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Abstract—Pneumothorax, also called a collapsed lung, is the
presence of the air outside of the lung in the space between
the lung and chest wall. It is generally diagnosed using a chest
X-ray. However, for some cases, the diagnosis can be difficult
as other medical conditions appear similarly. Machine Learning
algorithms have been providing great assistance in detecting and
locating pneumothorax lately. In this paper, we propose a 2-
Stage Training system to segment images with pneumothorax.
This system has been built based on U-Net, the state-of-the-
art Fully Convolutional Network (FCN) architecture, with a
backbone Residual Networks (ResNet-34) that is pre-trained on
the ImageNet dataset. In the beginning, we train the network
at a lower resolution. Then, we load the trained model weights
to retrain the network with a higher resolution. Moreover, we
utilize different techniques including Stochastic Weight Averaging
(SWA), data augmentation, and Test-Time Augmentation (TTA).
We use the chest X-ray dataset that is provided by the 2019 SIIM-
ACR Pneumothorax Segmentation Challenge, which contains
12047 training images and 3205 testing images. Our experiments
show that 2-Stage Training leads to better and faster network
convergence. Our method achieves 0.8356 mean Dice coefficient
placing it among the top 9% of competitors with a rank of 124
out of 1475.

Index Terms—Pneumothorax Segmentation, 2-Stage Training,
U-Net, ResNet-34, Chest X-ray, Transfer Learning, Data Aug-
mentation, Test-Time Augmentation.

I. INTRODUCTION

Pneumothorax (Collapsed Lung) is the presence of air in
the pleural cavity between the lungs and the chest wall. The
pressure of this air causes the lung to collapse on itself [1].
Pneumothorax can be caused by a variety of reasons, such
as lung diseases or defects. In some cases, it can occur from
an accident or injury in the chest area, while, in other cases,
it may occur without any apparent reason. Pneumothorax
can lead to a life-threatening medical emergency if it is not
treated immediately (subsequent dyspnea and alveoli explosion
due to the presence of air) [2]. Detecting pneumothorax is
complicated due to the variety of its symptoms and causes. It is
usually detected by a radiologist using chest X-rays. However,
it can be difficult to diagnose especially when its locations are
atypical or when the patient has heart or lung diseases [3].

Machine Learning (ML) techniques have led to remarkable
advances in medical image analysis. A branch of ML known as
Deep Learning (DL) has been used to process massive amounts
of data in order to automatically learn their features without
the need for manual feature extraction/engineering [4]. One

of the modern DL models is known as Convolutional Neural
Networks (CNN) [5], which achieved great success in general
and biomedical image analysis [6].

Image segmentation techniques, which provide a “better
understanding” of the objects in the image, are extremely
useful for several tasks. For medical image processing, there
is a need to localize and segment objects or regions such
as brain tumors [7], [8], brain tissues [9], and abdominal
aortic aneurysms [10]. Recently, Fully Convolutional Net-
works (FCN) [11] achieved great success in medical image
segmentation. This success has been mainly associated with
efficient architectures such as SegNet [12] and U-Net [13].

In this study, we propose a 2-Stage Training method to
segment pneumothorax in chest X-rays. The dataset we use
was provided by the SIIM-ACR Pneumothorax Segmenta-
tion Challenge.1 The proposed segmentation model has a U-
Net [13] architecture with 34-layer Residual Network (ResNet-
34) [14] pre-trained on the ImageNet [15] as a backbone.
We have resized the original 1024 × 1024 X-ray images to
256×256 and 512×512 image sizes. In stage-1, the model is
trained on the lower resolution of 256×256. Then, the weights
of the model are loaded in stage-2 to train the model on the
higher resolution of 512×512. As a result, the model achieves
0.8356 mean Dice coefficient.

This paper is organized as follows. Section II presents the
related work on pneumothorax research and the top teams
for the SIIM-ACR Pneumothorax Segmentation Challenge.
Section III describes the dataset that are used in this paper.
Section IV provides an overview of our methodology and the
architecture of our approach. Section V presents experimental
settings and metrics for evaluations. The results and discussion
are given in Section VI. Finally, the conclusion and future
work are provided in Section VII.

II. RELATED WORK

Segmenting and detecting pneumothorax have attracted the
attention of many researchers. In [16], the authors evaluated
the performance of three DL techniques: CNN, FCN, and
Multiple-Instance Learning (MIL) [17], to detect and localize
pneumothorax in chest X-ray images. They found that CNN
had the best performance in terms of Area Under The Curve

1https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
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(AUC), while the other models detect the location of pneu-
mothorax more accurately. In [18], the researchers used a deep
CNN to identify moderate and large pneumothorax in chest X-
rays images.

The SIIM-ACR Pneumothorax Segmentation Challenge
started on August 21, 2019, as a 2-round competition. In
round-1, each participating team would develop a model to
segment pneumothorax based on the provided training set. The
number of participants in round-1 was 1475 teams. In round-2,
each team has to use the model they developed in round-1 and
retrain it on an updated training data set. Then, they have to
use the retrained models for inferring and predicting an unseen
test data set.

The models of the top ten winning teams2 rely mostly
on deep CNN. The first-place team, Team [dsmlkz] sneddy,
used U-Net model with ResNet-34, ResNet-50, and 50-layer
ResNext [19] with the Squeeze-and-Excitation (SE) [20] mod-
ule (SE-ResNext-50). The models were trained several times.
First, these models (except for ResNet-50) were trained on
size 512 × 512 then uptrained on size 1024 × 1024 with a
frozen encoder in early epochs. The best model from the
previous step was uptrained until convergence with a 1e-5
learning rate and 0.6 sample rate. Then, they repeated the
previous step with a 0.4 sample rate. Finally, the models
were uptrained with a small learning rate of 1e-6 and a
sample rate of 0.5. They also used aggressive augmentation for
training and applied horizontal flip TTA and triplet threshold
for post-processing. The second-place team, Team X5, used
classification and segmentation models in their approach.
For classification, they used stacking ensemble of multi-
task U-Net model with SE-ResNeXt-50, SE-ResNeXt-101 and
EfficientNet-b3 [21] backbones. For segmentation, they used
an averaged ensemble of U-Net model with SE-ResNeXt-50,
SE-ResNeXt-101, EfficientNet-b3, EfficientNet-b5 backbones
and DeepLabv3 [22] with ResNeXt-50 backbone.

III. DATASET

In this study, we have used the chest X-ray dataset from
the SIIM-ACR Pneumothorax Segmentation Challenge. The
images of this dataset were released in the Digital Imaging
and Communications in Medicine (DICOM)3 format, while
the annotations in the form of image IDs and Run-Length En-
coding (RLE)4 masks. The DICOM format can store medical
images (pixel data) along with patient information (metadata)
in one file. Figure 1 provides an example of data elements in
the DICOM file. RLE is a form of lossless data compression
in which runs of data are stored as a single data value and
count. The relative form of RLE is used for images with
pneumothorax as a mask value where pixel locations are
measured from the previous end of run as shown in Figure 2.
On the other hand, images without pneumothorax have a mask

2The top 10 winning teams models of the Pneumothorax Challenge are
available on https://siim.org/page/pneumothorax challenge

3https://www.dicomstandard.org/current/
4https://en.wikipedia.org/wiki/Run-length encoding

Fig. 1. Data elements in DICOM file

Fig. 2. Example of RLE

value of -1. All images are in size of 1024 × 1024 pixels.
Figure 3 shows some X-ray images that contain pneumothorax.

As mentioned earlier, this challenge had two rounds. In
round-1, the training set consists of 10675 chest radiographs
and 11582 masks, while the test set consist of 1372 chest
radiographs. In round-2, the updated training set contains
round-1 training and testing sets with updated labels, and a
new testing set with unseen labels consisting of 3205 chest
radiographs. In the training set for both rounds, there are
more masks than the images. This indicates that some training
images have multiple annotations, i.e., multiple regions of
interest.

The round-1 training set contains 2379 positive cases of
finding pneumothorax, while round-2 training set has 2669
positive cases of finding pneumothorax out of 12047 cases.
Table I shows more details for the dataset.

TABLE I
DATASET OVERVIEW

Attribute Round-1 Round-2
Number of training samples 10675 12047

Number of test samples 1372 3205
Number of positive samples 2379 2669

Number of RLE masks 11582 12954
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Fig. 3. Samples of chest X-ray image containing pneumothorax

IV. PROPOSED APPROACH

In this section, we provide details about the image pre-
processing and augmentation techniques that have been used
in our approach. Then, we present the segmentation network,
training, and testing details. The detailed methodology of our
approach is illustrated in Figure 4.

A. Data Pre-processing and Augmentation

First, we extract the pixel array in a resolution of 1024 ×
1024 pixels from the DICOM files and convert the grayscale
images (that have only 1 channel) to RGB colored images
(with three channels). Then, we resize these images to 256×
256 pixels and 512×512 pixels for the 2-Stage Training steps.
Data augmentation is a useful way to reduce the generalization
error (overfitting) of models by increasing the amount of
training data and adding a variety of distortions and noise
to the training data in order to strengthen and improve the
robustness of the model [23]. We have applied four groups
of data augmentation techniques including horizontal flip, one
of random contrast, random gamma, and random brightness,
one of elastic transform, grid distortion, and optical distortion,
and random sized crop. Finally, we have normalized the pixel
values so the range of pixel intensity values are between 0 and
1.

B. Model Architecture

In our approach, we use U-Net [13] as a segmentation
model, which is an extension of FCN. The backbone used
is ResNet-34 [14] pre-trained on the ImageNet [15] dataset.
This is an example of transfer learning, which is an effective
technique where a model that is trained for one problem can be

reused as initialization for another model that is to be trained
on another similar problem [24]. The network architecture is
based on a 2-Stage Training technique. First, we have trained
our network on lower resolution images (256×256). Then, the
model’s weights are loaded and the learning rate is initialized
to train the model on higher resolution (512× 512).

Our ResNet34-UNet segmentation network has an encoder
and a decoder. The encoder is built by removing the fully
connected layer and the global average pooling layer from
the end of ResNet-34. The decoder has five blocks, each
consisting of an up-sampling layer followed by repeated two
times of convolution layer, batch normalization layer, and
ReLU activation layer. In the first four blocks of the decoder,
the feature maps after up-sampling are concatenated with the
feature maps from the same sized part in the encoder. Finally,
we apply a convolution layer followed by sigmoid activation
to output the binary masks.

C. Training and Testing Details

We train our network for 100 epochs with batch size 64 on
lower resolution (256×256) images. Then, the model weights
are loaded and the learning rate is initialized to train the model
for 70 epochs with batch size 16 on the 512 × 512 images.
We use the Adam [25] optimizer with an initial learning
rate of 0.001, which is relatively dropped per epoch using
the cosine annealing learning rate technique [26]. Also, we
apply Stochastic Weight Averaging (SWA) [27] to converge
more quickly to the wider optima that enables the model to
generalize well. The SWA setup for the 256×256 images has
been given for the last five epochs, while for the 512 × 512
images, it is for the last three epochs. As a loss function, we
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Fig. 4. Our methodology for pneumothorax segmentation

use a combination of Binary Cross-Entropy (BCE) and Dice
loss. BCE is defined as follows.

BCE = −1/N
N∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (1)

where N is the number of training samples, y is the ground
truth value, and p is the predicted value. The Dice loss is
defined as follows.

DSCL = 1− 2× |X
⋂

Y|
|X|+ |Y|

(2)

where X is the predicted set of pixels and Y is the ground
truth. The expression for the loss function is obtained as
follows.

BCE-Dice Loss = BCE + DSCL (3)

For testing, the images have been resized to 512 × 512,
and converted to RGB colors with normalization. As for
the post-processing steps, we apply horizontal flip, Test-Time
Augmentation (TTA) [28], to test images. Eventually, the final
prediction is the average prediction for all images. Moreover,
we use the Removal Threshold (R-TH) for each predicted
mask to reduce false positives. The components that are less
than the minimum size of pixels are removed.

V. EXPERIMENTS

A. Experiments details

We conduct several experiments to evaluate our model as
shown in Table II. These experiments are tuned based on the
validation data. We take from each experiment the best one
to evaluate the model on round-1 test set. Finally, the best
experiment is used to infer round-2 test set.

For the first experiment (Exp1), we train the network at a
resolution of 256×256 and 1 channel for 50 epochs with batch
size 40. To enable us to train the network of grayscale images

with pre-trained weights, we add the convolution layer to map
1-channel data to 3-channels. We use the Adam optimizer and
ReduceLROnPlateau5 scheduler to reduce the learning rate by
a factor of 0.2 if no improvement is seen for 5 patience based
on the validation loss. The Binarization Threshold (B-TH) is
0.5 for the prediction.

As for the second experiment (Exp2), we train the segmen-
tation network on the 256 × 256 resoultion images with 3
channels for 35 epochs with 40 batch size. Moreover, the B-
TH is 0.55 for the prediction.

In the third experiment (Exp3), we load the weights from
the Exp2 model and reinitialize the learning rate. Then, we
train the network on the 512 × 512 resolution images with 3
channels for 10 epochs with batch size 14. The B-TH is 0.55
for the prediction.

For the fourth experiment (Exp4), we first train our network
on the 256 × 256 resolution images, and 3 channels for
60 epochs with batch size 40. Then, we load weights and
reinitialize the learning rate to retrain the network on the
512 × 512 resolution images and 3 channels for 29 epochs
with batch size 14. The B-TH is 0.75 for the prediction.

Finally, the configuration of the fifth experiment (Exp5) is
the same as Exp4’s, except that we train the model on the
256 × 256 resolution images for 100 epochs, and 512 × 512
for 70 epochs.

We divide the data into 80% for training and 20% for
validation in the first experiment and 90% for training and
10% for validation in the other experiments. All experiments
have been trained using the U-Net model with the ResNet-34
backbone. We use SWA with cosine annealing learning rate
techniques for all experiments except the first one. As for the
prediction, R-TH is 2048, which means that we remove images
with a total mask size smaller than 2048 pixels.

5https://keras.io/callbacks/\#reducelronplateau
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TABLE II
CONDUCTED EXPERIMENTS AND THEIR SETTINGS

Experiment SWA B-TH Channels 256× 256 512× 512
Batch size Epochs Batch size Epochs

Exp1 7 0.5 1 40 50 N/A N/A
Exp2 3 0.55 3 40 35 N/A N/A
Exp3 3 0.55 3 40 35 14 10
Exp4 3 0.75 3 40 60 14 29
Exp5 3 0.75 3 64 100 16 70

B. Environment Settings

All experiments code is written in Python 3. The first
four experiments are run on the Colaboratory cloud service
provided by Google,6 whereas the last experiment is run on a
local server with 32 GB of RAM and Nvidia Titan Xp GPU.
For Exp5 (2-Stage Training), each training epoch takes about
4 minutes in stage-1 and 8 minutes in stage-2.

C. Metric

During training, we have used Intersection over Union
(IoU) [29] as a metric. IoU is the area of overlap between the
ground truth (Ptrue) and the predicted segmentation (Ppredicted)
divided by the area of union between them. The following
formula computes the IoU.

IoU(Ptrue, Ppredicted) =
Ptrue

⋂
Ppredicted

Ptrue
⋃
Ppredicted

(4)

The competition’s official evaluation metric is the mean
Dice similarity coefficient (DSC) [30]. This metric is used to
compare the pixel-wise agreement between a predicted seg-
mentation and its corresponding ground truth. The following
formula computes the Dice coefficient.

DSC(X,Y ) =
2× |X

⋂
Y |

|X|+ |Y |
(5)

where X is the predicted set of pixels and Y is the ground
truth.

VI. RESULTS AND DISCUSSION

During round-1 of the competition, the score results re-
flected the entire round-1 test set, whereas, during round-2
of the competition, the score was calculated with only 1%
of round-2 test set. Upon the completion of the competition,
scores on the private leaderboard were calculated with the
remaining 99% of round-2 test data.

Table III shows the results of the IoU score for all exper-
iments on the validation set with and without using the TTA
technique. The results indicate that the use of TTA is highly
effective and leads to better predictive performance. We choose
the best experiment from each experiment on the validation set
to predict round-1 test set. Table IV shows the results of the
Dice score for round-1 test set. The 2-Stage Training model
achieves a Dice score of 0.8502, and this indicates that 2-
Stage Training improves the learning process of the model as
it learns the features of its training at different resolutions.

6https://research.google.com/colaboratory/faq.html

TABLE III
IOU SCORE FOR VALIDATION SET

Experiment IoU Score
Without TTA Using TTA

Exp1 0.7242 0.7395
Exp2 0.7349 0.7523
Exp3 0.7105 0.7401
Exp4 0.7422 0.7631
Exp5 0.7638 0.7822

TABLE IV
DICE SCORE FOR ROUND-1 TEST SET

Experiment Dice Score
Exp1 0.8125
Exp2 0.8154
Exp3 0.8300
Exp4 0.8407
Exp5 0.8502

For round-2 of the competition, a new test was released and
the training set was updated to include round-1 test set. We
choose the best experiment (Exp5) 2-Stage Training to infer
round-2 test set. This experiment achieves the highest score
on both the validation set and round-1 test set using the TTA
technique. As shown in Table V, we infer round-2 test set
using the model that has been trained on round-1 training set.
Then, we train the model on round-2 training set to predict
round-2 test set. We also make a comparison using TTA and
without using it to confirm the effectiveness of our approach.
The results indicate that the use of TTA technique improves
the prediction, where the horizontal flip transformation of the
test images increases the chances of capturing the target shape
and predicting performance. Our model achieves a Dice score
of 0.8356. Table VI shows the performance of our method
compared to the winning methods of the Pneumothorax Chal-
lenge on the test dataset. We notice that, for this task, the
high resolution images increases the performance in addition
to the use of deeper and more powerful backbones. It is worth
mentioning that we have been awarded a bronze medal on
Kaggle for being in the top 9% of competitors with a rank of
124 out of 1475.

VII. CONCLUSION

In this paper, a 2-Stage Training system is proposed to
segment pneumothorax based on an elegant state-of-the-art
architecture called U-Net. The backbone used is ResNet-34
pre-trained on the ImageNet dataset and the dataset consists

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



TABLE V
ROUND-2 RESULTS OF 2ST-UNET SYSTEM WITH DICE SCORE

Train set TTA Dice Score
Public Leaderboard Private Leaderboard

Round-1 Train 7 0.9005 0.8247
Round-1 Train 3 0.8938 0.8330
Round-2 Train 7 0.9011 0.8298
Round-2 Train 3 0.9023 0.8356

TABLE VI
DICE SCORE COMPARED WITH THE TOP WINNING METHODS ON THE

PNEUMOTHORAX ROUND-2 TEST SET

Team Model Image size Dice Score
[dsmlkz] sneddy U-Net 1024× 1024 0.8679

X5 Deeplabv3+, U-Net 1024× 1024 0.8665
2ST-UNet U-Net 512× 512 0.8356

of chest X-ray images provided by the 2019 SIIM-ACR
Pneumothorax Segmentation Challenge. We have employed
data augmentation, SWA and TTA techniques to improve the
network’s predictions. Our method achieves a mean Dice coef-
ficient of 0.8356 and was ranked 124 out of 1475 competitors.
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