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Abstract—Recent contributions in non-parametric statisti-
cal pattern recognition have investigated augmenting the task
with information about the conditional probability distribution
P(Y|X) away from the 0.5 level set, i.e. the decision boundary.
Many hypothesis spaces satisfy generous smoothness criteria, so
the behavior of a function away from the decision boundary
can serve as a regularizer for its behavior at the decision
boundary. This paper proposes a paradigm to capture observable
information about the conditional distribution and describe a
learning formulation that can take advantage of it. Finally,
it investigates why conditional probability can be an effective
regularizer for inseparable pattern recognition problems.

I. INTRODUCTION

The binary pattern recognition task is to approximate the
0.5 level set of the conditional probability function P (Y =
1|X) ..= η(X), where P is some distribution that jointly
generates labels Y in ±1 and observations X in Rn. It is
assumed that labels are difficult or costly to observe, while
observations are commonplace, giving rise to value for a
machine that can accurately predict the label for a given
example.

The methods and analysis proposed here pertain generally
to any pattern recognition formulation which satisfies the
following axioms: (1) A hypothesis h (a.k.a. discriminant,
index, or network in various communities) is to be chosen
from a large class H, (2) so that some level set of h
approximates the .5-level set of η, (3) where all elements of H
satisfy some smoothness property.1 Formulations which satisfy
these axioms are popular and widespread, such as kernel
methods, support vector methods, generalized linear models,
and artificial neural networks. While this paper implements
and evaluates formulations using kernel and support vector
methods, many of the results are theoretical and thus likely to
apply more generally.

In the development of classical non-parametric statistical
pattern recognition, the behavior of the conditional distribution
away from the decision boundary (|η − .5| � 0) has not
received much attention. VC dimension [1], a generalization
of linear dimension, is defined in terms of the decision rule
induced from the hypothesis (a characteristic function of the

1This paper does not attempt to study specific continuity or smoothness
properties; the proposed formulations used all use linear or RBF kernels,
which are analytic functions. The authors believe that the method would apply
to piecewise smooth functions and likely to Hölder- and Lipschitz-continuous
functions as well.

hypothesis), so that the behavior of the hypothesis away from
the zero level set is inconsequential to VC dimension, except
to the extent that it is determined by smoothness properties. By
contrast, this paper explores whether constraints or penalties
on the behavior of a hypothesis away from the decision
boundary will improve our ability to estimate the behavior of
the decision boundary, assuming the hypothesis is appropri-
ately smooth. The term conditional probability regularization
(CPR) is coined for this technique. The CPR method can
be understood intuitively as to squish the dispersion of the
chosen hypothesis h(X) when graphed against the condi-
tional probability η(X), as illustrated in Fig.I. Typical pattern
recognition loss functions, such as hinge loss or binomial log
likelihood attempt to reduce the density of the hypothesis h
in the neighborhood of 0, making a scatterplot as steep as
possible in the vicinity of the decision boundary (η = .5),
up to the allowable regularization. In contradistinction, the
proposed regularization trades off the approximate slope of
the scatterplot with the dispersion, as best we can estimate
these quantities.

As a fundamental matter, if |η−.5| is bounded far away from
zero, CPR methods are not useful. In these circumstances, the
location of the decision boundary is not as important [18], so
careful placement of it is not useful. Thus, theory suggests
that CPR methods are only effective for moderately or highly
inseparable tasks, when the loss of the best models is high.

The author argues that the following principles are desirable
for any CPR formulation:

1) Empirical data required by the technique should be
possible to obtain for reasonable pattern recognition
tasks, and the cost of collecting it should be not much
worse than the cost of collecting ground-truth class
labels.

2) The regularization should be statistically efficient; that
is, there should be some provable mechanism to show
that the CPR allows one to choose a better hypothesis
for a given sample than without it under practically
attainable assumptions. Additionally, if the assumptions
do not hold, the formulation should fail gracefully and
produce a model not much worse than an efficient
formulation which does not use CPR.

This paper addresses these desiderata in the following ways:
First, empirical data are assumed to be a noisy, unknown
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increasing transformation of the conditional probability η for
each example in the training set. Note that an unknown de-
creasing transformation can be converted into an unknown in-
creasing transformation via multiplication by −1. The method
also allows a different transformation of η for each label class.

While true values of η are rarely observable, there are
common phenomena that can be interpreted as noisy trans-
formations, especially in tasks which relax the regression of
an unknown function into predicting the sign of that function.
Observable values of the regression can be interpreted as an
unknown transformation of η. A canonical example is the
pattern recognition task, which is to find the sign of the
unknown function η − .5

For example, consider a patient who survives 30 years
after a serious diagnosis compared to a patient who survives
five years. If the goal is to predict five-year survival, pa-
tients essentially like the former have a higher probability
of surviving than patients like the latter. Thus, the length of
survival after diagnosis can be interpreted as a noisy increasing
transformation of a the conditional probability of surviving five
years.

For the second desiderata, this paper justifies the CPR
intuition using well-known results from fast-converging excess
risk bound literature. It shows how learning formulations
which satisfy the 3 axioms in the introduction can be coerced
into satisfying the nontrivial requirements for these bounds.
Coercion is accomplished by the addition of constraints based
on empirical conditional probability data. Practically, con-
straints are converted to parametric penalties. When fully
relaxed, the penalties vanish leaving the original learning for-
mulation. This paper chooses penalty parameters empirically
via validation.

A basic question will naturally arises from the problem
setting just described: Why would one want to find the sign of
an unknown function instead of that function directly? For ex-
ample, it would be possible to predict a patient’s survival time,
either directly or as a survival curve. The author submits three
reasons: First, it is assumed that the regression task requires
a more complex function to imitate it, so there is a higher
risk of underfitting or overfitting if one only seeks the sign to
begin with. Second, a model may seek agreement with human
judgments, which routinely distill complex, continuous-valued
phenomena into a binary decisions, such as whether a student
passed a test or whether a party was liable in a legal case.
In tasks like these, the underlying preferences and reasons
may be too complicated and costly to observe directly, or
even apparently inconsistent, even though human decision-
makers have no trouble describing subjective confidence in
their decision. Finally, in applications where the regression
task is used as one input in a sequence of decisions, its sign
may be all that is needed.

This paper proposes two CPR methods, provides some
theoretical justification in terms of excess risk bound literature
(though the author is aware of many additional results) and
evaluates them against a baseline non-CPR pattern recognition
method and, for some experiments, against a decision rule

induced from a regression on empirical conditional probability.
The evaluation also studies the estimation error that arises
from having to choose CPR penalty parameters empirically.
The methods proposed here are based on kernel and support
vector methods. This combination gives rise to smooth hy-
pothesis spaces and convex inference formulations. The latter
property is important in evaluating a regularization strategy,
as nonconvex formulations present competing explanations
to differences in performance. The codes used here are for
research and are not optimized for large datasets.

II. BACKGROUND

Vapnik and Vashist [2] introduced the idea of privileged
information, which is a general term for information about an
observation X which is not readily observable but which can
be assumed in finite quantities. There are no further formal
assumptions. It may be high dimensional. Statistical learning
formulations making use of privileged information (called
Learning Using Privileged Information or LUPI) should have
particular assumptions as how the privileged information can
be leveraged. In this terminology, privileged information is dis-
tinguished from decision information, which is the observation
X .

A common assumption is the teacher assumption: there is
some admissible function under which the privileged informa-
tion is more predictive than the the desired task. The teacher
function applied to an observation’s privileged information
gives rise to constraints that the hypothesis for the desired
task (decision) hypothesis should satisfy. For example, in
the medical field, tumor diagnosis is a sequential decision
proceeding from imaging to biopsy and ultimately surgery,
reflecting a progression of increasing cost, invasiveness, and
certainty. It is useful to distinguish three quantities: P (Y |X),
P (Y |Xobs), and P (Y |Xpriv). In the example, the first value
would be the probability that a tumor is malignant, taking
all possibly-observable information into account. The second
might be the probability of malignancy based only on imaging.
The last might be the probability of malignancy given the
knowledge gained from a more intensive investigation, such as
a biopsy. A decision rule for a biopsy, along with the results
of a test, could be a teacher for detecting malignancy from
images. Generally speaking, the three conditional probabilities
are all different functions, and most papers in the literature
differ in how to express a teacher assumption in terms of these
quantities. This paper is distinguishable because it assumes
direct empirical access to P (Y |Xobs),2 as opposed to indirect
access to P (Y |Xpriv) via some admissible function. Although
empirical conditional probability information is one of many
possible kinds of privileged information, this paper prefers to
use the former term for its specificity.

The paper which proposed the LUPI paradigm [2] also
proposed a learning formulation called SVM+ which seeks an
admissible function of the privileged information to explain

2In some cases, empirical conditional information is in the form of
P (Y |X). This paper regards deviations between it and P (Y |Xobs) as noise.
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Fig. 1. Scatterplots comparing hypothetical examples of conditional probability regularization. Conditional probability P (Y = 1|X) ..= η(X) is plotted
against the behavior of a hypothetical discriminant function h on a synthetic sample. The scatterplot markers + and ◦ depict the two classes of the pattern
recognition problem. A good discriminant minimizes the density in the diagonal quadrants; an optimal discriminant (Bayes rule) has none. A task with low
loss would have low density in the center of the scatterplot. In the first instance, h1 has low dispersion with respect to the true conditional probability, but is
is inversely related to η in the vicinity of η = 0.5, so has undesirable high density in the diagonal quadrants. In the second example, h2 has higher dispersion
with respect to η, but better achieves the desired low density of the diagonal quadrants.

the losses of a good pattern recognition hypothesis. This
is not explicitly a teacher assumption because the chosen
function need not perform well on the desired task, although
the possibility is not excluded. However, the loss of a good
pattern recognition hypothesis should be related to conditional
probability, so the teacher assumption is arguably implicit here.

Pechyony and Vapnik [3] explained a mechanism to prove
that SVM+ can have convergence of empirical risk to expecta-
tion at a rate like 1

n , and provided an example of a distribution
that is provably slow ( 1√

n
) for a learner without privileged

information and provably fast with SVM+. However, neither
this nor any other formulation to the author’s knowledge prove
fast convergence results based on criteria that can be verified
from data, except for the results in this paper.

Wang and Ji [9] propose a formulation (LIR) based on the
teacher assumption. They assume a principle that the student
should not be better than the teacher on any training point;
that is, the student’s loss should not be less than the teacher’s.
A similar condition could be expressed in terms of conditional
probability.

Lopez-Paz, Schölkopf, Bottou, and Vapnik [5] relate model
distillation (using a complex teacher model to create pseudo-
labeled data for a simpler model) to the teacher assumption,
where the simpler model is required to emulate the conditional
probability of the teacher model. Suppose that Ltargn is an
empirical risk functional for the target task and that Lteachn

is an empirical risk functional for the deviation between the
predicted conditional probability of an example under the
complex and simple models. Then the formulation can be
written as:

min
h∈H

Ltargn (h) + CLteachn (h)

The paper suggests annealing the extreme values of of the

teacher conditional probability, similar to the idea that a
student should not be more certain than the teacher.

Wang et al. [7] finds a favorable partition of the privileged
space using a linear latent variable model and seeks to predict
the partition in the decision space, in the hopes that a partition-
dependent variables can lower loss compared to a global
model. This is a teacher approach, but the feedback between
the teacher and student is through the partition rather than
conditional probability or loss.

Other formulations use the privileged information as a
guide, but do not require finding an admissible function that
is predictive of the desired task. Wang and Ji [9] assumes that
propose a formulation (RPR) that interprets the privileged in-
formation as allowable components of the loss on the training
sample.

Lapin, Hein, and Schiele [4] propose to use empirical
information as conditional probability estimates, similar to
this paper but not allowing for transformation invariants. They
find that the SVM+ method is reducible to a weighted SVM
approach (though finding equivalent weights is not trivial)
and suggest that the best weights are conditional probabil-
ity estimates. The method encourages a learner to prioritize
performance on the easy examples over the hard examples.
However, this approach requires accurate conditional proba-
bility estimates, excluding some sources of this information
considered here.

Vapnik and Izmailov [10] have recently proposed a Learning
Using Statistical Invariants framework. This approach attempts
to directly solve the ill-posed estimation problem for the
conditional probability function η. Since an empirical estimate
of η is found in some parametric form, additional a priori
constraints can be placed on it, which are called statistical
invariants. The method proposed here differs in that the
hypothesis selected is constrained by empirical estimates of
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η, rather than a priori properties, and the hypothesis here is
not an approximation of η.

There some papers that study empirical conditional proba-
bility or privileged information, but which use hypotheses that
do not satisfy our smoothness assumptions. Some of these use
decision tree methods [6, 11], while Fouad et al. [8] considers
using privileged information to adapt a distance function for
prototype learning (methods such as K-Nearest Neighbors).

III. THEORETICAL CONSIDERATIONS

The first risk bounds to be proved [1] are called uniform
bounds because they bound the deviation between empirical
risk and the risk in expectation uniformly and simultaneously
for all admissible functions in the space under consideration.
That is, with high probability suph∈H Ln(h) − L(h) ≤ B,
in other words, the empirical risk (loss on a finite sample)
will not exceed the true loss (supposing one had access to
the true distribution). This approach applies quite generally
to any bounded loss function, provided that VC-dimension is
controlled.

Another line of analysis is to consider the excess risk of a
hypothesis chosen according to the empirical risk minimiza-
tion (ERM) procedure: Let hn minimize Ln (empirical risk)
and h′ minimize L (loss expectation). An excess risk bound
has the form L(hn)− L(h′) ≤ B. This bound can be tighter
than the uniform bound; the idea is that the ‘bad’ hypotheses
that cause the uniform bound to be large might have high
loss and would be excluded by the ERM procedure. The
perfection of this idea is known as the ‘peeling’ procedure.
Namely, if one can control the variance of the excess risk
in terms of its expectation uniformly over h ∈ H, such as
Var[l(h)− l(h′)] ≤ DE[l(h)− l(h′)], then excess risk bound
converges like 1

n .3 Fast-converging excess risk bounds, as
presented above, apply to theoretical 0/1 loss, while practical
learning formulations almost always use a convex relaxation
such as hinge loss or negative binomial log likelihood. In
some cases, the fast convergence argument can be extended
to the the relaxed loss [13]. To the author’s knowledge, the
typical means of extending fast convergence proofs to convex
loss cannot be applied to the formulations proposed here.
Nevertheless, other things equal, a formulation which has
provable fast convergence properties in its unrelaxed form is
superior to one which does not. It is possible that advances in
computing will make it tractable to optimize for 0/1 loss.

The key mechanism to do a theoretical analysis on the pro-
posed problem setting is the following: If a total order can be
induced on a distribution and every hypothesis in a space has
0/1 loss which respects that order, then the variance condition
is trivially satisfied. For example, suppose we seek to find
the best hypothesis over a discrete distribution of three points
with a total ordering defined by (y1, x1) � (y2, x2) � (y3, x3).
Then the variance condition is satisfied (D = 1) for 0/1 loss if

3Relaxed versions of this condition are also possible. The criterion is most
commonly presented in terms of the Mammen-Tsybakov noise conditions
[12], which further assume h∗ ∈ H. This latter assumption is a tool to prove
the variance criterion, not a requirement of the peeling proof.

for every h ∈ H, l(h(x1), y1) ≥ l(h(x2), y2) ≥ l(h(x3), y3).
The proof of this is trivial. An extension of this principle is that
the variance condition can be satisfied by ordered hypotheses,
as in for every h ∈ H, h(x1) ≥ h(x2) ≥ h(x3), with some
additional assumptions required.

The author proposes two formulations based on these
mechanisms: First, observe that any hypothesis h can be
coerced into having ordered loss by the addition of some
non-negative correcting function: l(h) + φ(h, ω) where ω is
a parameter.4 The realization of this idea is called LO-SVM.
Second, empirical risk minimization can be performed over a
filtered hypothesis space, where every admissible hypothesis
satisfies a relaxed order condition with high probability:

min
Lorder(h)≤γ

Ltarg(h)

In our case, Ltarg is 0/1 loss, and Lorder is an ordinal
regression formulation. (Use of ordinal regression here allows
the formulation to enjoy invariance to increasing transforma-
tions in the empirical conditional probability information.) For
Lorder, a useable formulation based on pairwise loss was
analyzed by Clémençon et al. [14] using the theory of U-
statistics proposed by Hoeffding [15]. This paper proposes a
modified formulation called Asymmetric Pairwise Loss (APL).
The formulation arising from this is called GO-SVM.5

To turn these into a useful formulation, the following steps
are needed.6

• The ‘peeling’ argument for fast convergence can be
slightly relaxed to allow for a less than perfect total
ordering.

• The requirement of ordered loss is relaxed to ordered
loss in each class. This expands the kind of problems
where the method can be applied and can be shown to
not substantially affect rate of convergence.

The analysis proposed here might be called risk bound
engineering in that we can take well-known proofs and com-
bine a number of them using the union bound. Since risk
bounds are inherently conservative, using the union bound
only exacerbates the problem, and and many of the proofs
are not at all tight. Still, the exercise is useful to understand
the implications and tradeoffs of the methods.

IV. LO-SVM

The LO-SVM formulation7 takes advantage of the fact that
every hypothesis in a space can be coerced to have loss which
satisfies a desired order. Assume data are generated according

4This is the same principle used by Vapnik’s SVM+ [2]. In this case, ω
defines a threshold of the total ordering, below which there is loss and above
which there is not.

5The names are intended to be mnemonic for loss order and global order
respectively. The GO-SVM requires that every point respect the ordering
whereas the ordering constraints in LO-SVM are defined by the points which
have loss.

6We omit proofs here because they are tedious and not germane to the
intended audience. Interested readers can find them in [16].

7The LO-SVM formulation can be regarded as a specialization of the SVM+
algorithm in [2] with the correcting function space replaced by M, the class
of 1-dimensional increasing functions.
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to a a distribution P which generates points (X,Y,R) ∈ Rd×
±1×R. The last argument is the conditional probability proxy,
encoded as a real number.

A classical VC-analysis is straightforward, so it will be
outlined. Let 1X be a characteristic function that is 1 on
the support of X; let E be statistical expectation; let En
be empirical expectation on a random sample of size n;
let l01 be standard 0/1 loss; finally, we use the shorthand
L01 ..= E[l01]. Finally, let hn be a hypothesis (and similarly
for other parameters) generated by empirical risk minimization
over a sample of size n. Consider a correcting function of the
form:

c(x, y, r;h, ω) = 1r≤ω − l01(h(x), y)

where ω is a parameter in R. Then it is trivial to write a
formulation in expectation:

min
h,ω

E[l01(h) + c(h, ω)] = E[1r≤ω]

s.t. c(x, y, r;h, ω) ≥ 0

Note that the quantity to be minimized is an upper bound on
the loss of L01(h∗), and it satisfies the ordered loss condition
and a has a VC dimension of 1 (regardless of the hypothesis
space being used). Thus, fast excess risk bound theorems
hold here, and the empirical formulation will converge at a 1

n
rate to its minimum admissible value in expectation, provided
that uniform non-negativity of the correcting function can be
guaranteed. Uniform non-negativity of c(hn, ωn) cannot be
guaranteed by empirical methods; however, the probability of
negativity can be bounded which then yields a useful risk
bound.

A result of Bartlett et al. [17, Corollary 3.7] gives a bound
that an independent constant C exists so that with probability
at least 1 − δ, uniformly for all (h, ω) ∈ H × R such
that En[1c(h,ω)<0] = 0 the following holds: E[1c(h,ω)<0] ≤
C

(V+1)(log n
V+1 )+log 1

δ

n . Let h̊, ω̊ minimize E[f ] over all hy-
potheses for which En[1c(h,ω)<0] = 0 (note that this is
defined on the training set).8 A standard variance bound result
of Boucheron et al. [18, Section 5.3.4] is that there is an
independent constant C such that with probability at least 1-α,

sup( E[f(hn, ωn)]− E
n

[f(hn, ωn)],

E[f(hn, ωn)]− E[f (̊h, ω̊)])

≤C
log n+ (log n+ 4) log 1

α

n

The two bounds hold simultaneously with probability at least
1 − α − δ, and adding the right hand sides gives us a fast
1
n upper bound on the convergence of hn to h̊, as defined
here. Unfortunately, c(̊h, ω̊) might be quite large, so there is
no reason to believe hn converges to the minimizer of L01(h)
without further assumptions. To satisfy the second axiom of

8A necessary step is to establish the VC dimension of the class C(H) =
{1c(h,ω)<0 : h ∈ H, ω ∈ R}. A similar result is proved for pseudo-
dimension by Pechyony and Vapnik [3, Appendix B] which can be specialized
to VC dimension. The VC-dimension of C(H) is bounded by V + 1.

CPR formulations, that they should fail gracefully, penalized
negativity of c can be permitted; that is, certain examples are
allowed to have loss. This reduces the speed of convergence
of the objective and loosens the bound on the nonnegativity
of c, but has the benefit of tightening the upper bound.

A benefit of this method is that the assumption that CPR
information provides a total ordering of the training examples
can be relaxed to an assumption that the CPR information
gives two total orderings, one for each class. The analysis
described above has to be adapted. This is not trivial; one has
to avoid a pathology where a hypothesis space contains two
hypotheses with similar loss but where the loss in each class is
much different. However, this requirement can be empirically
enforced as well, and then added to the union bound.

This method was implemented using by relaxing 0/1 loss
to hinge loss. The ordering constraints are assumed to be per-
class. The loss balance constraint is not explicitly enforced
because the optimal models without the constraint have rea-
sonable balance. The non-negativity constraint on c is relaxed
via a penalization parameter C. As in ν-SVM, the hypothesis
space complexity is traded off with loss via a parameter ν.
The formulation is:

min
1

2
wTw − νρ+

C

n

∑
i

ζi +
1

n

∑
i

ξi

s.t. ∀i, yi(w · xi + b) ≥ 1− ζi − ξi
ξ ≥ 0

ζ ≥ 0

∀(i, j) ∈ P, ζi ≤ ζj

The preference set P is defines chained constraints based on
a (per-class) total ordering, as in ζ1 ≤ ζ2 ≤ ζ3 ≤ . . .. Re-
laxations of the ordering are computationally straightforward,
although a statistical analysis is more difficult. If C ≥ 1, the
method is the same as ν-SVM [21]. The formulation can be
written using two cost parameters, but is apparently sensitive.
The author found that the ν-formulation found better models
for all tasks in the evaluation.

The Representer Theorem [19] holds for this formulation,
and the method is implemented in the dual form, allowing
kernel learning. Model inference requires solving a convex
quadratic program with n (sample size) variables and a mul-
tiple of n constraints.

V. GO-SVM

The GO-SVM formulation applies two different kinds of
regularized loss to the same hypothesis, namely L01

n and
Lteachn . In principle, any regression formulation could be used
for Lteachn , but there are a some considerations:
• A method which is insensitive to increasing transforma-

tions of empirical conditional probability data requires a
special formulation. Pairwise loss and the variant defined
here are the only possibilities known to the author.

• Both L01
n and Lteachn should be regularized; however, the

regularizations of each loss cannot conflict. A regulariza-
tion that makes use of the norm of the hypothesis cannot
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coexist with another. To the author’s knowledge, the only
loss formulations that allow independent regularization
are ones in which a capacity parameter is an explicit
optimization variable, such as ν-SVM methods [21].

This section defines a new ordinal regression loss called Asym-
metric Pairwise Loss (Lapl). It then discusses how regularized
formulations of Lapl can be combined with a regularized L01

n

to make a learning formulation.
Asymmetric Pairwise Loss (Lapl) is introduced here as the

unrelaxed (non-convex) prototype of the regularized empirical
ordinal regression formulations defined by Shashua and Levin
[20]. They proposed two formulations, both of which can be
viewed as regularized convex relaxations of Lapl. Unlike the
common ordinal regression definition, this author does not as-
sume that any point in the support of the target distribution has
measureable mass; this interpretation of ordinal regression as
scale-insensitive regression was given in Clémençon, Lugosi,
and Vayatis [14]. The core of APL is an indicator function that
indicates loss if a threshold t splits a prediction f(x) from its
target y.

Definition 1 (Order Contradiction Indicator).

loci(f(x), y; t) ..=

 1 f(x) > t, y < t
1 f(x) < t, y > t
0 otherwise.

With this definition in hand, we can define Asymmetric
Pairwise Loss:

Definition 2 (Asymmetric Pairwise Loss).

Lapl(f) = E
X′,Y ′

[
E
X,Y

[
loci(f(X), Y ;Y ′

]]
The definition is expressed as a double expectation for

clarity; however, X ′ is trivial and could be dropped from
the outer expectation. Intuitively, error is the expectation over
predictions and labels of the mass of points which induce order
contradictions. The analysis by Clémençon, Lugosi, and Vay-
atis [14] can be extended to this approach, and APL satisfies
a strong risk bound under heteroscedastic noise provided that
it is mean zero with bounded variance at each point. (Pairwise
loss requires assuming symmetric noise according to their
analysis.) Moreover they suggest that the variance properties
of the U-statistic may be more favorable than their analysis
can prove.

The fixed-margin formulation of Shashua and Levin [20]
assigns each training example a distinct interval of some
minimum size (margin) on a real number line that is consistent
with its target label. Loss is the magnitude of the displacement
an example from its interval, and it is empirically minimized
by optimizing the intervals and the hypothesis that projects
each example onto the number line. The displacements are
relative to the minimum interval size, so loss is proportional to
the mass of contradicting points if Y is distributed uniformly.
For other distributions the displacements can be interpreted
as an upper bound to the mass of contradicting points with
appropriate assumptions.

A risk bound for GO-SVM is straightforward using the tech-
niques described for LO-SVM when the ordinal component of
the problem has zero loss, which is not a plausible assumption.
This can be relaxed, but the resulting bound is not fast for 0/1
loss below the level of relaxed ordinal loss.9 In the author’s
opinion, the variance of hypotheses in the classification task is
much more controlled than the analysis can show. Unlike LO-
SVM, this method directly minimizes the pattern recognition
loss instead of an upper bound.

The GO-SVM formulation uses a linear hypothesis w (sub-
ject to the kernel trick) as in SVM. Loss and capacity control
are traded off between hinge loss (relaxed 0/1 loss) and ordinal
loss via user-selectable parameters. Capacity control in both
SVM and the ordinal regression formulations is attained by the
relationship between the squared norm of the predictor w and
the size of the margin. However, w serves a two-fold role in
this formulation; therefore implementing different capacities
for the two learning objectives requires explicit values for
the margins. This formulation extends ν-SVM formulations
[21] so that the usual tradeoff between loss and capacity is
preserved.

The formulation is

min
ξ≥0
w,b,g,ξ
ζ,ρb,ρo

1

2
wTw + α

(
−νbρb +

1

n

n∑
i=1

ξi

)

+ (1− α)

(
−νoρo +

1

n∗

n∑
i=1

|ζi|

)
s.t. ∀i, yi(w · xi + b) ≥ ρb − ξi
∀i, gi +

ρo
2
≤ w · xi + ζi ≤ gi+1 −

ρo
2

Hinge loss is implemented in the first and third lines, while
ordinal loss is implemented in the second and fourth lines.
Variable g is the vector of interval boundaries in natural order,
with one example per interval if no ties and assuming no empty
intervals. Extending the formulation to support two within-
class orderings can be accomplished by a straightforward
adaptation. Variable w is the linear hypothesis and b is a
classification bias term. Constant n∗ is defined to control the
feasible range of νo. It is n2−n/2 if there are not ties in the
ordering.

Parameter νb controls the VC-dimension of the 0/1 loss
class, νo controls the VC-dimension of the regression task
hypotheses. Finally, parameter α trades off the loss on the
target decision task with the loss on the CPR regularizer
regression task. In principle, within-class orderings require
enforcement of loss balance. Loss balance is not enforced;
however, the author has never observed the unconstrained
optimum to have unreasonable loss balance, and the value of
the unconstrained minimizer can be thought of as a post-hoc
constraint.

Like ν-SVM [21], the optimization problem can be
characterized in terms of νb and νo and training data.

9This bound could be useful for tasks with high loss on the classification
task, but low loss on within-class ordinal tasks.
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It can be proved that the problem is primal and dual
feasible for νo ∈ [0, 1], α ∈ [0, 1], and νb ∈
[0, 2 min(# positive examples,# negative examples)/n; and
primal unbounded/dual infeasible otherwise. The Representer
Theorem [19] holds for GO-SVM, so the solution can be
expressed in terms of the dual variables and kernels can be
used.

VI. EVALUATION

The goal of evaluation is to prove that the conditional prob-
ability regularizer allows faster convergence (empirical risk to
its expectation) than a learning formulation which considers
only the labels. Since both proposed CPR formulations are an
extension of standard SVM, it is a logical baseline. Moreover,
because the LO-SVM and GO-SVM hypothesis spaces are
restrictions of the full hypothesis space in SVM, they cannot
outperform SVM by virtue of a richer hypothesis space; SVM
will always attain the lowest loss on the training sample.
Empirical performance improvements over the baseline can
only be explained by better convergence. Finally, evaluation
is not intended to be a statement about the fitness of the
hypothesis spaces for the learning task, but only about the
ability of the learner to select the best element. The author
believes the results here would carry over to hypothesis spaces
that have evolved to support specialized tasks.

The baseline solver is a ν-SVM formulation that is coded
using Matlab’s quadprog interior-point convex solver, as are
all formulations used here. All optimization tasks used in these
experiments operate on the same kernel matrix and solve to
the same numerical tolerance.

The experimental setup is to hold out a testing set and
sample remaining examples for 20 random realizations of
training and validation sets. The validation sets were used for
model selection, and results are reported on the test set, which
is used for all experiments. Testing sets contained at least 1800
examples. Experiments use two validation sizes. The first val-
idation set is the same size as the training set and intended to
emulate cross validation but save computing time. The second
is much larger and intended to show how the methods would
perform if model selection were optimal. These results are
reported as ‘holdout’ and ‘extended’ experiments, respectively.

The ν formulations have a fixed, auto-scaling parameter ν,
and we use structural risk minimization to choose from a fixed
set of parameters ν = [.1, .2, . . . , .9, .95, .995]. The LO-SVM
formulation performs grid search model selection using these
ν parameters and a C parameter set of [.5.7.8.9]. We found
that the LO-SVM problem was often infeasible for values of
C, but this paper did not attempt to study its feasibility.

The rbf kernel width (where used) is chosen from the
[.1, .25, .5]-quantiles of the pairwise distance of training points.
The kernel parameter was chosen by a hold-out validation on
the SVM experiment and re-used in the other formulations to
cut down the size of the model search. The α parameter in
the GO-SVM method was chosen from [.1, .25, .5].

A. Synthetic data

A synthetic dataset is designed to illustrate the properties of
the method in terms of underlying statistical properties of data.
The dataset is defined using a distribution to sample P (Y = 1)
and then to generate X and Y such that the sampled value
represents η ..= P (Y = 1|X). The signal is obfuscated by
rotating with high dimensional noise via a random orthogonal
matrix Q.

A dataset is generated by first defining a distribution η̂
with support in [0, 1] and a random orthogonal matrix Q
with dimension d. Individual examples are generated with the
following steps:

1) Sample a base value T ∼ η̂.
2) Assign a class label 1 according to the probability T .
3) Sample a uniform random vector U of size d − 1 and

let X = Q [T ;U ].
4) Create empirical conditional probability labels by adding

noise to the base value T , as R ∼ T +N (0, σ).

This procedure implies that η(X) = mX for some m.
These experiments use a simple η̂ distribution defined by

parameter θ. This distribution has uniform density on [0, 1],
except for a tooth in the interval [θ, 1 − θ] with no support.
When θ is small, the task is easy and the variance condition for
fast convergence holds more strongly. As θ approaches .5, the
task is difficult, as a significant fraction of labels are essentially
random. These distributions are symmetric around .5, so
they generate class-balanced problems. It is straightforward
to compute the Bayes classifier error rate (which assumes η
is known) in terms of θ.

While ν-SVM is the baseline for all experiments in this
paper, the synthetic experiments include a conditional proba-
bility regression approach. This formulation can be viewed as
the Lteach component of the proposed GO-SVM formulation.
However, the CPR formulations assume that empirical con-
ditional probability values are not comparable across classes.
The ordinal regression baseline does not use stronger assump-
tions; rather, the two preferences orderings are glued together
by placing the negative class ordering before the positive class
ordering. After the optimal regression function is found, a
decision boundary is chosen based on training data.

The synthetic evaluation considers a very small sample of
size 30 and dimension of size 10 for values of θ at 0.3, 0.45,
and 0.5. For each of these, we consider empirical conditional
probability data with and without noise (σ = .1). As θ
increases, the loss of the Bayes optimal decision increases,
and the task becomes more difficult. The experiment also
includes evaluation of increasing conditional probability noise
for θ = .45.

B. Common datasets

The evaluation also includes a some datasets from related
papers, as well as a few UCI datasets that can be adapted to
the CPR data assumptions. An SVM+ implementation was
also evaluated, using the empirical conditional probability

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



TABLE I
RESULTS (MEAN ERROR RATE AND STANDARD DEVIATION OVER 20 RANDOM EXPERIMENTS FOR SYNTHETIC DATASET FOR VARIOUS DISTRIBUTIONS.

WINNERS ARE REPORTED INDEPENDENTLY FOR HOLDOUT AND EXTENDED VALIDATION EXPERIMENTS. ALL EXPERIMENTS HAVE SAMPLE SIZE 30,
DIMENSION 10

ν-SVM ν-SVM GO-SVM GO-SVM LO-SVM LO-SVM OR-SVM OR-SVM Bayes
θ, σ holdout extended holdout extended holdout extended holdout extended optimal
0.3, 0.0 .188 (.031) .161 (.014) .187 (.031) .150 (.000) .168 (.028) .151 (.003) .168 (.017) .161 (.011) .15
0.3, 0.1 .179 (.039) .165 (.019) .171 (.028) .152 (.002) .168 (.031) .155 (.006) .189 (.029) .167 (.011) .15
0.45, 0.0 .291 (.049) .269 (.042) .272 (.031) .232 (.007) .279 (.040) .260 (.033) .282 (.041) .265 (.024) .225
0.45, 0.1 .322 (.061) .299 (.041) .259 (030) .230 (.002) .278 (.025) .254 (.024) .277 (.039) .262 (.026) .225
0.45, 0.2 .295 (.055) .277 (.052) .256 (.024) .228 (.004) .279 (.043) .256 (.028) .274 (.039) .255 (.032) .225
0.45, 0.3 .308 (.031) .271 (.028) .276 (.035) .243 (.011) .291 (.031) .262 (.022) .285 (.031) .261 (.016) .225
0.45, 0.4 .288 (.033) .268 (.025) .285 (.036) .250 (0.18) .294 (.028) .265 (.024) .295 (.054) .270 (024) .225
0.45, 0.5 .311 (.067) .279 (.036) .304 (.065) .255 (025) .307 (.063) .270 (.032) .316 (.066) .280 (.034) .225
0.5, 0.0 .310 (.037) .293 (.031) .271 (.024) .251 (.001) .304 (.060) .260 (.009) .279 (.033) .264 (.014) .25
0.5, 0.1 .315 (.039) .302 (.037) .271 (.018) .259 (.003) .303 (.061) .275 (.030) .298 (.054) .274 (.016) .25

TABLE II
RESULTS (MEAN ERROR RATE AND STANDARD DEVIATION OVER 20 RANDOM EXPERIMENTS) FOR ALL TASKS. WINNERS ARE REPORTED

INDEPENDENTLY FOR HOLDOUT AND EXTENDED VALIDATION EXPERIMENTS.

ν-SVM ν-SVM GO-SVM GO-SVM LO-SVM LO-SVM SVM+ SVM+
experiment holdout extended holdout extended holdout extended holdout extended
T.ser 20 .274 (.126) .229 (.079) .190 (.116) .149 (.101) .261 (.120) .251 (.118) .260 (.123) .212 (.123)
T.ser 50 .106 (.035) .092 (.029) .052 (.025) .032 (.009) .089 (.040) .075 (.030) .058 (.025) .042 (.017)
Surv 20 .400 (.060) .368 (.052) .376 (.052) .338 (.038) .380 (.053) .364 (.050) .374 (.051) .374 (.051)
Surv 40 .327 (.030) .315 (.026) .290 (.035) .272 (.029) .313 (.029) .302 (.029) .345 (.034) .345 (.034)
Surv 100 .255 (.028) .249 (.028) .226 (.019) .215 (.014) .243 (.021) .226 (.019) .286 (.028) .284 (.026)
Digits 60 .114 (.034) .110 (.029) .111 (.032) .099 (.024) .114 (.036) .107 (.027) .113 (.032) .113 (.032)
Digits 80 .091(.013) .089 (.014) .086 (.014) .077 (.010) .090 (.016) .085 (.013) .091 (.012) .091 (.012)
Ames 100 .115 (.014) .110 (.010) .096 (.010) .092 (.006) .106 (.013) .105 (.011) .104 (.011) .097 (.009)

information as a one-dimensional correcting space.10 The
author is aware that the comparison has flaws, as the specificity
of assumptions proposed here gives the CPR formulations an
advantage. Nevertheless, the evaluation is informative as to
whether the stronger CPR assumptions yield some benefit over
the more general SVM+ assumptions.

The first evaluation is up/down prediction of the MacKey-
Glass synthetic timeseries [22]. It was used in the LUPI setting
(SVM+) in [2], where the authors used a 4-dimensional em-
bedding (xt−3, xt−2, xt−1, xt) in order to predict xt+5 > xt.
In that experiment, privileged information was a 4-dimensional
embedding around the target: (xt+3, xt+4, xt+6, xt+7). The
authors compared SVM+ to SVM. Their results for both SVM
and SVM+ could not be replicated.11 We interpret xt+5 − xt
as an increasing transformation of η. We use an RBF kernel
for all experiments with this dataset. This is indicated in the
results chart by T.ser.

The second evaluation is predicting binary survival at a fixed
time from onset. Synthetic datasets are created using the same
procedure as Shiao and Cherkassky [23], with noise level .1
and no censoring. While censored data (such as survival time

10SVM+ parameters were selected as follows: The ‘decision space’ kernel
parameter was fixed as in the other CPR formulations described previously.
The RBF kernel was used for the correcting space, with kernel widths
corresponding to the [.1, .5, .9] quantiles of the pairwise distances—in this
case, single-dimensional data. The cost parameters were chosen by grid search
from 2−4, . . . , 28, and the correcting complexity parameter (γ) was chosen
from 2−4, . . . , 24.

11The parameters used to generate the timeseries were an integration step
size of .1, with points created every 10 steps, a, delay constant τ = 17, and
initial value .9.

known only to be greater than some value) are an inherent
aspect of survival studies, it is avoided because ordinal models
can be modified to accommodate the partial information that
censored examples contain; this extension is an experiment
for another day. This experiment uses the difference in the
fixed prediction horizon and the event time for the conditional
probability regularizer and considers only linear models.

The third evaluation is handwritten digit recognition, which
was used by Vapnik and Vahist [2] for SVM+ and slightly
adapted by Lapin et al. for their proposed LUPI method [4].
The task is to classify down-sampled (10×10) MNIST images
based on pixel values. Lapin added human-annotated confi-
dence scores to training examples (available for download). We
repeat the experiment using their data preparation and using
their annotators’ confidence scores as the conditional proba-
bility regularizer. These experiments use an RBF kernel. They
averaged the scores of 16 annotators, whereas we selected the
grades given by annotator 6, whose labels were closest to a
uniform distribution of the possible grades.

The last evaluation is based on predicting whether a house
in Ames, IA, has an assessed value above or below the
median price [24]. The dataset is comparable to the well-
known Boston Housing UCI dataset, but with considerably
greater detail about subject houses. The dataset gives sale
prices and 318 attributes after converting ordinal variables
to categorical indicators for 2924 houses and following the
dataset author’s recommendations of removing a few outliers.
Empirical conditional probability is the actual assessed value.
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C. Discussion & Conclusions

In virtually every experiment, the CPR formulations have
lower loss then the baseline SVM and conditional probability
regression formulations. A minimal conclusion is that the
CPR information can allow one to find information about
the decision boundary that labels do not convey. One should
remember that the uniform performance improvement is by
design, as all the CPR formulations can emulate the baseline
approach under the correct parameter settings. This design
choice removes the possibility of doing considerably worse
than the baseline by giving up some possible performance
increase. With more parameters to be found the gap between
an optimal model and the selected model increases. This is
seen in the results tables in the difference between ‘holdout‘
and ‘extended‘ model selection.

Table I shows the synthetic data experiment results. Rows
correspond to various dataset generation parameters θ and σ.
Columns correspond to the learning formulations evaluated
and to the model selection procedure. Generally, there is a
trend toward greater absolute reduction in loss compared to
the baselines as the problems become more difficult (as θ
increases) for a fixed σ (particularly noticeable in the extended
validation results). This corresponds to the observation from
theory that CPR methods are unlikely to provide any benefit
to classification problems that are separable or have low loss.

For θ = .3 tasks (that have a comparatively low Bayes rate),
the LO-SVM formulation appears to outperform GO-SVM,
but otherwise the GO-SVM formulation appears stronger.
Moreover, the addition of noise (σ = .1) to the conditional
probability information diminishes the advantage for LO-
SVM. The conditional probability noise experiments (increas-
ing σ for θ = .45) indicate that the GO-SVM formulation
attains consistently lower loss than baselines under optimal
(’extended’) model selection at all levels of conditional prob-
ability noise, but the gap between optimal and practical model
selection reduces the practical advantage. It is noteworthy that
the GO-SVM extended formulations nearly achieve the Bayes
optimal rates with low conditional probability noise.

Results of common dataset experiments are given at Ta-
ble II. Sizes for training are given in parenthesis with the
experiment name. The author points out that many LUPI
research papers require validation sets that are comparable to
the ‘extended‘ experiment setting. Each row of the table gives
the size of the training and test sets. The columns correspond
to different methods and model selection procedures.

The GO-SVM formulation is far-and-away the best at the
extended validation task. While optimal model selection is not
practically attainable, the experiment is intended to illustrate
how the formulations perform if model selection were assumed
away. The gap between the standard holdout and extended
holdout datasets is larger for the CPR formulations than
SVM. It is possible that the CPR formulations, in addition to
providing some hypothesis spaces with low variance in excess
risk, can also have high variance. The author suspects that tra-
ditional hold-out model selection strategies are more difficult

with CPR because the nested-hypothesis space assumptions
of structural risk minimization [1] no longer hold. In the CPR
framework, there is no total ordering of hypothesis complexity.
Some hypothesis spaces (defined by parameters) have good
convergence, while others do not. The task is to differentiate
them. In some ways, the problem is the result of the automated
nature of the experiments herein. The author believes that a
human visualizing the results over the entire validation grid
could make a better choice.

These results can be compared with the results of compa-
rable experiments in other papers. The MacKey-Glass experi-
ment appeared in the original SVM+ paper [2]. Results could
not be replicated in that similar levels of performance seemed
to be attainable with a smaller sample than was required there
for all formulations. Both CPR and SVM+ show lower loss
relative to baseline than reported there. The Digits experiment
is intended to replicate one in [4]. This paper specifically
replicated the experiment in which conditional probability
weights were created by human annotators. This task is well-
suited to the order invariance that CPR formulations enjoy, as
humans have a fundamentally ordinal notion of confidence.
For a sample of size 80, GO-SVM achieved a score of .077
based on extended model selection while their best method
achieved .073 with a comparable large validation set. Their
best method, however, did not use human confidence; rather,
the human confidence information improved over the baseline
SVM insignificantly.

The author observes that LO-SVM formulations were fre-
quently primal unbounded/dual infeasible for certain settings
of C. Being able to determine valid ranges for the parameters
may allow a better exploration of the parameter search and
improve results.

In conclusion, the results show that the methods show prac-
tical promise. However, the large parameter grid would impede
any practically-sized task, especially with cross-validation.
The author believes that these problems can be overcome, but
considerably more study is needed.
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