, i.e., the category
that refers to the patches that cover less than the 20% of
the source image. The same format applies to the remaining
columns.

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY OF IMAGE CLASSIFIER AND

PATCHES CLASSIFIER FOR DATASET TWITTER WITH PATCH EXTRACTOR
TRAINED ON ILSVRC

Classifier Input C1 C2 C3 C4 C5

Image Patches 0.628 0.718 0.516 0.768 0.740
Classifier Image 0.718 0.732 0.645 0.750 0.719

PC ILSVRC Patches 0.679 0.761 0.645 0.696 0.719
Images 0.756 0.723 0.726 0.732 0.688

Results enlighten few interesting outcomes. When the input
are patches, PC ILSVRC outperforms Image Classifier, con-
sidering the small and medium patches size (i.e., C1, C2 and
C3 clusters). The same trend holds for C1 and C3 when the
entire images are considered. On the contrary, Image Classifier
has a better accuracy than PC ILSVRC for both patches and

full images for C4 and C5. This is not surprising because
bigger patches are similar to the full images.

Table III reports the result for Tw dataset, when patches are
extracted from SD SOS.

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY OF IMAGE CLASSIFIER AND

PATCHES CLASSIFIER FOR DATASET TWITTER WITH PATCH EXTRACTOR
TRAINED ON SOS

Classifier Input C1 C2 C3 C4 C5

Image Patches 0.584 0.748 0.748 0.685 0.761
Classifier Image 0.734 0.67 0.696 0.71 0.746

PC SOS Patches 0.659 0.709 0.738 0.71 0.72
Images 0.676 0.688 0.734 0.71 0.756

With the patches as input, PC SOS has a better accuracy
in C1 and C4

Consistently with Table II, for the smallest patches (i.e.,
C1) the Patch Classifier is the best option. However in all
the other cases, except for cluster C4, the standard Image
Classifier seems to be more convenient.

Table IV reports the result for dataset MVSA eq when
PC ILSVRC is employed.

TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY OF IMAGE CLASSIFIER AND
PATCHES CLASSIFIER FOR DATASET MVSA EQ WITH PATCH DETECTOR

TRAINED ON ILSVRC

Classifier Input C1 C2 C3 C4 C5

Image Patches 0.519 0.578 0.665 0.649 0.631
Classifier Image 0.722 0.689 0.636 0.649 0.614

PC ILSVRC Patches 0.839 0.852 0.799 0.814 0.817
Images 0.829 0.852 0.804 0.818 0.805

Experimental results are significantly different with respect
to the ones obtained for Twitter dataset. The major outcome
of this experiments is that the classifier trained on patches
is always significantly better, independently from the input
provided (images or patches) and from the size of the patches.
This behaviour is probably due to the fact that this dataset is
made of many heterogeneous images, i.e., one image could
contain text, schemes, draws, etc. As a consequence, the
patches classifier, trained on saliency region, only proves more
suitable to cope with this kind of data.

Table V completes the analysis of MVSA eq using
PC SOS.

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY OF IMAGE CLASSIFIER AND
PATCHES CLASSIFIER FOR DATASET MVSA EQ WITH PATCH EXTRACTOR

TRAINED ON SOS

Classifier Input C1 C2 C3 C4 C5

Image Patches 0.624 0.635 0.669 0.656 0.605
Classifier Image 0.701 0.71 0.689 0.625 0.611

PC SOS Patches 0.903 0.863 0.834 0.831 0.744
Images 0.891 0.859 0.836 0.82 0.748

The experimental outcome confirms the trend shown with
PC ILSVRC.

Finally, Tables VI and VII complete the analysis.
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TABLE VI
COMPARISON OF CLASSIFICATION ACCURACY OF IMAGE CLASSIFIER AND
PATCHES CLASSIFIER FOR DATASET MVSA MAJ WITH PATCH DETECTOR

TRAINED ON ILSVRC

Classifier Input C1 C2 C3 C4 C5

Image Patches 0.524 0.542 0.627 0.62 0.621
Classifier Image 0.691 0.627 0.614 0.628 0.599

PC ILSVRC Patches 0.811 0.791 0.785 0.774 0.778
Images 0.812 0.803 0.781 0.785 0.786

TABLE VII
COMPARISON OF CLASSIFICATION ACCURACY OF IMAGE CLASSIFIER AND
PATCHES CLASSIFIER FOR DATASET MVSA MAJ WITH PATCH DETECTOR

TRAINED ON SOS

Classifier Input C1 C2 C3 C4 C5

Image Patches 0.605 0.631 0.617 0.633 0.562
Classifier Image 0.68 0.674 0.633 0.612 0.564

PC SOS Patches 0.871 0.828 0.784 0.776 0.69
Images 0.86 0.811 0.782 0.779 0.69

The results, except for small fluctuations, confirm the out-
comes of previous experiments.

The overall results of the experimental section confirm that
the Patches Classifier and the Image Classifier have similar ac-
curacy performances. The differences on trends depend on the
tested dataset. In the following section, the experimental result
proves that the combination of the two algorithm enhances the
overall performances in almost all cases.

C. The overall framework

The last experimental session evaluated the performances
of the overall framework (Figure 2). In the framework, the
Saliency Detector, the Image Classifier and the Patches Clas-
sifier were trained as described above. The Tw, MVSA eq and
MVSA maj datasets provided the test sets. Again, it is worth
stressing that these datasets were never utilized for the model
selection and the parameters tuning.

MobileNetV1 sets the baseline for the comparison with the
proposed framework. Thus, the comparison is with an image
polarity detector that does not involve any saliency detection.
This model has been selected because 1) it is the most efficient
solution in term of computational cost, and 2) it achieved the
best classification accuracy among a set of architectures on a
very similar experimental setup presented in [20].

Table VIII presents the result for the Twitter dataset.
The first column gives the predictor: MobileNetV1, the pro-
posed framework with a Patches Classifier supported by
PC ILSVRC, and the proposed framework with a Patches
Classifier supported by PC SOS. Columns from 2 to 5 report
the performance on the test set measured by common metrics:
accuracy, precision, recall, F1. Experimental results prove that
both the implementations of the proposed framework were able
to outperform the baseline MobileNetV1 in terms of accuracy,
recall, and F1. Conversely, the baseline MobileNetV1 achieved
a better precision.

Tables IX and X show the results for datasets MVSA maj
and MVSA eq, respectively. The tables adopt the same format

TABLE VIII
PERFORMANCES OF THE PROPOSED MODEL FOR DATASET TWITTER

Network Accuracy Precision Recall F1
MobileNetV1 70.86 80.00 74.35 77.07
ProposalSOS 71.77 76.35 82.79 79.44

ProposalILSV RC 71.99 78.99 78.31 78.65

of Table VIII. Interestingly, in these two experiments the
proposed implementations always outperformed the baseline
MobileNetV1.

TABLE IX
PERFORMANCES OF THE PROPOSED MODEL FOR DATASET MVSA MAJ

Network Accuracy Precision Recall F1
MobileNetV1 0.60 0.91 0.61 0.73
ProposalSOS 0.69 0.90 0.72 0.80

ProposalILSV RC 0.63 0.90 0.64 0.75

TABLE X
PERFORMANCES OF THE PROPOSED MODEL FOR DATASET MVSA EQ

Network Accuracy Precision Recall F1
MobileNetV1 0.64 0.95 0.64 0.76
ProposalSOS 0.74 0.95 0.76 0.84

ProposalILSV RC 0.67 0.95 0.67 0.79

VI. CONCLUSIONS

The present paper explored the use of deep neural networks
based on depth-wise separable convolutions as key elements
for image polarity detection with image saliency information.
The overall problem was addressed using a bottom-up ap-
proach. The eventual system uses three deep learning stages
based on MobileNetV1. The overall setup remains compu-
tationally light compared to the standard solution presented
in the field. Experimental result confirmed that the proposed
method effectively balances generalization performances and
overall compute cost.
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