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Abstract—Biclustering is a special case of subspace clustering
that has become viable in several domains. Particularly, in
genomic data analysis, biclustering has been used to identify
conditions under which a subset of genes are highly co-expressed,
while topological data analysis has been used to analyze disease-
specific subgroups, evolution, and disease progression. In this
work, we combine biclustering with topological data analysis to
achieve the best of both methods. We present TopoBARTMAP
- produced by hybridizing BARTMAP, an adaptive resonance
theory (ART)-based biclustering method, with TopoART, a topol-
ogy learning ART network - in order to identify topological
associations between biclusters. TopoBARTMAP outperformed
both TopoART and BARTMAP in the experimental analysis on
six benchmark blood cancer data sets. In some cases, BARTMAP
may nevertheless be preferred due to implementation simplicity.

I. INTRODUCTION

Biclustering, at it’s crux, is the problem of finding a
subset of samples with high association across a subset of
features. It has produced significant results in many different
fields, starting with the application to gene expression data
analysis [1]. Over the past decade, several algorithms were
proposed under co-clustering [2], biclustering [3], [4], and
subspace clustering [5]. Biclustering applied to gene expres-
sion data is used to identify subsets of conditions under which
subsets of genes are highly co-expressed. Such identification
is essential for gaining insights into regulatory networks [6]
and gene-disease associations. However, biclustering can fail
to completely uncover gene regulatory networks [7] due to
the inability to identify functional associations between genes
within a bicluster and to group functionally related genes that
might not co-express significantly.

In an attempt to mitigate this problem, topological data
analysis is becoming popular for gene expression data [8], [9].
In general, topological analysis extends clustering to identify
local relationships in the data. Depending on the proximity of
clusters, the identified clusters represented by cluster points are
connected to generate a high-level graphical representation of
the underlying shape of the space. Since topological methods
discover the geometric structure within the data, these methods
are sensitive to large and small scale patterns, invariant to
noise, independent of the coordinate system, and can produce
a compressed representation of data [8], [10], [11]. In practice,

topological data analysis methods, such as Mapper [12], had
proven to be effective in identifying subgroups of cancers [13],
understanding genome dynamics [14] and cellular differentia-
tion [15], and disease progression [16], which would otherwise
be difficult to detect using traditional clustering methods
applied to biomedical research [17].

In this work, we take a step towards combining topo-
logical data analysis with biclustering. To do so, we com-
bine BARTMAP [18] with TopoART [19] to produce Topo-
BARTMAP, which can simultaneously identify the structure
within the data and the biclusters. This algorithm, while
identifying inter-bicluster relationships, is resilient to noise due
to the prototype pruning mechinism of TopoART. While the
literature contains a few topological biclustering algorithms,
such as BiTM [20], wBiTM [21], and SKB [7], to the best of
our knowledge TopoBARTMAP is the first adaptive resonance
theory (ART) [22] based topological biclustering algorithm.
Amongst the other methods, the BiTM (Biclustering using
Topological Maps) identifies biclusters by simultaneously clus-
tering rows and columns by identifying a discrete topology.
The biclustering method wBiTM, based on BiTM, is a feature
group weighting method that uses topological maps for bi-
clustering. Both BiTM and wBiTM produce topological maps
that enable data visualisation. SKB, Skeleton Biclustering,
is capable of identifying and mining missing genes in the
biclusters while building inter-bicluster and intra-bicluster
(relationships among genes within a bicluster) relationship
skeletons. This method uses hierarchical biclustering and gene
ontology annotations.

The remainder of this paper is organized as follows: we
start with a brief review of related ART models [22] in
Section II, which is necessary to contextualize the main
contribution of this paper introduced in Section III, which is
the TopoBARTMAP model. The details concerning the exper-
imental design are presented in Section IV, while Section V
reports and discusses the biclustering results on six benchmark
blood cancer data sets. Although in our experimentation we
compare TopoBARTMAP only with one biclustering algo-
rithm, BARTMAP, in other papers [18], [23], [24] BARTMAP
was already compared with other ART-based and non-ART-
based methods and found to be superior. Finally, Section VI
summarizes the findings of this paper.
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II. BACKGROUND

This section presents an overview of Fuzzy ART [25],
TopoART [19] and BARTMAP [18]. We refer the reader
to [26]–[30] for a comprehensive treatment of ART models
and their applications.

A. Fuzzy ART
This section exists to make the paper self-contained. The

reader familiar with Fuzzy ART can skip to Section II.B.
Readers new to ART will gain useful context from this section
but will need the cited papers to understand ART well.

Several winner-take-all neural models have been proposed
to perform supervised and unsupervised learning based on
ART. Of them, Fuzzy ART, described in [26], extends the
binary ART-1 by using fuzzy operations and is capable of
recognising stable codes (prototypes) in response to real or
binary-valued inputs. A typical ART-based learning model
consists of two interacting fields: F1 and F2. Field F1 receives
input as a vector X which is normalized and complement
coded, i.e., if x= [x1,x2, ...,xd ] denotes the normalized sensory
input vector with d features, then X = [x,1 − xc], where
xc

i = 1− xi. It is customary to consider each dimension of the
input X as a node. Field F2 consists of several prototypes (neu-
rons) - one per node - which are used to categorize the input
pattern. The field F1 generates bottom-up sensory information
which produces activity across each prototype in field F2
using bottom-up memory traces. The highly active prototype
produces a top-down expectation signal based on the top-down
memory traces. At the orientation subsystem, this expectation
signal is compared with the sensory information produced by
field F1 for similarity; this is known as vigilance criterion.
If the similarity is greater than a certain threshold called the
vigilance value, resonance ensues between the highly active
prototype and field F1; the corresponding memory traces are
updated. In any other case, the highly active prototype is shut
down, and a search is done to find the next active prototype
that produces a matching expectation. If no such prototype is
found, a new node is created to register the current input, and
this prototype is said to be committed.

Bottom-up memory traces can be represented using top-
down memory traces, which essentially is a key feature of
Fuzzy ART. In this work, we represent the bottom-up memory
traces as a vector for the jth node in field F2 as weights
Wj = [W j

1 ,W
j

2 , ...,W
j

2d ]. Initially, field F2 consists of uncommit-
ted prototypes. Instead of using two different memory traces,
Fuzzy ART has traces or weights (W ) connecting F1 to F2 and
F2 to F1, i.e., the prototypes are directly compared with the
input signal. Because the input, X , to Fuzzy ART is normalized
and complement coded, which is implicitly assumed in the
models derived from Fuzzy ART, all the uncommitted node
weights are initially set to a value of 1. During the input
presentation, field F2 has an uncommitted neuron along with
committed neurons. A measure of activity is computed using
the category choice function defined by

Tj =
|X ∧Wj|
α + |Wj|

, (1)

where | · | is the `1 norm, ∧ is the fuzzy AND operation
defined by (X ∧Wj)i = min(xi,W

j
i ), X ∈ ℜ2d ,W ∈ ℜ2d , and

α > 0 helps in breaking the tie when more than one prototype
is a fuzzy subset of the input pattern. A winning neuron J
is selected using winner-take-all rule. A category match is
measured using a match function defined by

MJ =
|X ∧WJ |
|X |

. (2)

If MJ is greater than the vigilance parameter, ρ , it meets the
vigilance criterion. In case of failure to satisfy, this winning
neuron is shut off and the next winning neuron is tested against
the vigilance criterion. The search process continues until the
vigilance criterion is satisfied. When a neuron is found that
satisfies the vigilance criterion, its weight vector or prototype
is updated using the learning law defined as

WJ = β (WJ ∧X)+(1−β )WJ , (3)

where 0< β ≤ 1 is the learning rate. The output of the network
yF2 is set for each ith node as

yF2
i =

{
0, if i 6= J
1, if i = J

. (4)

In the case of fast learning, when an uncommitted prototype
is selected, β is set to a value of 1. Each prototype learned
this way summarizes all the input patterns it is associated
with and thus represents either a cluster or cluster point.
Due to complement coding, it is possible to estimate the
size of the cluster and region of space that each prototype
summarizes [31].

B. TopoART

Topological ART, or TopoART [19], is a Fuzzy ART-based
hierarchical clustering model that learns topologies present
within the input data. All rules used for prototype learning of
Fuzzy ART remain the same in TopoART. However, TopoART
uses a counter, ni, for each ith prototype that records the
number of samples it summarized. After τ input presentations
(time steps), the prototypes with a counter less than the
threshold φ , called candidate prototypes, are pruned from field
F2. Hence, the prototypes with ni ≥ φ are called permanent
prototypes. This pruning mechanism renders TopoART robust
to noise. Further, along with the best matching prototype J1,
a second highly active prototype J2 satisfying the vigilance
criterion is selected (namely, the second-best). This prototype’s
weights are updated using the same update rule defined by
Eq. (3), but with a smaller learning rate, i.e.,

βJ2 < βJ1 . (5)

This procedure of identifying and updating the second-best
prototype’s weights increases noise robustness by making
growth of prototypes in pertinent areas of the input space more
likely [19].

To learn topologies, an edge is established between pro-
totypes J1 and J2 (if J2 can be found), creating a topological
structure with prototypes acting as nodes. While edges formed
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with candidate prototypes are removed when these proto-
types are pruned, edges between permanent prototypes remain
stable. Each one of the permanent prototypes is assigned
with a label depending on its topological association with
others, i.e, all the connected permanent prototypes are assigned
with the same label. These labels are recorded in a vector
-
−→
C =< li : li ∈ {1,2, ...,k} >, where k is the number of

topologies identified and li is the label for the ith permanent
prototype in field F2. With the aid of this vector, one can
identify the topology to which an input datum belongs. Unlike
Fuzzy ART, the clusters are represented by these topologies
rather than the prototypes, which enables the identification of
arbitrarily shaped clusters. The input patterns that correspond
to the deleted prototypes are reclassified by associating them
to the permanent prototypes that yield the strongest responses.
This activity is computed using the following rule [19]:

Tj = 1−
|(X ∧Wj)−Wj|

|X |
. (6)

Further, TopoART achieves hierarchical clustering by cas-
cading multiple Fuzzy ART modules, with each having an
increasing vigilance parameter value. The vigilance parameters
across the modules in the hierarchy are computed using the
following rule,

ρnext =
1
2
(1+ρprevious), (7)

where ρnext and ρprevious are the vigilance values for the next
and previous modules respectively. The module at the lowest
hierarchical level receives all the input patterns, whereas
subsequent modules receive an input pattern if and only if
that pattern activates a permanent prototype in the previous
module. When new data is presented, inference is made using
Eq. (6) and the output yF2 for each module of TopoART is
computed with Eq. (4) using only permanent prototypes.

C. BARTMAP

Biclustering ARTMAP, or BARTMAP [18], is an ART-
based two-way clustering method that identifies biclusters
present in the data adaptively without the explicit requirement
of prior knowledge of the number of biclusters. We refer the
reader to [32] and [33] for detailed expositions on ARTMAP
and Fuzzy ARTMAP as BARTMAP is inspired by the theory
of Fuzzy ARTMAP [33]. Here, we present a brief treatment of
BARTMAP while retaining pertinent details. In doing so, we
use the following notation. We represent the gene expression
data matrix as G = (F,O), where F = { f1, ..., fN} represents
the set of N features (or rows) and O = {o1, ...,oM} represents
the set of M observations (or columns). An element gi j ∈ G
represents the intensity of feature i in observation j. In using
this notation, which we did for ease of generalization, we
considered each gene as a feature and each sample as an
observation throughout the exposition.

In construction, BARTMAP consists of two Fuzzy ART
modules, ARTa and ARTb, connected via an inter-ART mod-
ule. While the ARTb module receives features as input, the
ARTa module receives observations as input. In essence,

BARTMAP learns a mapping between the clusters found
by the ARTa and ARTb modules across observations and
features, respectively, such that local relationships are pre-
served and captured by the produced biclusters. The learning
in BARTMAP progresses in two steps. The first step is to
identify clusters across one of the dimensions, let us say the
row dimension, of the matrix. This is achieved by using the
ARTb module as a standard Fuzzy ART, thus resulting in k f
feature prototypes or clusters {Fi|i= 1, ...,k f }. In the next step,
observations (or columns) are presented to the ARTa module.
At this stage, when a new observation ok is presented, the
potential associable cluster is identified using winner-take-
all. Eventhough the winner qualifies via the vigilance test,
at this point, it might not represent the observation unless
the winner corresponds to an uncommitted prototype. If the
winner corresponds to an uncommitted prototype, its weights
are updated. However, if the winner is a committed prototype,
then the current sample ok is associated to it if and only
if the sample exhibits a similar trend across at least one
feature cluster Fi, as do the other member observations that
are associated to the winning prototype. This similarity is
verified using the average Pearson correlation coefficient that
is computed as

η(ok,OJ ,Fi) =
1

MJ

MJ

∑
l=1

r(ok,ol ,Fi), (8)

where,

r(ok,ol ,Fi) =

Ni
∑

t=1
(gok fit −gokFi

)(gol fit −golFi
)√

Ni
∑

t=1
(gok fit −gokFi

)2

√
Ni
∑

t=1
(gol fit −golFi

)2

, (9)

gokFi
=

1
Ni

Ni

∑
t=1

gok fit , (10)

golFi
=

1
Ni

Ni

∑
t=1

gol fit , (11)

and ok is a new observation, ol belongs to observation clus-
ter OJ = {o1, . . . ,oMJ} with MJ observations, and the set
Fi = { fi1, . . . , fiNi} represents the ith feature cluster with Ni
features. The observation ok becomes a member of cluster OJ
if and only if η(ok,OJ ,Fi) is greater than a threshold ηth for
at least one of the feature clusters. Cluster OJ is represented
by ARTa’s winning prototype J; therefore, if the previously
mentioned constraint is satisfied, then its weights are updated
using Eq. (3). If the test fails, match tracking ensues [32], i.e,
the winning prototype is inhibited by increasing the vigilance
value ρa of ARTa sufficiently above its base value. With the
inhibition, a search for the next winning prototype ensues.
Once a suitable cluster is identified or a new cluster is created,
the vigilance value ρa of ARTa is reset to its base value.
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III. TOPOBARTMAP
This section discusses the architectural novelty introduced

in this paper. To understand the topological associations be-
tween the features (genes) and observations of a given gene
expression matrix, G = (F,O), BARTMAP is modified to
produce topological biclusters. This is achieved by replacing
both Fuzzy ART modules of BARTMAP with TopoART
modules. The resulting biclustering method, TopoBARTMAP,
is more robust to noise and can identify associations better
than BARTMAP. While the construction and much of the
training procedure remain the same, i.e., the training proceeds
in two steps with a similarity/association test using average
Pearson correlation, there are subtle differences rendered by
the nuances in the training of TopoART.
Just as in the training of BARTMAP, one of the dimensions of

matrix G, features F for example, are presented to TopoARTb
during the first stage, resulting in identifying k f prototypes
{Fi|i = 1, ...,k f } and k topologies or clusters formed by these
prototypes. During the second stage of training, the obser-
vations are presented to TopoARTa. Similar to BARTMAP,
a winning prototype is identified and verified for a match
using the vigilance test (Eq. (2)) and associability with the
similarity test (Eqs. (8) to (11)). If the presented observation
exhibits the same trend as the other observations summa-
rized by the winner J1 across at least one of TopoARTb’s
k f prototypes, it is associated with the winner. Otherwise,
match tracking ensues and the search proceeds until either
another representative prototype is found or an uncommitted
prototype is assigned. Further, a second-best prototype J2 is
identified using winner-take-all and verified for the match. An
edge is established if and only if the presented observation
exhibits a trend similar to the other observations represented
by the second winner across at least one of TopoARTb’s
k f prototypes. If the similarity test fails, then the current
second winner is inhibited and the next winner is searched
for. This procedure terminates once a second winner passing
the vigilance and similarity tests is found, or all the prototypes
are inhibited. If a qualifying second-best prototype exists, then
its weights are updated using Eq. (3). The pruning of candidate
prototypes and reclassification of the observations represented
by the pruned prototypes are conducted without any changes to
TopoART. The learning results in the identification of topolo-
gies, which represent biclusters, enabling TopoBARTMAP to
identify arbitrarily shaped biclusters. Similar to TopoART, the
permanent prototypes are used for making an inference when
new data are presented. The TopoBARTMAP architecture is
depicted in Fig. 1, and its working procedure is summarized
by Algorithm 1.

IV. EXPERIMENTATION

To verify and compare the performance of TopoBARTMAP,
we used six benchmark blood cancer data sets brought to-
gether by [34]. The corresponding information about the
data sets, number of features, number of observations, and
number of classes per data set is available in Table I. Of
these data sets, Alizadeh-V1 and Alizadeh-V2 [35] have a

Algorithm 1: TopoBARTMAP
Input : G, {TopoART a and b parameters}, ηth,δ
Output : y(O) observation classes
/* Notation */
O j : jth cluster of observations.
Fi : ith cluster of features.
η(ok,O j,Fi) : correlation between ok and
O j across Fi.
/* Training */

1 for f ∈ F do // TopoARTb
2 Train TopoARTb using < ρb,φb,τb,αb,βJ1 ,βJ2 >
3 end
4 Initialize time step counter ta to 0
5 for ok ∈ O do // TopoARTa
6 Increment ta
7 Compute Tj ∀ j using Eq. (1)
8 Find first winner: J1 = argmax

j
(Tj)

9 Compute MJ1 using Eq. (2)
10 if MJ1 ≥ ρa then
11 Compute η(ok,OJ1 ,Fi) ∀ Fi using Eq. (8)
12 if ∃Fi|η(ok,OJ1 ,Fi)≥ ηth then
13 Update WJ1 using Eq. (3), nJ1 = nJ1 +1
14 reset ρa
15 Find second winner: J2 = argmax

j, j 6=J1

(Tj)

16 if (MJ2 ≥ ρa)∧∃Fi[η(ok,OJ2 ,Fi)≥ ηth]
then

17 Update WJ2 using Eq. (3)
18 Establish a link between J1 and J2
19 else if ∀Fi∀J2(η(ok,OJ2 ,Fi)< ηth) then
20 Stop the search
21 else
22 Shut down J2
23 Go to step 15
24 end
25 else if (¬∃(MJ1 ≥ ρa)) ‖ (ρa ≥ 1) then
26 Wnew = ok, nnew = 1
27 reset ρa
28 else
29 Shut down J1, ρa = ρa +δ

30 Go to step 8
31 end
32 if ta mod τa = 0 then
33 Remove clusters with counter less than φa
34 end
35 end
36 Identify and label the topologies using the connected

prototypes
/* Inference */

37 for ol ∈ O do
38 Compute Tj ∀ j using Eq. (6)
39 yl = argmax

j
(Tj) and Cluster = lyl

40 end
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Fig. 1. Block diagram of TopoBARTMAP. TopoBARTMAP consists of two TopoART modules whose clusters are related by correlation test module. While
TopoARTb is shown to have learned k f prototypes, TopoARTa is shown to have learned ko prototypes (note that prototype labeled ko is a temporary prototype).

TABLE I
DATA SETS USED FOR EXPERIMENTAL ANALYSIS [4]. HERE, SL.NO, No ,

N f , AND Nc REFER TO SERIAL NUMBER, NUMBER OF OBSERVATIONS,
FEATURES, AND CLASSES WITHIN OBSERVATIONS, RESPECTIVELY.

Sl.no Data set No N f Nc
1 Alizadeh-V1 [35] 42 1095 2
2 Alizadeh-V2 [35] 62 2093 3
3 Alizadeh-V3 [35] 62 2093 4
4 Armstrong-V1 [37] 72 1081 2
5 Armstrong-V2 [37] 72 2194 3
6 Shipp-V1 [38] 77 798 2

The data sets are available at https://github.com/
padilha/biclustlib.

randomized order of observations, while the rest of the data
sets have observations ordered according to the classes. We
used MATLAB (Statistics and Machine Learning Toolbox) and
the Cluster Validity Analysis Platform toolbox [36] to conduct
all the experiments. To enhance the reproducibility of this
research, the MATLAB source code is available at the Applied
Computational Intelligence Laboratory GitHub repository1.

To investigate the performance of TopoBARTMAP on each
of these data sets, we ran tests with a Genetic Algorithm
(GA) [39] to optimize parameters < ρa, β a

J2
, φa, τ%

a , ρb,
β b

J2
, φb, τ%

b , η > with the Adjusted Rand Index [40] as the
performance measure, where τ%

− represents the percentage of
the total number of samples presented to each module. To mea-
sure the biclustering performance, we considered topologies
found by TopoARTa as biclusters. Although topologies can be
retrieved from the TopoARTb module, for the correlation test,
individual prototypes rather than topologies were considered.
Further, the vectors < 0.0,0.0,0.0,0.1,0.0,0.0,0.0,0.1,0.0 >

1https://github.com/ACIL-Group/TopoBARTMAP

and < 0.95,1.0,5.0,0.3,0.95,1.0,5.0,0.3,0.99 > were used as
lower and upper bounds for parameters with the aforemen-
tioned order during optimization, along with the following
constraints:

φa− τ
%
a No ≥ 0, (12)

and
φb− τ

%
b N f ≥ 0, (13)

where No = #{observations} and N f = #{ f eatures}. Note
that τa = bτ%

a Noe and τb = bτ%
b N f e. The GA was run 10

times for 25 generations with a population size of 200 agents.
Throughout the experiments, βa and βb were set to 1, i.e., fast
learning is used with the value of choice parameter α set to
0.001, match tracking step size set to 0.01, and data presented
for one epoch.

BARTMAP, TopoART, and Fuzzy ART were run on the
same data sets in order to compare their performance with
TopoBARTMAP’s. For BARTMAP, < ρa, ρb, η > were opti-
mized using GA, with the lower and upper bounds as given by
vectors < 0.0,0.0,0.0 > and < 0.95,0.95,0.99 >, respectively.
For TopoART, < ρ , βJ2 , φ , τ% > were optimized using GA,
with the lower and upper bounds for these parameters given
by vectors < 0.0,0.0,0.0,0.1 > and < 0.95,1.0,5.0,0.3 >,
respectively, as well as the inequality constraint

φ − τ
%No ≥ 0, (14)

where τ% and τ are defined as in TopoBARTMAP. Note
that unlike the standard TopoART network, which uses two
modules for hierarchical purposes, here only one module
was trained, and performance was measured using topologies
identified by TopoART. While these other methods were run
with GAs similar to TopoBARTMAP, Fuzzy ART was run
with a parameter sweep. In particular, for running Fuzzy ART

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



on each of the six data sets, ρ was varied amongst 4960 values
uniformly sampled from [0,1], which corresponds to roughly
the same amount of fitness evaluations of the GAs used to
optimize the other ART networks. For all of these methods,
fast learning was used, with the value of choice parameter
α set to 0.001, and data were presented for one epoch. For
BARTMAP, the match tracking step size was set to 0.01,
similar to TopoBARTMAP.

All agglomerative clustering algorithms (which includes
online methods), such as most unsupervised ART networks,
are prone to ordering effects (see [41]–[43] and the references
therein for further discussion and methods to mitigate order
dependency). Therefore, once the optimal parameters that
produce the best Adjusted Rand Index on each of the six
data sets were determined, tests were conducted to verify
the hyper-parameter sensitivity of each method. To do this,
each data set is randomized with respect to columns and rows
separately to produce ten different data sets. Performance on
each of these data sets was measured using the Adjusted
Rand Index with model parameters set to the optimal values
for the corresponding original data set. Later using GA with
corresponding aforementioned settings, TopoBARTMAP and
BARTMAP had their parameters optimized for the data sets
produced by randomization to identify the sensitivity to order
of presentation. As TopoART and Fuzzy were not sensitive
to changes in feature order, using the respective settings men-
tioned previously, parameters were optimized for TopoART
using GA, and Fuzzy ART’s ρ was varied to measure the
performance on data sets with randomization in order of
observations.

V. RESULTS AND DISCUSSION

We compare the performance of TopoBARTMAP,
BARTMAP, TopoART, and Fuzzy ART on the aforementioned
experiments in this section.

Table II shows the clustering performance of the contenders
measured using the Adjusted Rand Index. For the original data
sets, TopoBARTMAP outperforms the other three algorithms
on all six data sets. While not being a biclustering algorithm,
TopoART outperforms BARTMAP on four out of six data sets,
and its performance is comparable with TopoBARTMAP on
the Armstrong-V1 [37] and Shipp-V1 [38] data-sets. On the
other hand, BARTMAP outperforms TopoART but loses to
TopoBARTMAP on Alizadeh-V1 and Alizadeh-V3 [35]. We
attribute TopoART’s better performance over BARTMAP to
the topological learning and order of observation presentation.
Of all the algorithms compared, Fuzzy ART fails to identify
better clusters and consequently performs poorly.

The results of experimentation on data sets with a ran-
domized order of observations and features with parameters
fixed to optimal parameters are summarized in the Tables
III and IV, respectively. Unsurprisingly, none of the con-
tenders, TopoBARTMAP, BARTMAP, TopoART, or Fuzzy
ART, perform better with the order of observation presentation
changed. Since TopoART and Fuzzy ART are impervious
to the randomization of the features, the results summarized

in Table II are valid for this case. Due to this, the perfor-
mance of TopoBARTMAP and BARTMAP are juxtaposed in
Table IV, where BARTMAP wins four out of six times in
experimentation with randomized features. These tests reveal
that TopoBARTMAP is more sensitive to parameterization
than are BARTMAP or TopoART.

The results of order sensitivity analyses run with GA
optimization (and parametric sweep for Fuzzy ART) are sum-
marized in Tables V and VI. While the performance of each of
the algorithms differs noticeably, TopoBARTMAP still outper-
forms the others. In contrast to the original-order experiments,
in the randomized cases, BARTMAP outperforms TopoART
on all randomized observation order data sets. To estimate
the statistical significance of the performance differences on
these data sets, a t-test was conducted among TopoBARTMAP,
BARTMAP, and TopoART. The results indicate that the perfor-
mances of TopoBARTMAP and TopoART, and of BARTMAP
and TopoART are significantly different at 0.01 significance on
all the data sets. However, the performance difference between
TopoBARTMAP and BARTMAP varied with the data set un-
der consideration. For data sets generated from Alizadeh-V1,
Armstrong-V1, and Armstrong-V2, the performance differed
significantly at 0.05 significance. For data sets generated from
Alizadeh2000v1, Alizadeh2000v3, and Shipp2002v1 the per-
formances are significantly different at 0.075, 0.10, and 0.15
significance levels, respectively. For the randomized feature
order experiments, when run with GA, the results remained
close to the original order experiments. TopoBARTMAP out-
performs BARTMAP in all these experiments.

VI. CONCLUSION

Our goal was to integrate BARTMAP with topological
data analysis to improve the effectiveness of biclustering and
robustness to noise, and to uncover complex relationships
present in the gene expression data sets. We experimen-
tally demonstrated that combining TopoART with BARTMAP,
which we call TopoBARTMAP, results in an algorithm that
outperforms BARTMAP. TopoBARTMAP is more robust to
order of presentation than either TopoART or BARTMAP.
It is also more robust to noise and finds arbitrarily shaped
biclusters.

The experiments on parameter sensitivity demonstrate that
optimal TopoBARTMAP hyperparameters for one presentation
order might not work for different presentation orders. Further,
this behavior raises a question about the possibility of Topo-
BARTMAP being subject to overfitting, which requires further
investigation. Due to the rigidness concerning parameters and
its higher computational cost than BARTMAP, we recommend
using TopoBARTMAP when data are known to have complex
structures that are otherwise not easily identifiable. In any
other case, we recommend using BARTMAP.
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TABLE II
BICLUSTERING RESULTS ON ORIGINAL DATA SETS WITH PERFORMANCE MEASURED USING ADJUSTED RAND INDEX. BEST PERFORMANCES ARE

REPORTED IN BOLD.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART Fuzzy ART
1 Alizadeh-V1 0.4407 0.4292 0.1899 0.0922
2 Alizadeh-V2 1.0000 0.8952 0.9186 0.8147
3 Alizadeh-V3 0.5521 0.5079 0.4852 0.4055
4 Armstrong-V1 1.0000 0.5565 1.0000 0.3379
5 Armstrong-V2 1.0000 0.8270 0.9583 0.6281
6 Shipp-V1 1.0000 0.9443 1.0000 0.1583

TABLE III
BICLUSTERING RESULTS ON RANDOMIZED ORDER OF OBSERVATIONS DATA SETS RUN WITH PARAMETERS FIXED TO OPTIMAL PARAMETERS FOUND FOR

ORIGINAL DATA SET. MEAN ADJUSTED RAND INDEX IS USED AS METRIC FOR COMPARISON. BEST PERFORMANCES ARE REPORTED IN BOLD.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART FuzzyART
1 Alizadeh-V1 0.0091 ± 0.0662 0.0119 ± 0.0099 0.0132 ± 0.0125 -0.0056 ± 0.0003
2 Alizadeh-V2 0.4327 ± 0.3773 0.0419 ± 0.0304 0.0183 ± 0.0084 -0.0025 ± 0.0005
3 Alizadeh-V3 0.2576 ± 0.1501 0.1237 ± 0.0871 0.0220 ± 0.0146 -0.0079 ± 0.0000
4 Armstrong-V1 0.0284 ± 0.0536 0.0455 ± 0.0579 0.0075 ± 0.0073 0.0153 ± 0.0006
5 Armstrong-V2 0.0015 ± 0.0034 0.1117 ± 0.0485 0.0093 ± 0.01401 0.0135 ± 0.0005
6 Shipp-V1 0.0116 ± 0.0260 0.0259 ± 0.0195 0.0277 ± 0.0150 0.0066 ± 0.0002

TABLE IV
BICLUSTERING RESULTS ON RANDOMIZED ORDER OF FEATURES DATA SETS RUN WITH PARAMETERS FIXED TO OPTIMAL PARAMETERS FOUND FOR

ORIGINAL DATA SET. MEAN ADJUSTED RAND INDEX IS USED AS METRIC FOR COMPARISON. BEST PERFORMANCES ARE REPORTED IN BOLD.

Sl.no DataSet TopoBARTMAP BARTMAP
1 Alizadeh-V1 0.0179 ± 0.0234 0.0666 ± 0.0641
2 Alizadeh-V2 0.3407 ± 0.4660 0.8952 ± 0.0000
3 Alizadeh-V3 0.2747 ± 0.1987 0.2927 ± 0.0440
4 Armstrong-V1 0.3989 ± 0.3215 0.2881 ± 0.1632
5 Armstrong-V2 1.0000 ± 0.0000 0.8152 ± 0.0000
6 Shipp-V1 0.6312 ± 0.5079 0.9443 ± 0.0000

TABLE V
BICLUSTERING RESULTS ON RANDOMIZED ORDER OF OBSERVATION DATA SETS RUN WITH GA OPTIMIZATION FOR TOPOBARTMAP, BARTMAP, AND

TOPOART AND VARIATION OF ρ FOR FUZZY ART. ADJUSTED RAND INDEX IS USED AS METRIC FOR COMPARISON. BEST PERFORMANCES ARE
REPORTED IN BOLD.

Sl.no DataSet TopoBARTMAP BARTMAP TopoART Fuzzy ART
1 Alizadeh-V1 0.5893 ± 0.1120 0.4485±0.0853 0.1208±0.0114 0.0658 ± 0.0012
2 Alizadeh-V2 0.9826 ± 0.0237 0.8836±0.0401 0.3529±0.0689 0.1166 ± 0.0013
3 Alizadeh-V3 0.6006 ± 0.0754 0.5708±0.0896 0.1727±0.0250 0.0954 ± 0.0005
4 Armstrong-V1 0.9068 ± 0.0330 0.7537±0.0478 0.1567±0.0204 0.1147 ± 0.0022
5 Armstrong-V2 0.9149 ± 0.0482 0.8142±0.0776 0.1992±0.0191 0.0990 ± 0.0021
6 Shipp-V1 0.5297 ± 0.0902 0.4116±0.0660 0.2875±0.0538 0.0328 ± 0.0000

TABLE VI
BICLUSTERING RESULTS ON RANDOMIZED ORDER OF FEATURE DATA SETS RUN WITH GAS. PERFORMANCE MEASURED USING ADJUSTED RAND INDEX.

BEST PERFORMANCES ARE REPORTED IN BOLD.

Sl.no DataSet TopoBARTMAP BARTMAP
1 Alizadeh-V1 0.5580 ± 0.1023 0.5210 ± 0.0646
2 Alizadeh-V2 0.9799 ± 0.0000 0.8952 ± 0.0000
3 Alizadeh-V3 0.5890 ± 0.0501 0.5630 ± 0.0700
4 Armstrong-V1 1.0000 ± 0.0000 0.5640 ± 0.0364
5 Armstrong-V2 0.9840 ± 0.0219 0.8380 ± 0.0061
6 Shipp-V1 1.0000 ± 0.0000 0.9550 ± 0.0249
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