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Abstract—The automation of agricultural production calls for
accurate prediction of the harvest time. Our interest in particular
here is in grape harvest time. Nevertheless, the latter prediction
is not trivial also due to the scale of data involved. We propose
a novel neural network architecture that processes whole his-
tograms induced from digital images. A histogram is represented
by an Intervals’ Number (IN); hence, all-order data statistics are
represented. In conclusion, the proposed “IN Neural Network”,
or INNN for short, emerges with the capacity of predicting
an IN from past INs. We demonstrate a “proof-of-concept”,
preliminary application on a time series of digital images of
grapes taken during their growth to maturity. Compared to
a conventional Back Propagation Neural Network (BPNN), the
results by INNN are superior not only in terms of prediction
accuracy but also because the BPNN predicts only first-order data
statistics, whereas the INNN predicts all-order data statistics.

Index Terms—Autonomous Robot, Big Data, Dexterous Farm-
ing, Grape Harvest, Prediction Model, Neural Computing

I. INTRODUCTION

Automation of agricultural production is required in order
to meet an ever increasing demand for food, worldwide. In
this context, there is a number of technological challenges.
For instance, the scale of the data needed to make farm
machines intelligent, toward automating agricultural produc-
tion, is daunting [1]. Our interest is in developing a (semi-
)autonomous robot grape harvester for dexterous farming
tasks; the latter are defined here as farming tasks that call
for manual dexterity such as harvesting, pruning, etc.

In the above context, a critical decision regards the ac-
curate prediction of harvest time because the right mass of
both human labor and equipment should be timely engaged.
Nevertheless, an automation of the aforementioned decision is
difficult also due to the scale of data available in agriculture.

Based on recent advances in machine vision in agriculture,
there are several reviews that focus on this subject [2]–[5].
In particular, note that in various agricultural applications,
computer vision enables both visual inspection and measure-
ments because it is objective, consistent, rapid and inexpensive
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[6], [7]. Color sorting is reported as an efficient, non-invasive
method for monitoring fruit ripening, including grape ripening
[8]. For instance, regarding red grapes, the color changes from
green to either purple or black during ripening. In particular,
color changes are related to chemical composition changes,
especially regarding phenolics, the latter are important com-
pounds of grapes related to the intensity as well as the stability
of red wine color [9]. Therefore, the potential of computer
vision to determine the phenolic maturity level of grapes
has been considered toward establishing an objective ripening
index by techniques of image analysis [8]. Various methods
have been proposed for estimating the maturity level of red
grapes [8], [9]. However, the latter methods cannot predict the
time grapes reach full maturity. It turns out that the prediction
of grape harvest time in non-trivial because it depends on
chaotic factors such as the weather.

Our proposal here is to pursue prediction of grape harvest
time based on histograms derived from digital images. In par-
ticular, a histogram is represented by an Intervals’ Number, or
IN for short. Recall that an IN is an established mathematical
object [10]–[14] that may represent either a fuzzy interval or
a distribution of numbers. INs have already been applied to
a number of neural/fuzzy systems [10], [11], [14]–[16]. An
N -tuple of INs here represents the maturity of grape. A time
series of N -tuples of INs is considered. Our objective is to
predict future N -tuples of INs from past N -tuples of INs.
The aforementioned employment of INs is a novelty of this
work that may engage all-order statistics of big data, using
orders of magnitude fewer numbers, toward predicting all-
order statistics of big data.

The techniques proposed here fall within the Lattice Com-
puting (LC) information processing paradigm, which has been
defined as “an evolving collection of tools and methodologies
that process lattice ordered data including logic values, num-
bers, sets, symbols, graphs, etc” [17], [18].

The layout of this paper is as follows. Section II outlines the
mathematical background. Section III presents the proposed,
IN-based neural network. Section IV presents preliminary ap-
plication results. Finally, section V concludes by summarizing
our contribution as well as by discussing ongoing work.
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II. THE MATHEMATICAL BACKGROUND

Recall that a lattice is a partially ordered set (L,⊑) with the
additional property that any two elements x, y ∈ L have both a
greatest lower bound, namely infimum, denoted by x⊓y and a
least upper bound, namely supremum, denoted by x⊔y. If in a
lattice (L,⊑) every pair (x, y) satisfies either x ⊑ y or x A y
then we say that lattice (L,⊑) is totally-ordered. A lattice
(L,⊑) is called complete if and only if each of its subsets X
has both an infimum and a supremum in L (therefore, taking
X = L, it follows that a complete lattice has both a least
element and a greatest element) [19].

A. A Hierarchy of Lattices
This section presents a three level hierarchy of lattices

resulting in the lattice of Intervals’ Numbers (INs, for short).
The basic theory has been presented in [11], [14], [19], [20].

a) Level-0; the lattice (R,≤) of real numbers: Con-
sider the totally-ordered, complete lattice (R,≤), where R =
R∪{−∞,∞} with least and greatest elements denoted by
−∞ and ∞, respectively. The corresponding infimum and
supremum operations are denoted by ∧ and ∨, respectively.

b) Level-1; the lattice (I1,⊆) of Type-1 intervals: Given
a1, a2 ∈ R such that a1 ≤ a2, a (Type-1) interval A = [a1, a2]
is defined as [a1, a2] = {x : x ∈ R and a1 ≤ x ≤ a2}. We
denote the collection of (Type-1) intervals in R (including the
empty interval) by I1(R), or simply by I1 – The empty set
(∅) is also considered an interval, and it is represented by
[∞,−∞]. It turns out that (I1,⊆) is a complete lattice, where
⊆ is the set theoretic inclusion.

Given intervals A = [a1, a2] and B = [b1, b2] in I1, their
infimum (∩) and supremum (

.
∪), respectively, are given by

A ∩B =

{
[a1 ∨ b1, a2 ∧ b2], iff a1 ∨ b1 ≤ a2 ∧ b2
∅, otherwise (1)

A
.
∪B = [a1 ∧ b1, a2 ∨ b2]. (2)

c) Level-2; the lattice (F1,≼) of Type-1 Intervals’ Num-
bers (INs): A (Type-1) Intervals’ Number, or IN for short, is
defined as a function F : [0, 1] → I1 which satisfies

h1 ≥ h2 ⇒ Fh1 ⊆ Fh2 , and
∀X ⊆ [0, 1] : ∩

h∈X
Fh = F∨X .

We denote the family of Type-1 INs by F1. It turns out that
(F1,≼) is a complete lattice, where ≼ is defined as follows:

F ≼ G ⇔ (∀h ∈ [0, 1] : Fh ⊆ Gh). (3)

It is known that an IN F represents a (convex) fuzzy interval
F (x) defined as ∀x : F (x) = sup{h : x ∈ Fh}; in particular,
Fh denotes the well known “α-cut” of F (x) for h = α.
Furthermore, there is an order isomorphism between (F1,≼)
and the lattice of (convex) fuzzy intervals.

Given INs F and G in F1, their infimum (f) and supremum
(
.
g), respectively, are given ∀h ∈ [0, 1] by

(F fG)h = Fh ∩Gh and (F
.
gG)h = Fh

.
∪Gh (4)

B. Algebraic Operations and Metric Distances in F1

This section presents algebraic operations in the set I1 of
(Type-1) intervals and then it extends them to the set F1 of
(Type-1) INs. Likewise, it presents metric distances.

1) Algebraic operations: Given intervals [a, b], [c, d] ̸= ∅,
their addition is defined as [a, b] + [c, d] = [a + c, b + d];
moreover, the multiplication of an interval [a, b] by a (non-
negative) number λ ∈ R is defined as λ[a, b] = [λa, λb]
[15]. Furthermore, given INs F and G, the corresponding
addition and multiplication (by a non-negative number λ ∈ R)
are defined as (F + G)h = Fh + Gh and (λF )h = λFh,
respectively, ∀h ∈ [0, 1].

2) Metric distances: Recall that a metric distance in a set
S is a function d : S × S → R+

0 which satisfies the three
conditions: 1) d(x, y) = 0 ⇔ x = y, 2) d(x, y) = d(y, x), and
3) d(x, z) ≤ d(x, y) + d(y, z).

A metric distance can be introduced in a general lattice
(L,⊑) by a positive valuation (real) function v : L → R
which, by definition, satisfies both v(x) + v(y) = v(x ⊓ y) +
v(x ⊔ y) and x < y ⇒ v(x) < v(y).

The absence of a positive valuation function in the lattice
(I1,⊆) is treated by considering the lattice (R × R,≥ × ≤)
of generalized intervals. Based on two functions v : R →
[0,+∞) and θ : R → R that satisfy the following properties

A1 The function v : R → [0,+∞) is strictly increasing
such that both v(−∞) = 0 and v(∞) < +∞, and

A2 The function θ : R → R is strictly decreasing such that
both θ(−∞) = ∞ and θ(∞) = −∞

there follows a positive valuation function v(a, b) =
v(θ(a)) + v(b) in lattice (R × R,≥ × ≤); hence, a metric
distance dR×R : (R× R)× (R× R) → R+

0 is given by

dR×R([a, b], [c, d]) = v(θ(a∧c))−v(θ(a∨c))+v(b∨d)−v(b∧d)
(5)

Since lattice (I1,⊆) is embedded in lattice (R×R,≥ × ≤),
it follows that (5) is a metric distance in (I1,⊆). We point out
that given v(−x) = −v(x) and θ(x) = −x, there follows

dR×R([a, a], [b, b]) = 2(v(a ∨ b)− v(a ∧ b)) (6)

For v(x) = x it follows dR×R([a, a], [b, b]) = 2|a− b|.
The metric dR×R(., .) is extended to (F1,≼) as follows.

dF1(F,G) =

1∫
0

dR×R(Fh, Gh)dh (7)

C. Explanations /Interpretations of Practical Significance
Various authors have studied comparatively probability and

possibility distributions [21], [22]. Note that, first, a pos-
sibilistic interpretation was proposed for an IN [12], [23]
followed by a probabilistic interpretation [24]. In conclusion,
an IN was established as a mathematical object that may
be interpreted either probabilistically or possibilistically [10].
Note that different authors have considered distance functions
between fuzzy numbers [25]. In the same direction this work
promotes a parametric, metric distance function dF1

(., .).
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Fig. 1. The 3-layer 2 × K × 1 feed-forward neural architecture in this
figure processes Intervals’ Numbers (INs) all along, where an IN represents
a distribution of image samples regarding the maturity of a grape. In general,
the weights wi,j(.), i ∈ {1, . . .K}, j ∈ {1, 2} and v1,j(.), j ∈ {1, . . .K}
are strictly increasing functions. The shown architecture is trained to learn a
difference equation in order to predict one future IN F3 from two past INs
F1 and F2 toward decision-support regarding grape harvest time prediction.

III. IN-BASED NEURAL NETWORK (INNN)

The proposed IN-based Neural Network, or INNN for short,
is shown in Fig.1. INNN is a 3-layer feed-forward neural
network as an extension of a conventional feed-forward neural
network from the Euclidean space RN to the space FN

1 of INs.
a) INNN Training: The training phase of INNN, de-

scribed by Algorithm 1, is based on a genetic algorithm.

Algorithm 1 INNN Training Phase
1: Randomly select a population of parameter sets individu-

als, where a parameter set consists of (a) a set of weights
for the hidden layer as well as for the output layer, (b)
parameters for the activation function of each neuron, and
(c) a set of biases for each neuron;

2: for g generations do
3: Evaluate individuals by calculating the distance between

the INNN computed output IN estimate and the real
output IN for each parameter set;

4: Apply genetic operators;
5: end for

b) INNN Testing: The testing phase is straightforward,
therefore it is omitted.

An INNN bias is a trivial IN, that is a vector of 32 equal real
numbers. At the end of the training phase, optimal parameters
are estimated to be used in the testing phase.

We remark that the architecture in Fig.1 can be interpreted
as a fuzzy inference system [12].

(a) (b)

(c) (d)

Fig. 2. Pictures of grapes taken from a fixed distance, at the same time of the
day on (a) August 10, (b) August 14, (c) August 20, and (d) August 25. The
color of grapes progressively turns from green to black as the grapes ripen.

IV. PRELIMINARY APPLICATION RESULTS

Data acquisition is critical for developing an effective,
grape maturity prediction model. In this preliminary study, we
carried out data acquisition as explained next.

A. Data acquisition

In this pilot study, data (i.e., images) acquisition was based
on a veraison to harvest time lapse video downloaded from the
web [26]. The video presents the ripeness stages of a variety of
red grapes (Cabernet Sauvignon) demonstrating their change
in color from August 10 to August 25, in 13 successive days
from a fixed view angle. In all, 13 video snapshots were taken
based on illumination criteria so that all the selected images
were under similar lighting conditions (Fig.2). Note that both
the illumination intensity and the angle between the camera
and light source affect the histogram shape, therefore they need
to be constant. The images had a resolution of 1920 × 1080
pixels and 24-bit color depth stored in .tiff format.

A straightforward approach to describe intensity variations
of grapes is a color histogram. Based on grape variety, the
suitable color channel of a RGB image was used to calculate
intensity distributions as explained below. More sophisticated
histogram-based representations [27], e.g. the Local Binary
Patterns (LBP), can also be used to encode the local inten-
sity variations toward describing the micro-structure of grape
surface. Next, a histogram was represented by an IN.

B. Image Preprocessing

Following image acquisition, each image was manually
cropped using Matlab segmentation algorithms [28], [29]
toward isolating the region of interest on an image, i.e. the
grapes, and exclude its background (Fig.3). Often, automated
segmentation algorithms are used because manual segmenta-
tion takes time; nevertheless, manual segmentation is more
precise. Since in our study, only a small number of frames
was involved, we carried out segmentation manually. We
remark that the proposed INNN results do not depend on the
segmentation algorithm.
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(a) (b) (c)

Fig. 3. Manual image segmentation. (a) Original image of a grape. (b) A mask
defined manually by a user. (c) The segmented image of interest includes only
the grape in black background.

Color histograms were induced from all segmented images.
As expected, the data showed that grape color was changing
gradually from green to red/black; in particular, the green
channel histograms have demonstrated the greatest variations
during the ripening process as shown in Fig.4. Therefore,
in this pilot study, the green color channel histograms were
selected and post-processed.

C. IN Induction

Green channel histograms were represented by INs by algo-
rithm distIN [17]. In conclusion, for the 13 selected snapshots
of grape ripeness stages, the corresponding INs were induced.

A main advantage of an IN is its capacity to represent all
order data statistics using fairly few, namely L, numbers that
define L intervals [17]. In particular, note that a histogram cor-
responds to a probability density function (pdf), whereas an IN
corresponds to a probability distribution function (PDF). Fig.5
illustrates both the membership-function-representation and
the interval-representation of INs for L = 32 levels equally
spaced over the interval [0, 1], for two images corresponding
to different ripeness levels.

D. Experiments and Results

We employed the neural architecture of Fig.1 with two
input INs corresponding to the green color histogram of two
successive samples. The corresponding output IN was the one
induced from the green color histogram of the very following
day. A number K = 15 of hidden layer neurons was selected
by trial-and-error.

A weight either v1,j(.), j ∈ {1, . . .K} or wi,j(.), i ∈
{1, . . .K}, j ∈ {1, 2} was a linear function ax, where a ∈
[1, 10]. Moreover, the activation function of a hidden/output
layer neuron was a sigmoid function

A

1 + e−λ(x−m)
(8)

where A ∈ [0, 255], λ ∈ [0, 10], m ∈ [−50, 300]. The
proposed biases used were “trivial INs”, i.e. vectors of 32
equal numbers selected randomly in the range [-100, 100].

When a pair (F1, F2) of INs was applied to the input of
the neural network of Fig.1, an output IN F̂3 was computed
as an estimate of the real (i.e., measured) output IN F3. The
distance dF1

(F̂3, F3) was used here as the cost function to

(a) (b)

(c) (d)

Fig. 4. Histograms calculated from digital images of grapes indicating the
number of pixels per intensity level 0− 255. (a) RGB histograms calculated
from an image taken on the first day. (b) The G histogram of the first day is
displayed alone. (c) RGB histograms calculated from an image taken on the
last day. Note that the histograms have moved to the left, moreover they have
become sharper. (d) The G histogram of the last day is displayed alone.

(a) (b)

(c) (d)

Fig. 5. Intervals’ Numbers (INs) computed from the G histograms in Fig.4.
(a) “Membership-function-representation” of the IN induced in Fig.4(b). (b)
“Interval-representation” of the IN in Fig.5(a). (c) “Membership-function-
representation” of the IN induced in Fig.4(d). (d) “Interval-representation”
of the IN in Fig.5(c).

be minimized by evolutionary optimization techniques toward
calculating optimal neural network weights.

The neural network of Fig.1 was trained in three different
experiments E1, E2 and E3, respectively. More specifically, in
experiment E1, only the first data sample “(F1, F2) → F3”
was used for training, whereas all the remaining data samples
were used for testing; in experiment E2, every other data
sample was used for training, whereas all the remaining data
samples were used for testing; finally, in experiment E3, the
first half of the data samples were used for training, whereas
all the remaining data samples were used for testing.

Tables I, II and III show the corresponding training/testing
errors, where an error was computed by equations (6) and (7)
as the distance between a measured IN and a predicted IN.
We point out that due to (6) only half of the errors in Tables
I, II and III should be considered as detailed in [23]. When all
the data where used for training the average error was 10.39.
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(a) (b)

Fig. 6. (a) Two inputs to the neural network of Fig.1, INs F1 and F2 in
their “interval-representation” with solid and dashed lines, respectively. (b)
The corresponding, computed output IN F̂3 versus the real output IN F3 in
their “interval-representation” with solid and dashed lines, respectively.

TABLE I
TRAINING/TESTING DISTANCE ERROR AVERAGE IN 10 RANDOM TRIALS.

ONLY THE FIRST DATA SAMPLE WAS USED FOR TRAINING

Data samples Training error Testing error
(F1, F2) → F3 0.20
(F2, F3) → F4 49.39
(F3, F4) → F5 59.04
(F4, F5) → F6 27.74
(F5, F6) → F7 9.34
(F6, F7) → F8 14.66
(F7, F8) → F9 4.87
(F8, F9) → F10 7.75
(F9, F10) → F11 11.18
(F10, F11) → F12 27.69
(F11, F12) → F13 17.33
Grand average 0.20 22.90

We repeated the aforementioned experiments using a con-
ventional Back Propagation Neural Network (BPNN) [30],
[31] having the same architecture as the INNN shown in Fig.1.
The latter was achieved by replacing an IN by a single number,
namely the mean value of the IN’s corresponding PDF. Table
IV shows the computed numerical data. First, we trained the
BPNN using every other numerical data sample for training;
the corresponding testing data (average difference) error was
13.93 to be compared with the 21.08 error of Table II. Second,
we trained the BPNN using the first half data samples for
training; the corresponding testing data (average difference)
error was 18.45 to be compared with the 13.68 error of Table
III. Third, we trained the BPNN using all the data for training;
the corresponding testing data (average difference) error was
7.53 to be compared with the aforementioned 10.39 error.

E. Discussion

The employment of INNN resulted in a clearly smaller
prediction error compared to the error of a BPNN. Recall that
due to equation (6), only half of the errors shown in Tables
I, II and III should be considered. Moreover, by predicting an
IN, the proposed INNN can predict all-order data statistics.

Since an IN represents a distribution, it follows that an
IN can represent all order data statistics [24] using only L
real numbers, that is an advantage of using INs in big data
applications. In addition, note that no ad hoc feature extraction
was employed here. The latter is a remarkable advantage of

TABLE II
TRAINING/TESTING DISTANCE ERROR AVERAGE IN 10 RANDOM TRIALS.

EVERY OTHER DATA SAMPLE WAS USED FOR TRAINING

Data samples Training error Testing error
(F1, F2) → F3 6.82
(F2, F3) → F4 51.46
(F3, F4) → F5 9.29
(F4, F5) → F6 12.75
(F5, F6) → F7 1.66
(F6, F7) → F8 9.90
(F7, F8) → F9 8.77
(F8, F9) → F10 10.77
(F9, F10) → F11 5.74
(F10, F11) → F12 20.53
(F11, F12) → F13 6.28
Grand average 6.43 21.08

TABLE III
TRAINING/TESTING DISTANCE ERROR AVERAGE IN 10 RANDOM TRIALS.

THE FIRST HALF DATA SAMPLES WERE USED FOR TRAINING

Data samples Training error Testing error
(F1, F2) → F3 3.66
(F2, F3) → F4 11.69
(F3, F4) → F5 23.74
(F4, F5) → F6 12.43
(F5, F6) → F7 3.69
(F6, F7) → F8 6.62
(F7, F8) → F9 6.30
(F8, F9) → F10 8.37
(F9, F10) → F11 10.30
(F10, F11) → F12 26.64
(F11, F12) → F13 16.80
Grand average 10.30 13.68

TABLE IV
NUMERICAL DATA INDUCED FROM THE INS F1, . . . F13 AS THE MEAN

VALUES OF THE CORRESPONDING DISTRIBUTION FUNCTIONS

IN data samples Corresponding numerical data samples
(F1, F2) → F3 (146.89, 150.51) → 126.73
(F2, F3) → F4 (150.51, 126.73) → 116.04
(F3, F4) → F5 (126.73, 116.04) → 100.43
(F4, F5) → F6 (116.04, 100.43) → 89.01
(F5, F6) → F7 (100.43, 89.01) → 89.19
(F6, F7) → F8 (89.01, 89.19) → 83.75
(F7, F8) → F9 (89.19, 83.75) → 75.85
(F8, F9) → F10 (83.75, 75.85) → 71.95
(F9, F10) → F11 (75.85, 71.95) → 61.22
(F10, F11) → F12 (71.95, 61.22) → 65.60
(F11, F12) → F13 (61.22, 65.60) → 59.56

IN-based techniques in a wide range of applications. Fur-
thermore, there are instruments for optimizing performance
by parameter optimization of the real functions v(.) and θ(.)
in equation (5). In other words, functions v(.) and θ(.) may
introduce useful Riemannian space distortions while retaining
the statistical interpretations of INs. Finally, note that this work
has demonstrated a “proof-of-concept” regarding the INNN.
An advantage of INNN over a convolutional neural network
(CNN) is that the INNN is based on sound mathematical
theory, it can explain its answers using logic, moreover it
represents semantics by partial-order [14], [32].
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V. CONCLUSION

This work has paved the way toward engaging IN-based
neural networks in agricultural applications. The proposed
techniques are low-cost for fast decision making during harvest
time based on distributions induced from color histograms
of vineyard images. The proposed method is not meant as a
substitute of traditional chemical analysis, but rather it is meant
for decision-support complement toward an efficient prediction
of grape harvest time.

Computer vision provides fast, accurate, direct and non-
invasive intervention for predicting grape maturity time. Color
features derived from other color spaces (HIS, YIQ, CIELAB,
etc.) may be investigated in future work. Moreover, in addition
to color, other characteristics such as texture, shape and
homogeneity may be considered. Our proposed methodology
can thus be extended to other grape varieties, including green
ones, as well as to other fruits. Future work plans include
acquisition of images of various grapes under constant lighting
conditions for an extended period of time until a desired
maturity level is reached.
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