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Abstract—The neural recordings known as Local Field Poten-
tials (LFPs) provide important information on how neural circuits
operate and relate. Due to the involvement of complex electronic
apparatuses in the recording setups, these signals are often
significantly contaminated by artifacts generated by a number
of internal and external sources. To make the best use of these
signals, it is imperative to detect and remove the artifacts from
these signals. Hence, this work proposes a pattern recognition
neural network based single-channel automatic artifact detection
tool. The tool is capable of detecting the artifacts with an 93.2%
of overall accuracy and requires an average computing time of
2.57 seconds to analyse LFPs of one minute duration, making it
a strong candidate for online deployment without the need for
employing high performance computing equipment.

Index Terms—Computational neuroscience, machine learning,
physiological signals.

I. INTRODUCTION

The Local Field Potentials (LFPs) are neural signals
recorded by micro-electrodes (metal, silicon or glass mi-
cropipettes) in deeper layers of the brain, by low pass filter-
ing of the extracellular electrical potential to under 100-300
Hz. The signal obtained encompasses neural processes such
as afterpotentials of somato-dendritic spikes, synchronized
synaptic potentials and voltage-gated membrane oscillations.
They are used to investigate the dynamics and the function of
neural circuits under different conditions given their ability to
capture different activities within a wide scope of frequencies.
Furthermore, they provide stable signal for longer period of
time than multi-unit spiking activity, and are therefore useful
for long-term chronic experiments and for clinical applications
such as brain-machine interfaces [1].

There have been quite some work in developing automated
methods in processing and analysing of neuronal signals
[2]–[23]. All neural signals are susceptible to noise, labeled

as artifacts in the domain. They can be originated from
internal (physiological) sources or external (non-physiological)
ones. Each type has a distinct frequency bands, which are
summarized in Table I. Non-physiological artifacts can be of
interference kind, such as transmission lines, cellphone signals
and light stimulation origin; or instrumental, for instance an
electrode’s poor contact, popping and lead movement. Phys-
iological artifacts include electrooculogram, electromyogram,
electrocardiogram and others. The first category comprehends
eye movements, electroretinogram and blinking; while the
second one, all muscular activity e.g. chewing, swallowing
or talking. The electrocardiogram artifact is produced by
the electric activity of the heart, and other sources include
skin potentials or respiration [24]. Furthermore, LFP can be
contaminated with stimulation artifacts during experiments or
spiking activity of local neurons and other distal electrical
activity in the brain may be present in the recording.

The importance of the detection and removal of artifacts
comes from the undesired effects, from causing a brain-
machine interface device to be mistakenly operated, misdi-
agnosis and disturbance of the study of the brain activity. An
example is provided when the use of activity-dependent stim-
ulation paradigm is exploited to modulate cortical state and
functional connectivity [25] aimed at improving the behavioral
recovery after brain lesion [26]. Since the precise timing for
the detection of a spike is crucial to properly pair different
population of neurons within this application, an adequate
artifact detection algorithm to remove contaminating signals
is not neglectable.

There are different approaches to it, such as filtering, manual
and automated methods. The first approach consists of using
band pass filters on the known frequency bands of an artifact,
such as the transmission line artifact being removed by a 50 Hz
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TABLE I
FREQUENCY BANDS OF ARTIFACTS.

Artifact Types
Internal External

EOG a ECGb EMGc Respiration Interference Instrumental
3 -10 Hz 1.2 Hz 0 - 200 Hz 5–10 Hz 50/60 Hz or VHFd VLFe

a Electrooculogram,b Electromyogram,c Electrocardiogram ,dVery High Frequency and eVery Low Frequency.

notch filter. Although, some artifacts have a broad frequency
spectrum and can’t be easily filtered. The second approach
relies on an expert reviewing the neural recording and remov-
ing contaminated segments. This requires much expertise in
analysis of neural recordings and a considerable amount of
time, as well as producing a significant information loss, which
is highly undesirable [27]. Alternatively, automated methods
could be used which rely on computational algorithms to
classify (artifact detection) or recover the original signal
(artifact removal), with the aim of preserving the information.
While a lot of development has been done over automatic
artifact removal, not many of the applications are done in
LFP. Neural networks have proven successful on denoising
other neural signals, such as electroencephalogram, magne-
toencephalography, electrocorticography and spikes. Machine
learning has attracted a lot of attention in the recent years. It
has been successfully applied to tasks such as biological data
mining [28], [29], image analysis [30], financial forecasting
[31], anomaly detection [32], disease detection [33], [34],
natural language processing [35] and strategic game playing
[36]. As for artifact detection and removal, in the literature, we
find multi layer perceptron [37]–[45], Convolutional Neural
Networks [46]–[48], Recurrent Neural Networks [49], [50],
autoencoders [51], [52] and many other architectures [53],
[54]. Despite the large amount of architectures and variation
available, the most common approach is the Multilayered
Perceptron, which has a simple structure and has proven to
give good results.

In this study an automatic artifact detection tool based on
Neural Networks (NNs) from the unfiltered LFP signal is
proposed. Different window sizes are analysed and the model
is validated on data recorded in-vivo from freely moving rats.
It is shown that NNs can be used to detect artifacts from signal
in real time applications without the need for filtering, artifact
template subtraction or extracting hand crafted features. The
remainder of this paper is organised in 4 sections, in Section
II the state of the art present in the literature is described.
Section III details the utilized methodology, followed by the
obtained results in Section IV. Finally, concluding remarks are
made in Section V.

II. STATE OF THE ART

Artifact removal in LFP has been approached with different
methodologies in the literature. Qian et al. [55] proposed a
technique for the removal of stimulation artifacts during deep
brain stimulation, based on stimulus artifact template recon-
struction and subtraction. Removing them from LFP signals

facilitates the study of how the quantitative dependencies of
beta band synchronization varies in the subthalamic nucleus
in regards to different stimulation parameters, such as voltage,
frequency and pulse width. It was first tested and evaluated in
an in-vitro experimental model, then in 26 human participants
with Parkinson’s disease. The performance was measures as
the ratio R, which compares the power spectrum of the
recovered useful signal during stimulation with should be the
power spectrum of the signal without stimulation, expressed in
decibels. Results show that the method improved the signals
for all variations of parameters, with the ratio R nearing zero
in all situations, indicating that the artifacts were removed.
However, this method is limited to offline data processing,
and fluctuations of the stimulation waveforms over time as
well as inaccuracy of the reconstructed template may cause
residual artifacts.

Slow waves (SW) are recurrent fluctuations of LFP that
dominate during slow-wave sleep. Bukhtiyarova et al. [56]
investigated a new method for identifying SW employing NNs.
SWs were acquired from 5 young (2-3 months) male C57Bl/6
mice and manually tagged based on their characteristics,
while everything else was tagged as “noise”. SW and “noise”
exclusive segments were used to train the neural network,
which consisted of an input layer, a hidden layer of 20 neurons
and two output neurons, one for each class. After 3 to 5
iterations of training, the best performance achieved was 96.1
± 1.6% accuracy. As a disadvantage, the tagging process re-
quires an expert to differentiate SWs from “noise” to preselect
corresponding templates for each recording electrode.

LFP can be used as an input information to extract motor
commands for control of the external devices in brain-machine
interfaces. In order to improve the the decoding accuracy of a
force signal, Khorasaniet al. [57] applied a weighted common
average referencing (CAR) algorithm in combination with
Kalman filtering. The algorithm was tested on both simulation
and real multi-channel data recorded from 3 freely moving
Wistar rats. Before each method, intracortical channels were
band-pass filtered remove the DC offset and avoid the aliasing
effect, then re-filtered through three spectral sub-bands to
obtain LFP features. Finally, those band-pass filtered channels
were rectified and low-pass filtered to produce the envelope
of different frequency bands and normalized by subtracting
the mean values and dividing by standard deviation of each
feature. A partial least squares regression model was used to
model the relationship between the input feature vector and
the output force signal, with the decoding accuracy calculated
by measuring the coefficient of determination (R2) between
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the actual and predicted force. The experimental study results
show that weighted CAR significantly improves decoding
performance compared other CAR methods, by achieving R2

score of 0.39.
Mahmud et al. [58] approached the removal of microstimu-

lation induced stimulus artifacts in LFP via the identification of
an artefact’s length based on signal derivative and removing
it from the recordings through interpolation. This procedure
doesn’t depend on the shape, duration, and frequency of the
artifact unlike other approaches or causes any distortion to the
shape of the LFP. It was validated by analyzing recordings
from the rat somatosensory cortex, but the authors failed
to provide any performance metric, and rely only on on
qualitative results as evidence of it.

The methodology proposed in [59] consists of band-pass
filtering from 150-400 Hz to detect low frequency artifacts
and high-pass filtering at 5 kHz to detect high frequency
artifacts. Those band were chosen upon modeling and anal-
ysis of the data, where authors concluded that artifacts have
different spectrum statistics compared with LFP. From an
artifact free, manually labeled, 100 second in-vivo recording
a synthetic dataset was built by the addition of different
artifacts. The removal procedure for high frequency artifacts
is their replacement with a straight line connecting two ends
of the artifactual segment. On the other hand, low frequency
artifacts, are removed by subtracting the estimated envelope.
Test results found that the identification level for artifacts with
a magnitude equivalent to neuronal spikes reaches >80% per
cent. Quantitative signal-to-distortion ratio (SDR) simulation
revealed that the waveform segments comprising artifacts can
have 10-30 dB SDR enhancement.

III. METHODS

The recording of the signal, the pre-processing applied to it
and the proposed artifact detection model are detailed in the
following sub-sections.

A. Signal Acquisition

Five adult, male Long Evans rats weighing 350-400g at
4 months old were used in this experiment. The University
of Kansas Medical Center Institutional Animal Care and
Use Committee approved the protocols for animal use which
adhered to the Guide for the Care and Use of Laboratory
Animals (National Research Council (U.S.). Committee for
the Update of the Guide for the Care and Use of Laboratory
Animals., Institute for Laboratory Animal Research (U.S.), &
National Academies Press (U.S.), 2011). The rats were in-
duced with gaseous isoflurane prior to surgery within a sealed
vaporizer chamber. Anesthetization followed with injections
of ketamine (80-100 mg/kg IP) and xylazine (5-10 mg/kg).
Maintenance boluses of ketamine (10-100 mg/kg/h ip or im)
were repeatedly injected as needed throughout the procedure.
Either Lidocain/Prilocaine cream or bupivacaine were applied
to the scalp prior to making a skin incision spanning rostro-
caudally between 6 mm rostral to bregma and 5 mm distal to
the atlanto-occipital junction. A craniectomy was performed

to expose the primary motor (Caudal Forelimb Area: CFA)
and premotor (Rostral Forelimb Area: RFA) cortical areas.
Electrophysiological procedures were facilitated by removal
of the dura and application of sterile silicone oil to the cortex.

A four-shank, sixteen-contact site electrode (A4x4-3mm-
100-125-177-CM16LP, NeuroNexus) was chronically im-
planted into the RFA (premotor cortex) at a maximum depth
of 1600 µm. A second four-shank, sixteen-contact electrode
(A4x4-3mm-100-125-177-CM16LP, NeuroNexus) was chron-
ically implanted into S1 (forelimb area) and used for stimula-
tion through a single contact. All groups were recorded daily
for 21 days. Each animal could move freely inside a self-
made plastic cage for the entire duration of each experimental
session but was not required to perform any sensorimotor
tasks. The daily recording consisted of 80-minute periods of
stimulation flanked by a 30-minute period (before stimulation)
and a 30-minute period (after stimulation) of no stimulation for
a cumulative 2 hours and 20 minutes of recorded data per day.
For this research, a subset of the data has been used, which
comprises of only the baseline period of recording before
stimulation, from 5 different animals for 10 consecutive days.

B. Pre-processing

To obtain LFPs from the acquired data, it was first down-
sampled to 1,017.3 Hz and then low-pass filtered (with cutoff
frequencies 0-500 Hz) without removing the 60 Hz noise. The
LFPs were manually annotated to obtain ground truth about
the artifacts. The annotation process consisted of taking LFP
chunks composed of 100 datapoints (referred to as bins) and
labelling them as 0 (non-artifact) or 1 (artifact), if the total
power of the bin exceeds a predefined power threshold which
is defined as the mean power of the non-artifacted signal
(see Fig. 1). The annotating process didn’t aim to identify
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Fig. 1. An example of the raw signals with and without artifact.
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individual sources of the artifact which can be related to
movement, chewing or other different sources.

C. Artifact Detection

To detect artifacts from the preprocessed data, signal chunks
with specific window sizes (or bins) were provided to the
system. To understand the effect of window size on the artifact
detection process, different windows of size 50, 100, 150 and
200 datapoints were constructed and fed to the model. The
latter two (i.e., 150 and 200) were created by taking two
consecutive bins with the same tag (or label) and expanding the
original window (i.e., 100) to avoid mixing of bins containing
artifact and non-artifact labels.

To detect the artifacts, a NN-based model was chosen.
Inspired by the brain’s working principle, the NN-based ma-
chine learning algorithms are composed of multiple layers of
processing of non-linear information to analyse patterns and
classify them. In our approach, the NN uses the application
of the hyperbolic tangent (tanh) activation function as shown
in Eq. 1.

f(x) =
2

1 + e−2x
− 1 (1)

Here f(x) acts as a step function which squashes a real-
valued number to the range [-1, 1] and mimics the behavior of
neural activity. The tanh also has its derivative which takes
the following form:

f ′(x) = 1− f(x)2 (2)

Now, assuming a network with l = 1, 2, 3, ..., L layers,
with each layer containing nl neurons. In our case, n1 is the
dimension of the window size (50, 100, 150 or 200). In broad
terms, the network maps from Rn1 to RnL . The matrix of
weights at layer l is expressed as W [l] ∈ Rnl×nl−1 , and the
weight that a neuron j at a layer l applies to the output from
a neuron k at a layer l− 1 as w[l]

jk. Equivalently, the vector of
biases for layer l is expressed as b[l] ∈ Rnl , and a neuron j

at layer l uses the bias b[l]j . Thus, the output of a neuron j at
layer l, given an input x ∈ Rn1 can be expressed as Eq. 3.

a[l] = f(W [l]a[l−1] + b
[l]
j ) ∈ Rnl , for l = 1, 2, 3, ..., L. (3)

To train the network and propagate the information, the
output of a layer is fed as input to the subsequent unit in
the next layer.

Given our dataset with N training bins in Rn1 ,
{
x{i}

}N
i=1

,

for which there are target outputs
{
y
(
x{i}

)}N
i=1

in RnL that
correspond to the class label. Consequently, we want to reduce
the quadratic cost function shown in Eq. 4.

Cost =
1

N

N∑
i=1

1

2

∥∥∥y (x{i})− a[L]
(
x{i}

)∥∥∥2
2
, (4)

Training the network consists of adjusting the weights and
biases in a way that minimizes this cost function in Eq. 4.
Once the model is trained, the results of the final output layer
are used as the solution for the problem [60].

Fig. 2. Basic neural network architecture from the Deep Learning Toolbox
from Matlab. It depicts a neural network composed of three layers: an input
layer of four neurons, a hidden of ten neurons and an output layer of three
neurons.

The NN used in our case was patternet [61] (see Fig. 2 for
the basic architecture of the network) from the Deep Learning
Toolbox from Matlab [62]. The optimal network architecture
was found by training it on smaller sets and adjusting the
hidden layer in each iteration. The final model is composed
of an input layer of the size of each window, a single hidden
layer of 10 neurons and one output neuron.

Given the high imbalance of classes (i.e., artifact vs. non-
artifact), the non-artifact data was randomly selected to match
the amount of artifact data. Afterwards, it was randomly
divided into training (80%), validation (10%) and testing
(10%) and used to train the network with the scaled conjugate
gradient function trainscg [63].

IV. RESULTS AND DISCUSSION

The artifact detection task carried out by the NN model
was tested on a daily usage grade Acer TravelMate P278-MG
laptop consisting of 8 gigabyte of RAM and Intel® Core™
i7- 6500U CPU @ 2.50 GHz processor.

Individual models were constructed for each rodent which
were used in predicting the data from the remaining four
rodents. The accuracy of these cross-animal models are pre-
sented in Fig. 3 A–D, where each row represents the rodent
used for constructing the model and each column is the rodent
whose data is predicted by the model. In the main diagonal
cells are the accuracy of the test set of the neural network
training for each model and on the off-diagonal cells, the
accuracy of the predictions on the other rodents. It is worth
noting that, the results obtained from the prediction task with
four different window sizes (50 datapoints as in Fig. 3 A,
100 datapoints as in Fig. 3 B, 150 datapoints as in Fig. 3
C, and 200 datapoints as in Fig. 3 D) show that the highest
cross-animal prediction accuracy of the models is obtained at
the 150 datapoint window size. Across all window sizes, we
can observe that models trained with the data from Rodent
1 achieve the lowest accuracy, while Rodent 5’s the highest.
This might be attributed to the fact that the data obtained
from Rodent 1 has the least number of artifacts (∼110k bins)
whereas the data from Rodent 5 has the most number of
artifacts (∼445k bins).

Additionally, we trained global models that included ran-
domly selected recordings from all of them, shown in Table II.
Due to inter-animal variability, the global model has a reduced
accuracy when compared to individual models, nonetheless
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Fig. 3. Individual Model’s test accuracy for different window sizes: 50 datapoints in A, 100 datapoints in B, 150 datapoints in C, and 200 datapoints in D.
Each row represents the rodent used for constructing the model and each column is the rodent whose data is predicted by the model. In the main diagonal
cells are the accuracy of the test set of the neural network training for each model and on the off-diagonal cells, the accuracy of the predictions on the other
rodents. The color of each cell represents the achieved Accuracy (%) from the scale depicted at the bottom.

these results suggest that NN can be a practical method for
distinguishing artifact signals within and across subjects. The
highest accuracy for the global models was achieved as well by
the 150 point window, which accounts for 0.147s of recording.

The confusion matrix of the test subset for the global 150
point window models can be seen in Fig. 4. In this figure,
green colored cells correspond to correctly classified bins
and red colored cells to incorrectly classified ones. Both the

TABLE II
ACCURACY OF THE GLOBAL MODELS BY WINDOW SIZE

Window Size 50 100 150 200
Global Model 85.1 % 89.6% 93.2% 89.2%

relative percentage to the overall number of bins and the
amount of bins (indicated in bold) are included in the colored
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cells. The total accuracy is located at the bottom right cell,
precision and false discovery rate are displayed in the column
on the far right of the plot and the true positive rate and false
negative rate are displayed at the bottom row.

0 1
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Fig. 4. Global Model’s test confusion matrix for the 150 point window model.
The rows refer to the class predicted by the NN (Output Class), and the
columns refer to the true class (Target Class). Correctly classified bins are
located in the diagonal cells (green colored), and incorrectly classified ones
in the off-diagonal cells (red colored). In each cell it indicates both the amount
of bins (in bold) and relative percentage to the overall number of bins. The
precision and false discovery rate are displayed in the column on the far right,
while the true positive rate and false negative rate are displayed at the bottom
row. Lastly, the total accuracy is indicated at the bottom right cell.
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Fig. 5. Computational time by window size, where error bars indicate the
standard deviation.

Having achieved a high positive predictability is crucial, as

it means that the parts of recording chosen to be removed
truly are artifactual. False positives in our models may have
originated due to the fact that detection based on the mean
threshold of the LFP power is not free of false positives.

Figure 5 displays the average computing time for 1 minute
of recording, over 100 iterations for each window size. These
results prove to be feasible for online deployment without em-
ploying high performance computing. Enlarging the window
size reduces the number of batches fed into the network, thus
quickening the overall process. Consequently, given the trade-
off between the high accuracy and a computing time of 2.57
± 0.058 seconds by the 150 window, we select it as the best
model.

V. CONCLUSION

This paper has presented an artifact detection algorithm for
in-vivo neural recording. Through the use of NNs, we have
achieved an accuracy of 93.2% on a global model. While
there is room for improvement, this method doesn’t rely on
the use of filtering, artifact template subtraction or extracting
hand crafted features of the signal. This shows that the neural
network has the capacity to extract significant features from
the raw signal which allows them to identify artifacts, an im-
provement over template subtraction, as LFP have complicated
shapes. Further pre-processing the signal or a different network
architecture, such as recurrent neural network, may boost the
results obtained. Nonetheless, these results were obtained on
real, un-synthesized data, showing great promise. In the future,
we aim to improve the artifact detection and move forward
artifact removal via the reconstruction of the original signal.
This will allow for us to compare results against the works
surveyed in the literature review, as they use other performance
metrics.
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