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Abstract—Supervised capsule networks are theoretically ad-
vantageous over convolutional neural networks, because they aim
to model a range of transformations of local physical or abstract
objects and part-whole relationships among them. However, it
remains unclear how to use the concept of capsules in deep
generative models. In this study, to address this challenge, we
present a statistical modelling of capsules in deep generative
models where distributions are formulated in the exponential
family. The major contribution of this unsupervised method is
that parse trees as representations of part-whole relationships
can be dynamically learned from the data.

Index Terms—deep learning, generative model, capsule net,
parse tree, exponential family

I. INTRODUCTION

Deep neural networks and learning algorithms have
achieved grand successes in a variety of areas where data are
complicated and plenty [1]–[3]. Behind these achievements,
the spirit is distributed representation learning [4], which says,
any discrete object, symbols or sequence in our world can be
represented by a vector of continuous values. This philosophy
is strongly supported by its modern implementations in natural
language processing through word embedding [5], [6], and
computer vision through convolutional neural networks [7],
[8].

However, distributed representation does not mean that
structured latent representations are not important in neural
networks. Actually, it is an open and foundational question.
At least, the huge adoption of convolutions in various types
of data beyond images indicates that sophisticated structures
often help achieve state of the art performance. A common
struggle that current supervised and unsupervised neural net-
works are facing is that complicated symbolic manipulations
and reasonable combinations of local patterns can not be
well handled. The introduction of capsule networks stirs new
thoughts on how local parts are learned and combined to
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form a cohesive role, and how features are disentangled within
capsules. In the supervised setting, a capsule is a set of neural
units that are activated or depressed together [9], [10]. While
a single unit is barely useful in representing comprehensive
information, a set of units is. The introduction of capsules
goes far beyond an improvement of convolutions. It advocates
a family of models that carves the flow of information within
neural networks. Interestingly, the dynamic routing of capsules
in these deterministic capsule networks are realized using
generative techniques such as expectation maximization (EM)
[10], because it is in fact an inference problem. This naturally
inspires the studies of capsules in generative models. In
the simplest case, exponential family restricted Boltzmann
machine (exp-RBM) and Helmholtz machine (exp-HM) are
extended to capsule RBM (cap-RBM) and HM (cap-HM)
by replacing unit latent variables with stochastic capsules
[11]. Although capsules in these models can be contextually
activated, part-whole trees, i.e. parse trees, are not formed in
the latent space.

To push forward the front line of research in this direction,
we propose a new exponential family deep generative model
in this paper to automatically and dynamically build parse
tree among stochastic capsules for a given sample. The paper
is organized as follows. Insights into closely related work
is provided in Section II. The proposed model and learning
rules are described in Section III. Preliminary experiments are
reported in Section IV, followed by a discussion (V).

II. RELATED WORK

A. Transforming Auto-Encoder

The idea of capsule neural networks dates back to the
preliminary introduction of transforming auto-encoder (TAE)
in 2011 [12], which however did not capture much attention
at the time. A schematic example of the TAE network is
displayed in Fig. 1. The TAE network only has one layer
of capsules. Each capsule consists of two recognition hidden
layers and one generative hidden layer. The output of each
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recognition component is a 3 by 3 pose matrix M , and an
activation probability a. The pose matrix is then multiplied by
the affine or 3D transformation matrix W . The transformed
matrix is then fed into the generative component to produce a
patch within an reconstructed image. The patch is multiplied
by the activation probability a. A pose matrix or vector
may potentially represent any properties of a visual entity.
A vote matrix is transformed from the pose matrix. TAE
can be viewed as a prototype of generative-like architecture
with capsules for image generation. However, the 3 by 3
transformation matrix is not learned from data, but instead is
predefined when making the input-output pair of each training
image. Thus, the real application of TAE is very limited.
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Fig. 1: Example of transforming autoencoder presented in [12].

B. Vector Capsule Net

Fig. 2 shows an example of vector capsule net which is
proposed in [9]. Each capsule here takes all transformed
output of lower capsules as input, and output a vector. The
capsule is expected to encapsulate pose information (such as
position, orientation, scaling, and skewness) and instantiation
parameters (such as color and texture). Formally, the j-th
capsule at the (l+1)-th layer (denoted by h(l+1)

j ) is computed
using the following equations

h
(l)
i,j = Wi,jh

(l)
i ∀i in {1, · · · ,Kl} (1)

s
(l+1)
j =

Kl∑
i=1

ci,jh
(l)
i,j (2)

h
(l+1)
j =

‖s(l+1)
j ‖2

1 + ‖s(l+1)
j ‖2

s
(l+1)
j

‖s(l+1)
j ‖

, (3)

where Kl is the total number of capsules in the l-th layer,Wi,j

is a transformation matrix that is specific between capsules
h
(l)
i and h(l+1)

j and is learned using back-propagation, ci,j

is used as a coupling coefficient and is computed using the
softmax function

ci,j =
ebi,j∑Kl+1

j′=1 e
bij′

, (4)

where bi,j is determined using a dynamic routing algorithm

based on inner product (cosine) h(l+1)
j

T
h
(l)
i,j . Length of a

capsule serves as activation probability of the capsule. Thus,
there is no explicit activation unit for this method. The
objective function in the vector capsule network is defined by
a margin loss which uses the l2 norm as activation probability
of a digit capsule:

L =
C∑

c=1

Lc (5)

where

Lc = δ(y − c) max(0,m+ − ‖hc‖2)2

+ λ(1− δ(y − c)) max(0, ‖hc‖2 −m−)2, (6)

where y is the real class label, hc is a digital capsule, δ(y −
c) = 1 if and only if y = c, m+ = 0.9 and m− = 0.1,
and λ = 0.5. In Fig. 2, dynamic routing is used between the
primary capsule layer and the digital capsule layer. Thus, the
6×6×32 lower-level capsules dynamically connect to the 10
higher-level capsules.
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Fig. 2: Schematic example of vector capsule net [9].

This simple capsule network is the first practical method
that outperforms convolutional network with the advantage
of learning a range of transformations. Even though it is a
supervised feedforward neural network, a decoder network is
also used in the structure to obtain the reconstruction error
which serve as a regularization term in the supervised objective
function.

C. Matrix Capsule Net

In the matrix capsule network proposed in [10], a (matrix)
capsule takes the vote matrices (transformed from pose matri-
ces) and activation probabilities of the lower-level capsules as
input, and outputs a pose matrix and an activation probability.
An example of the matrix capsule network is given in Fig. 3.
EM-routing is used to control interactions between two capsule
layers. Since convolution is used between two capsule layers,
a lower-level capsule can only see at most K × K higher-
level capsules. A higher-level capsule can only see lower-level
capsules from its receptive field. The transformation matrices
to a feature map are shared. Between the last convolutional
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capsule layer and class capsules, a class capsule can see all
lower-level capsules. Transformation matrices from the same
feature map are shared to the class capsules.
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Fig. 3: Schematic example of matrix capsule net [10].

Suppose capsule Cj is the j-th capsule in the l+1 layer, and
capsule Ci is the i-th capsule in the l-th layer. The connections
from Ci to Cj is represented by transformation matrix Wij ,
which transforms the pose matrix Hi to vote matrix Vij using
Vij = HiWij . Each capsule has two bias parameters: βa and
βu, which combine with the vote matrices from the lower-
level capsules to determine the activation probability of the
capsule. The biases βa and βu can be respectively the same
for all capsules. This process is visualized in Fig. 4. Thus,
the parameters of a capsule network include transformation
matrices on the connections and biases on the capsules.
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( l) H 4

( l) H 5
( l)
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Fig. 4: Input and output of a matrix capsule. Each node
represents a matrix capsule.

A capsule network is composed of multiple capsule layers.
The outputs of capsules in layer l + 1 is based on the output
of capsules in layer l. The model parameters are learned using
back-propagation. A cost function is defined by comparing the
actual class label with the activations of the class capsules. The
spread loss function used in [10] is defined as

L =
C∑

c=1,c6=t

(
max

(
0,m− (at − ac)

))2
, (7)

where at is the activation of the capsule corresponding to the
actual class t, ac’s are activations of other classes, and m is
a margin which increases from 0.2 to 0.9. Cross-entropy loss
can also be used even though

∑C
c=1 ac 6= 1. To build the part-

whole relationship among capsules, EM routing is proposed
to dynamically activate parent capsules.

D. Generative Capsule Nets

The statistical modelling of capsules has been explored
based on the exponential family RBMs and HMs [13]–[15].
The main idea of the capsule RBM (cap-RBM) proposed in
[11] is to replace individual latent variables with stochastic

capsules, each of which is composed of a vector (hk) of hidden
random variables following exponential family distributions,
and a Bernoulli variable (zk) as activity indicator of the
capsule. An example of such network is displayed in Fig. 5a.
Assume the vector of variables x has M units, and the hidden
layer has K capsules, each of which has J variables and one
switch variable. The base distributions of capsule RBM are
defined in natural form of exponential family as

p(x) =
M∏

m=1

exp
(
aT
msm + log f(xm)−A(am)

)
(8)

p(h) =
K∏

k=1

J∏
j=1

exp
(
bTk,jtk,j + log g(hk,j)−B(bk,j)

)
(9)

p(z) =
K∏

k=1

exp
(
ckzk − C(zk)

)
, (10)

The joint distribution is formulated as an energy-based dis-
tribution: p(x,h, z) = 1

Z exp
(
− E(x,h, z)

)
, where Z is

the partition function, and E(x,h, z) is the energy function
defined as

E(x,h, z) =−
M∑

m=1

(
aT
msm + log f(xm)

)
−

K∑
k=1

J∑
j=1

(
bTk,jtk,j + log g(hk,j)

)
− cTz

−
K∑

k=1

zk(xTWkhk). (11)

Inheriting the decomposibility of exp-RBMs, the condition-
als of cap-RBM can be obtained in natural forms:

p(x|h, z) =

M∏
m=1

p
(
xm|η(âm)

)
, (12)

p(h|x, z) =
K∏

k=1

J∏
j=1

p
(
hk,j |η(b̂k,j)

)
, (13)

p(z|x,h) =
K∏

k=1

BE
(
zk|η(ĉk)

)
, (14)

where function η(·) maps the natural posterior parameters to
the standard forms.

One advantage of cap-RBM is that the activity of capsules
are dynamically inferred. Different samples activate different
subset of capsules. Innovation is required to generalize the
concept of cap-RBM to deep generative models. Capsule HM
(cap-HM) is the most straightforward generalization of cap-
RBM for directed multi-layer capsule models. In cap-HM, the
joint distribution of visible variables and L layers of latent
vectors is factorized as:

p(x,h, z) =p(x|h(1), z(1))
( L−1∏

l=1

p(h(l), z(l)|h(l+1), z(l+1))
)

p(h(L), z(L)). (15)
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Fig. 5: Examples of capsule RBM and capsule HM. The meanings of the variables and parameters in capsule RBM are
explained as follows. a: bias parameters on the visible units. bk: bias parameters on hk. ck: bias parameter on zk. Wk:
interaction matrix between the k-th capsule (hk and zk) and x. Similar meanings apply to capsule HM.

In this factorization,

p(x|h(1), z(1)) =
M∏

m=1

p(xm|η(âm)), (16)

is the same as in cap-RBM, the immediate component

p(h(l), z(l)|h(l+1), z(l+1))

=
1

Zl
exp

(
− E(h(l), z(l)|h(l+1), z(l+1))

)
, (17)

is actually an energy-based distribution, and

p
(
h(L), z(L)

)
= p
(
h(L)

)
p
(
h(Z)

)
. (18)

A nice benefit of using cap-HM is that a sample will only
activate a subset of capsules in each layer, offering a novel way
to visualize the activity spectrum in latent space. However, it
does not construct a parse tree which is essential to represent
the part-whole relationship. In another word, each capsule at
layer l can be connected to multiple capsules at layer l+ 1 in
cap-HM. Our work presented below addresses this challenge.

III. METHOD

Our goal in this paper is to design a capsule DGM (cap-
DGM), in the exponential family, that can form parse trees.
An example of the desired capsule DGM is illustrated in Fig.
6.

x

Fig. 6: An schematic example of capsule DGM that forms a
parse-tree in latent space.

This model has four set of variables. The visible variable is
denoted by x. The capsules in all hidden layers are denoted

by h = {h(1), · · · ,h(L)} where h(l)
k represents the k-th

capsule in the l-th layer and its corresponding activation
variable is denoted by z

(l)
k . The parse tree structure in the

network is realized by α = {α(1), · · · ,α(L−1)} where
α(l) = {α(l)

1 , · · · ,α(l)
Kl
} where α(l)

k is a vector variable of
length Kl+1 (following Multinoulli distribution) indicating
which parent capsule at upper layer should capsule C

(l)
k be

assigned to. That is, if α(l)
k1,k2

= 1, then capsule C
(l)
k1

at
the l-th layer is assigned to parent capsule C

(l+1)
k2

at layer
l + 1. According to the model’s graphical structure, the joint
distribution of this model can be factorized into product of
three components:

p(x,h, z,α) = p(x|h(1), z(1))

·
L−1∏
l=1

p(h(l), z(l),α(l)|h(l+1), z(l+1)) · p(h(L), z(L)) (19)

These components are respectively explained below.
First, distribution p(x|h(1), z(1)) is the same as in capsule

RBM. The exponential family form of this distribution can be
written as

p(x|h(1), z(1)) =
M∏

m=1

p
(
xm|η(âm)

)
, (20)

where M is the number of dimensions in the visible variable,
âm = {â(1)m , · · · , â(R)

m } are the posterior natural parameters
corresponding to sufficient statistics of xm, r =∈ {1, · · · , R},
and R is the number of sufficient statistics. The natural pa-
rameter corresponding to the r-th sufficient statistic of vector
x is calculated as

â(r) = a(r) + δ(r = 1)
( K1∑
k1=1

z
(1)
k1
W

(1)
k1
h
(1)
k1

)
, (21)

where with delta function δ(r = 1) we assume the first
sufficient statistic is x.
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Second, the conditional distribution in an intermediate layer
p(h(l), z(l),α(l)|h(l+1), z(l+1)) is actually an energy-based
model:

p(h(l), z(l),α(l)|h(l+1), z(l+1)) =
1

Zl
e−E(h(l),z(l),α(l)),

(22)

where Zl is the partition function, and in the language of
exponential family the energy function can be defined as

E(h(l), z(l),α(l)) = −
Kl∑
k1

J∑
j=1

(
b
(l)
k1,j

T
t
(l)
k1,j

+ log g(h
(l)
k1,j

)
)

− c(l)
T
z(l) −

Kl∑
k1=1

d
(l)
k1

T
α

(l)
k1

−
Kl∑

k1=1

Kl+1∑
k2=1

α
(l)
k1,k2

z
(l)
k1
z
(l+1)
k2

h
(l)
k1

T
W

(l+1)
k1,k2

h
(l+1)
k2

, (23)

where J is the length of a capsule h(l)
k1

, t(l)k1
is the corre-

sponding sufficient statistics, b(l)k1
is the corresponding natural

parameter, c(l) is the natural parameter of Bernoulli vector
z(l), d(l)k1

is the natural parameter of Multinoulli distribution
of vector α(l)

k1
, and matrix W (l+1)

k1,k2
is the transformation matrix

between capsule C(l)
k1

and C(l+1)
k2

.
From this energy-based distribution, we can derive condi-

tionals of each individual variable, as below:

p(h(l)|z(l),α(l),h(l+1), z(l+1))

=

Kl∏
k1=1

p(h
(1)
k1
|z(l)k1

,α
(l)
k1
,h(l+1), z(l+1))

=

Kl∏
k1=1

p
(
h
(l)
k1
|η(b̂

(l)
k1

)
)
, (24)

where

b̂
(l,u)
k1

= b
(l,u)
k1

+ δ(u = 1)

Kl+1∑
k2=1

α
(1)
k1,k2

z
(l)
k1
z
(l+1)
k2

W
(l+1)
k1,k2

h
(l+1)
k2

;

(25)

p
(
z(l)|h(l),α(l),h(l+1), z(l+1)

)
=

Kl∏
k1=1

p
(
z
(l)
k1
|h(l)

k1
,α

(l)
k1
,h(l+1), z(l+1)

)
=

Kl∏
k1=1

BE
(
z
(l)
k1
|η(ĉ

(l)
k1

)
)
, (26)

where z
(l)
k1

is a Bernoulli variable and its posterior natural
parameter is

ĉ
(l)
k1

= c
(l)
k1

+

Kl+1∑
k2=1

α
(1)
k1,k2

z
(l+1)
k2

h
(l)
k1

T
W

(l+1)
k1,k2

h
(l+1)
k2

; (27)

p
(
α(l)|h(l), z(l),h(l+1), z(l+1)

)
=

Kl∏
k1=1

p
(
α

(l)
k1
|h(l)

k1
, z

(l)
k1
,h(l+1), z(l+1)

)
=

Kl∏
k1=1

MU
(
α

(l)
k1
|η(d̂

(l)
k1

)
)
, (28)

where α(l)
k1

is a Multinoulli variable of length Kl+1 and its
posterior parameter is

d̂
(l)
k1

= d
(l)
k1

+


z
(l)
k1
z
(l+1)
1 h

(l)
k1

T
W

(l+1)
k1,1

h
(l+1)
1

z
(l)
k1
z
(l+1)
2 h

(l)
k1

T
W

(l+1)
k1,2

h
(l+1)
2

...

z
(l)
k1
z
(l+1)
Kl+1

h
(l)
k1

T
W

(l+1)
k1,Kl+1

h
(l+1)
Kl+1

 . (29)

For the top hidden layer, p(h(L), z(L)) can be simply
factorized as

p(h(L), z(L)) = p(z)p(h|z), (30)

where p(z) follows a Multinoulli distribution, and p(h|z)
follows a distribution from the exponential family.

Similarly, the joint distribution of the inference component
is written as

q(h, z,α|x) = q(h(1), z(1)|x)

·
L−1∏
l=1

q(h(l+1), z(l+1),α(l)|h(l), z(l)). (31)

First, q(h(1), z(1)|x) is the same as in capsule RBM.
For 1 ≤ l ≤ L − 2, q(h(l+1), z(l+1),α(l)|h(l), z(l)) is an

energy-based submodel

q(h(l+1),z(l+1),α(l)|h(l),z(l)) =
1

Z
(R)
l+1

e−E(h(l+1),z(l+1),α(l)),

(32)

where

E(h(l+1), z(l+1),α(l))

= −
Kl+1∑
k2=1

J∑
j=1

(
b
(R,l+1)
k2,j

T
t
(l+1)
k2,j

+ log g(h
(l+1)
k2,j

)
)

− c(R,l+1)Tz(l+1)

−
Kl∑

k1=1

d
(R,l)
k1

T
α

(l)
k1

−
K1∑

k1=1

Kl+1∑
k2=1

α
(l)
k1,k2

z
(l)
k1
z
(l+1)
k2

h
(l+1)
k1

T
W

(R,l+1)
k1,k2

h
(l+1)
k2

.

(33)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



The conditional distributions of this energy-based submodel
can be obtained as below:

q(h(l+1)|z(l+1),α(l),h(l), z(l))

=

Kl+1∏
k2=1

q(h
(l+1)
k2
|z(l+1)

k2
,α(l),h(l), z(l))

=

Kl+1∏
k2=1

q
(
h
(l+1)
k2
|η(b̂

(R,l+1)
k2

)
)
, (34)

where

b̂
(R,l+1,u)
k2

= b
(R,l+1,u)
k2

+ δ(u = 1)

·
Kl∑

k1=1

α
(l)
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We assume z(L) is Multinoulli in
q(h(L), z(L),α(L−1)|h(L−1), z(L−1)).

A. Model Learning

Obviously, the generative parameters include θ =
{a, b, c,d,W }. The recognition parameters include φ =
{b(R), c(R),d(R),W (R)}. Similar to the parameter learning in
capsule HM, we can derive learning rules for capsule DGM:

∆θ =
∂j(x)

∂θ
= −Eq(h,z,α|x)

[∂ log p(x,h, z,α)

∂θ

]
. (40)

Now, let us start with the gradient for W (l+1)
kl,kl+1

below.
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, (41)

where 〈·〉 is the shorthand for expectation w.r.t. generative
distribution p(x,h, z,α), and variables outside 〈·〉 are sam-
pled from the recognition distribution q(h, z,α|x) (actually
they are mean-field approximations).

Similarly, the gradients for b, c, and d can be computed as
below

∂ log p(x,h, z,α)
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k
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(l,u)
k − 〈t(l,u)k 〉, (42)
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〉. (44)

Using the same spirit, we can compute gradients for recog-
nition parameters using the master equation below.

∆φ =
∂j(x)
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(47)

Similarly, we can have

∂ log q(h, z,α|x)

∂b
(R,l,u)
k

= t
(l,u)
k − 〈t(l,u)k 〉, (48)

∂ log q(h, z,α|x)

∂c(R,l)
= z(l) − 〈z(l)〉, (49)

∂ log q(h, z,α|x)

∂d
(R,l)
kl,kl+1

= α
(l)
kl,kl+1

− 〈α(l)
kl,kl+1

〉, (50)

where 〈·〉 is the expectation under recognition distribution
q(h, z,α|x), and variables outside are sampled (mean-field
approximated) from the generative distribution p(x,h, z,α).
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(a) Pretrain first capsule RBM. (b) Pretrain first capsule RBM. (c) Fine-tuning.

Fig. 7: Learning curves of cap-DGM in terms of reconstruction error in pretraining and finetuning phases on MNIST.

IV. PRELIMINARY EXPERIMENTS

We conducted a set of preliminary experiments on the
MNIST and Fashion-MNIST data. First of all, we learned
a cap-DGM, on both datasets, with two latent layers of
capsules, each of which has 40 capsules and each capsule
has 9 Gaussian variables. The network was layer-wise pre-
trained as cap-RBMs, and then finetuned using our wake-
sleep learning algorithm. The pretraining phase is essential
to help initialize the model parameters. The learning curves
in terms of reconstruction error in both phases on MNIST are
shown in Fig. 7. It shows that both training phases gradually
reduce the reconstruction error. The learning of cap-RBMs
does help guide the learning of the entire network into a
comfort parameter space. In our experiments, we found that
the learning of cap-DGM would not be successful without
pretraining.

After model learning, we generated parse trees for real
samples from the data and visualized it in Fig. 8 and 9. It
can be seen that in each case, a tree structure indeed was
constructed with the parent capsules on the top layer and
child capsules at the bottom layer. Each child capsule is only
connected to just one parent capsule, which is an advantage
over the activity spectra of capsules from cap-HM reported
in [11]. Further more, from these parse trees, we can observe
that different samples from the same class obtain similar but
not identical structures, and parse trees across different classes
exhibit distinct patterns. Thus, it contributes a novel way of
visualizing the latent space in deep generative models.

Due to the property that the structure of a tree expands
exponentially as the increase of depth, the parse tree can
not be very deep. But by adding one more latent capsule
layers, we can observe, e.g. from Fig. 10, parse trees more
clearly for corresponding samples. Again, in contrast to the
results reported in [11], it implies that our new model helps
enforce more structured latent space than cap-HM (providing
spectrum-like structure) and other deep generative models such
as VAE [16] (providing full connections between layers).

V. DISCUSSION AND CONCLUSION

It is a challenging task to model hierarchically structured
latent space in deep generative models. In this paper, we
present a novel capsule deep generative model, from the
perspective of exponential family, that can form parse trees

(a) Actual MNIST samples. (b) Reconstructed samples.

(c) Parse trees for first 3 samples of digit 0 in (a) and (b).

(d) Parse trees for first 3 samples of digit 6 in (a) and (b).

(e) Parse trees ffor first 3 samples of digit 7 in (a) and (b).

Fig. 8: Reconstructed MNIST samples and corresponding
parse trees from a cap-DGM with two latent capsule layers.
Visible layer is not visualized in the trees. Size of a node
indicates the activity of the capsule.

in the latent space to represent part-whole relationship. Our
preliminary experimental results show that such tree structures
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(a) Actual Fashion-MNIST samples. (b) Reconstructed samples.

(c) Parse trees for first three trousers in (a) and (b).

(d) Parse tree for first three sneakers in (a) and (b).

(e) Parse tree for first three ankle boots in (a) and (b).

Fig. 9: Reconstructed Fashion-MNIST samples and corre-
sponding parse trees from a cap-DGM with two latent capsule
layers. Visible layer is not visualized in the trees. Size of a
node indicates the activity of the capsule.

Fig. 10: Parse trees of corresponding Fashion-MNIST samples
from a cap-DGM of three latent layers.

can be automatically learned from the data using our model.
Please be reminded that, this work is a position paper, proving
the concept, but needing more studies and improvements
in implementation, learning algorithms, and validations. We
derived the wake-sleep learning algorithm for our model. To
improve learning quality and possibly eliminate the pretraining
phase, new learning algorithms (such as REINFORCE method
[17] and back-propagation [16], [18]) will be explored. The
method is currently implemented using pure Python. It will
be re-designed in PyTorch or TensorFlow so that components
such as convolution can be added to the structure for better
quality of generation.
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