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Abstract—In this paper, deep EEG feature learning method
is proposed for emotion recognition. It is well known that EEG
signals dramatically vary from person to person, thereby making
subject-independent emotion recognition very challenging. To
address the above challenge, this work presents a deep echo state
network (DeepESN) to learn temporal representation from raw
EEG data. DeepESN as an input-driven discrete time non-linear
dynamical system allows to process the temporal information at
each time step in a deep temporal fashion by means of a hier-
archical composition of multiple levels of recurrent neurons. To
make the DeepESN robust, we pre-train the reservoir connections
with an unsupervised intrinsic plasticity rule to generate activities
following a desired Gaussian distribution. Then, we propose a
hybrid learning algorithm for training the output weights which
benefits from both the ridge regression and the online delta rule.
Our leaky DeepESN achieved encouraging results when tested on
the well-known affective benchmarks DEAP and DREAMER.

Index Terms—Deep echo state network, intrinsic plasticity,
Gaussian distribution, electroencephalogram, emotion recogni-
tion, feature learning

I. INTRODUCTION

The problem of classifying multi-channel Electroencephalo-
gram (EEG) time series consists in assigning their represen-
tation to one of a fixed number of classes. This is a funda-
mental task in many healthcare applications, including anxiety
detection ( [1], [2] and [3]), epileptic seizures prediction [4]
and also affective computing applications such as EEG-based
emotion recognition ( [5] and [2]). The problem has been
tackled by a wealth of different approaches, spanning from the
signal decomposition techniques of EEG signals to the feature
extraction and feature selection algorithms as highlighted in
the surveys [6], [7], [8], and [9].

Representation learning or feature learning [10] consists in
automatically discovering the relevant representations for a
classification or detection task directly from raw data such
as the digits recognition ( [11], [12], [13] and [14]). Con-
sequently, the laborious handcrafted features are no longer

needed since representation learning permits to both learn the
features and use them to perform a specific task.

In this paper, we focus on EEG representation learning for
emotion recognition using the reservoir computing approach
in a subject-independent context. In comparison with feature-
based work, few works were dedicated to EEG-based emotion
recognition from raw data. Actually, Echo State Network
(ESN) one of the proposed Recurrent Neural Network (RNN)
within the reservoir computing paradigm allows to first process
EEG time series through dynamic recurrent units (i. e. the
so called ”reservoir”) and then the internal states activation
generated over time is exploited to perform the classification.
Neural networks have showed a great success in several
applications ( [15], [16], [17] [18], and [19]).

ESN is a non-gradient based RNN, that means there is no
backpropagation algorithm involved in its learning. To tackle
the problem of vanishing gradient and fast convergence, Jaeger
( [20], [21], and [22]) proposed to randomly initialize input
weights, recurrent weights and use linear regression to train
only the output weights. It is worth noting that the initialized
weights are not modified during the ESN training process
which sometimes influence the global performance. To tackle
the problem of initial randomness, several approaches based
evolutionary computation were proposed to optimize the ESN
hyper-parameters as well as the architecture in [23]. In the
same context, other works tend to enhance the reservoir non-
recurrent weights based on synaptic rule [24], [25], while in
another work [26] the authors proposed to drive the activity
of internal units to a desired distribution with the seek to
maximize their entropy thanks to the Intrinsic Plasticity (IP)
rule.

In [10], Bengio showed that deep representations handle
more discriminative information which would increase the per-
formance of the classifier. Along these lines, deep RNNs and
especially deep reservoir computing received greater attention
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in the neural networks community. The recently introduced
Deep Echo State Network (DeepESN) [27] model paved the
way to an extremely efficient approach handling deep temporal
representations. The proposed works for DeepESN permits
to shed light on the intrinsic properties of internal dynamics
developed by hierarchical compositions of reservoir layers on
the bias of depth in RNNs architectural design.

The current work deals with deep representation learning
using DeepESN for EEG-based emotion recognition task.
More specifically, the stacked reservoir layers are optimized by
performing a bio-inspired algorithm, i. e. the IP rule. The latter
tends to enhance the activity of each hidden neuron to respect
a Gaussian distribution. The IP rule aims to maximize the
entropy at each neuron of the reservoir layers, that means the
neuron learns to maximize its information about the structure
of the input sequence.

The rest of the paper is organized as follows. Section 2
gives an overview of existing works based on both feature and
signal input for EEG-based emotion recognition. In Section
3, the DeepESN is detailed, followed by an explanation of
the reservoir activity adaptation. The new hybrid learning
algorithm is also presented. Section 4 presents the details
of the experimental settings and then analyzes the achieved
results. Section 5 recapitulates the presented work and outlines
future affective research directions.

II. RELATED WORK ON EEG-BASED EMOTION
RECOGNITION

From a psychological point of view, Russell [28] developed
the circumplex model of emotions which are distributed in a
two-dimensional circular space, containing arousal and valence
dimensions. Arousal represents the vertical axis and ranges
from calm to excited. The valence represents the horizontal
axis and ranges from unpleasant to pleasant. Mehrabian [29]
showed that this circumplex is insufficient for the discrimina-
tion of anger and anxiety emotions. Hence, a third dimension
called dominance is introduced which ranges from submissive
to empowered. Low/High Valence (LVHV), Low/High Arousal
(LAHA) and Low/High Dominance (LDHD) are examples of
binary emotional classification.

To elicit emotions, various studies used picture or audio
stimuli while others used video based emotion protocol. As
consequence, affective benchmarks were proposed making the
comparison of different emotion recognition models fair and
possible. To the best of our knowledge, there are five recent
affective benchmarks, to know, MAHNOB-HCI [30], DEAP
dataset [31], SEED [32], DREAMER [33] and HR-EEG4EMO
[34]. Among these datasets, DEAP is the most used. To add,
DREAMER is an interesting dataset with low cost EEG device
[35].

Power Spectral Density (PSD) features are extensively
used in existing emotion recognition approaches ( [36], [37]
and [38]). The authors in [37] proposed a novel dynamical
graph convolutional neural networks (DGCNN) to model the
EEG features and then classify them with a softmax layer.

The DGCNN model can dynamically learn the intrinsic re-
lationship between different EEG channels, represented by
an adjacency matrix, via training a neural network so as to
benefit for more discriminative EEG features. Experiments
on SEED dataset with differential entropy features achieved
an average recognition accuracy of 90.4% for subject depen-
dent scheme whereas 79.95% for subject independent cross-
validation. Moreover, DGCNN model with PSD features in a
subject-dependent experiment reached an average accuracy of
86.23%, 84.54% and 85.02% for the classification of LVHV,
LAHA and LDHD on DREAMER dataset, respectively.

The work in [38] showed that the projection of PSD features
on the scalp to take the spatial distribution in the form
of a multiband feature matrix can considerably improve the
performance. A capsule Network (CapsNet) is then used for
the classification of valence, arousal and dominance levels on
DEAP dataset. The subject-independent experiment achieves
66.73%, 68.28% and 67.25% for LVHV, LAHA and LDHD,
respectively. Another point of view [39] consists in transform-
ing the topographic PSD image through the pre-trained VGG
16 network of google team and reducing them with principal
component analysis. Thereafter, a Long Short Term Memory
(LSTM) model classifies the reduced PSD-VGG features. The
proposed system achieves interesting results when tested on
MAHNOB-HCI, DEAP and DREAMER datasets.

Most of the work done on EEG-based emotion recognition
have suffered from finding informative features from EEG
data. These findings have reshaped scientific understanding
of EEG signals and inspired following works to analyze them
directly instead of performing the feature extraction step. For
example, feature learning was performed by feeding a one-
second channel raw data from DEAP dataset to the Deep
Belief Network (DBN) [36]. The new representation obtained
from DBN is then fed to Support Vector Machine (SVM).
The preliminary subject-dependent experiment results showed
that the representation generated by DBN are comparable to
the handcrafted PSD features for the classification of valence,
arousal and dominance levels.

In a preliminary work [5], we proposed an ESN model for
the classification of raw EEG data from DEAP dataset. The
hidden layer allows to capture the temporal dynamic aspect of
EEG channel signal and produce a new representation used by
the output layer to classify emotions. One issue in ESN is that
the random initialization of weights affects its performance.
To alleviate this issue, the reservoir i. e. the hidden units
of ESN is optimized with IP such that its activation follows
a Gaussian distribution as suggested by [40]. Encouraging
results are obtained, up to 71.03%, 68.28% for LVHV and
LAHA, respectively. Even more, in [2] we investigated the
impact of the plasticity form on the performance of the ESN
model. Our findings showed that pre-training the reservoir
with IP rule to result in an activation following a Gaus-
sian distribution outperforms a reservoir weights pre-trained
with the Anti-Oja rule [41] or the BCM rule [42] for the
recognition of 3 emotions (Negative, Neutral and Positive)
of SEED dataset. Another RNN-based work [43] proposed
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to decompose the EEG channel signal into 12 segments of
5 seconds duration and fed the sequence to LSTM model
for emotion recognition on DEAP dataset. The model with
two hidden layers considerably improve the performance in a
subject-dependent experiment to attain 85.45% for LVHV and
85.65% for LAHA.

Inspired by the promising results achieved by our previ-
ous work [5], [2], we further analyze the ability of ESN
enhanced with IP rule for deep EEG feature learning and
emotion recognition. In our work, DeepESN is considered
to ensure a robust representation from raw EEG data. More
specifically, DeepESN with leaky integrator neurons is trained
using ridge regression. A sensitivity analysis of the DeepESN
hyper-parameters is performed to study the performance of
the model. Our work can be considered as another proof of
the success of deep reservoir computing approaches since
the recognition of emotions from highly variable and per-
sonal EEG signals in a context of the subject-independent
experiment is a challenging real-world application. Different
from state-of-the-art works, the DeepESN model is trained
in a hybrid fashion such that the output weights are first
determined using ridge regression and in a second step they are
trained with the online delta rule. Noticeably, the hybridization
encompasses the problem of the random initialization of the
output weights and it is not surprising that it achieves better
results than the conventional learning method.

III. CLASSIFICATION AND REPRESENTATION LEARNING
WITH INTRINSIC PLASTICITY BASED DEEP ECHO STATE

NETWORKS

In this section, the DeepESN architecture and its learning is
presented. After that, the intrinsic adaptation of the reservoir
activity is explained. The different ways for training DeepESN
are detailed.

A. Deep Echo State Network model

Similar to the conventional shallow ESN model, the main
component of DeepESN is the dynamical reservoir which
embeds the input history into a rich state representation, and
by a feed-forward readout layer that relies on the state encoded
by the reservoir to compute the output. Crucially, DeepESN
is organized into a hierarchy of stacked reservoirs where the
output of each layer is fed to the next one, as depicted in Fig. 1.
The topology of DeepESN is described by an input layer with
size Nin, N reservoirs and an output layer with Nout neurons.
The weights matrices are W in, W res

i where i = {1, 2, ...N}
and W out, respectively. W external denotes the weights matrix
of direct connections between successive reservoirs. At each
time step t, after feeding the network with the input signal
u(t), the internal neurons from the first reservoir to the last

one are activated according to the following equations:

x1(t+ 1) = (1− γ)fres(W res
1 x1(t) +W inu(t+ 1))

+γx1(t),

x2(t+ 1) = γx1(t+ 1) + (1− γ)fres(W res
2 x2(t)

+W externalx1(t+ 1)) + γx2(t),

...

xN (t+ 1) = γxN−1(t+ 1) + (1− γ)fres(W res
N xN (t)

+W externalxN−1(t+ 1)) + γxN (t),

(1)

When γ > 0, the DeepESN is composed of leaky integrator
neurons, otherwise if γ = 0 no leaky integrator is taken
into consideration. The leaking rate γ of the internal hidden
units can be assimilated to the speed of the reservoir update
dynamics discretized in time. fres is the activation function
of the internal neurons, usually hyperbolic tangent or sigmoid.
Initially, the weight matrices of all layers of the DeepESN are
randomly initialized.

Subsequently, the output weights are computed following
the ridge regression, also known as regression with Tikhonov
regularization:

W out = Y targetXT (XXT + βI)−1, (2)

Where β is a regularization coefficient , and I is the identity
matrix. Actually, large weights indicate that W out exploits and
amplifies tiny differences among the dimensions of x(t), and
can be very sensitive to deviations from the exact conditions in
which the network has been trained. There are two objectives
which are having a high training accuracy and obtaining small
output weights. The regularization parameter β controls the
compromise between these two objectives.

Ultimately, the output of DeepESN is expressed as follows:

y(t+ 1) = fout(W out[x(t+ 1);u(t+ 1)]). (3)

where fout is the activation function of the readout neurons,
usually linear but it can be hyperbolic tangent or sigmoid.

B. Reservoir activity adaptation using Intrinsic Plasticity rule

Each reservoir layer of DeepESN is pre-trained with IP rule.
Initially, Triesch [44] find out that the biological mechanism
of a single neuron adapts its intrinsic excitability following the
distribution of the given stimuli. While traditional learning al-
gorithms update the weights of connections between neurons,
the IP learning concerns the activation function of the neuron
as highlighted in the first reservoir of DeepESN of Fig. 1.

More specifically, when the activation function is fermi, the
target distribution of neuron activity is exponential as stated
by Triesch [44]. Similarly, Schrauwen et al. [40] derived the
IP rule for a Gaussian distribution and a hyperbolic tangent as
activation function. IP rule is local, which means it is applied
on each single neuron to maximize information about its input,
thereby achieving an entropy maximization of the output. In
addition, IP learning is unsupervised which implicitly tends to
minimize the distance between the actual probability density
of the neuron’s output p̃(x) and the desired probability density
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Fig. 1. The proposed system for EEG representation learning and emotion recognition.

pd(x) using the Kullback-Leiber divergence metric according
to equation (4).

DKL (p̃(x), pd(x)) =

∫
p(x) log

(
p(x)

pd(x)

)
dx. (4)

For a Gaussian distribution N (µ, σ2), the Kullback-Leiber
divergence is quantified by equation (5).

DKL (p̃(x) ‖ pN (x)) =

∫
p̃(x) log

p̃(x)

1√
2πσ

e−
(x−µ)2

2σ2

dx

=

∫
p̃(x) log (p̃(x)) dx−

∫
p̃(x) log

e−
(x−µ)2

2σ2

√
2πσ

dx

= −H(x) +
1

2σ2
E
(

(x− µ)
2
)

+ log (
√

2πσ).

(5)

Where H(x) is the actual entropy and E
(

(x− µ)
2
)

is the
expectation value of the output distribution.

The stochastic gradient rule for adjusting the parameters a
(gain) and b (bias) of the neuron’s activation function at each
time step t are expressed in equation (6) and (7).

∆a =
η

a
+ ∆b

(
W inu(t) +W res x(t− 1)

)
, (6)

∆b = −η
(
− µ

σ2
+
x(t)

σ2

(
2σ2 + 1− x(t)2 + µ x(t)

))
, (7)

Hence, the activation of the reservoir neurons in the first layer
is calculated by equation (8).

x(t) = fres
(
diag(a)

(
W inu(t) +W resx(t− 1)

)
+ b
)
. (8)

The activation equation (1) is adapted according to the equa-
tion (8) for each reservoir Ri where i = {1, 2, ..., N} internal
neurons. (ai, bi) are the gain and the bias of the reservoir Ri
characterizing each internal neuron.

C. Readout weight training

As mentioned above, the key ingredient of the success
of the ESN and also the DeepESN models is the fact that
only the output weights W out have to be trained. In this
context, we distinguish two modes: offline and online. The
Moore-Penrose pseudoinverse is performed according to (9)
and it is considered as an offline mode often known as linear
regression:

W out = Y Target ∗XT
(
XXT

)−1
, (9)

When referring to equation (2) and setting β = 0 removes the
regularization and makes the ridge regression a generalization
of a regular linear regression. The training of the output
weights aims to minimize the error between the desired output
yTarget and the real output y when the training samples
are presented in a sequential order. The delta rule is an
online learning type performed by a stochastic gradient descent
method originally proposed for the weights update of a single-
layer perceptron model [45]. The weights update according to
the delta rule is as follows:

∆W = η
(
yTarget(t)− y(t)

)
x(t), (10)

W out = W out + ∆W. (11)

where η is the learning rate and t is the time step of the learn-
ing iterations, t = {1, 2, ..., T}. x(t) is the vector of neuron
firing activation states of x at time step t. This mechanism
computes the incremental adaptation of readout weights. In
our previous work [2], we proposed a new hybrid mode which
first trains the output weights using linear regression and then
trains them using the delta rule. In such a manner, the hybrid
mode starts the training with the linear regression and proceeds
with the delta rule, rather than randomly initialized weights.
In the current work, the proposed system for the EEG-based
recognition task relies on a leaky DeepESN pre-trained with
IP rule and trained with the hybrid mode which combines the
ridge regression and the delta rule.
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TABLE I
DESCRIPTION OF DEAP AND DREAMER DATASETS

Experiment DEAP dataset DREAMER dataset
Stimuli 40 18

Subjects 32 23

EEG cap Biosemi Emotiv Epoc

Channels 32 14

Trial duration one-minute

SAM scales 1-9 [1,2,3,4,5]

Dimenions Valence, Arousal and Dominance

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this work, we propose a new methodology to automat-
ically discover relevant representation for an emotion recog-
nition task. To validate the effectiveness of our methodology,
we tested it on two public EEG benchmarks, namely, DEAP
[31] and DREAMER [33] datasets. First, details about used
datasets and the fixed parameters for DeepESN are provided.
Next, we present the results for three classification problems,
i.e. LVHV, LAHA, and LDHD. Note that the experiments here
are subject-independent.

A. Experimental settings

The authors of DEAP dataset [31] elicited emotions through
40 videos of 32 participants. Biosemi EEG cap with 32
channels is used for the recording of EEG signals. The
participants reported their feelings of the valence, arousal
and dominance dimensions by rating a SAM questionnaire
with a continuous scaling from 1 to 9. Recently, [33] proved
the effectiveness of the Emotiv Epoc with 14 channels [35]
for the collection of EEG signals in an emotion recognition
protocol. The experiment involved 23 subjects stimulated with
18 videos. The participants rated their feelings through SAM
questionnaire with discrete scaling from 1 to 5 for valence,
arousal and dominance dimensions. Both trials in the two
datasets are of one-minute length. The description of the two
protocols details is depicted in Table I. The EEG trials were
pre-processed following the process given in [31] and [33].
Each trial is divided into segments of one-second duration.
The input of leaky DeepESN is one segment.

As mentioned previously, our methodology is inspired from
biologically plausible reservoir computing paradigm (( [20],
[21], [22]), and [40]). In Table II, we highlight the tuning
of hyper-parameters for DeepESN model with two reservoirs.
The input size is determined by the length of the EEG channel.
The number of emotions to discriminate is equivalent to the
output size. In our work, the hidden units are responsible for
the extraction of relevant features from raw EEG data. All
the reservoir size are less than the input size. Actually, the
reservoir computing approach performance is conditioned by
the selection of a number of hyper-parameters which are the
range of the input weights W in and reservoir weights W res

i ,
the number of neurons connected in the reservoir α and the
spectral radius ρ. The authors in [20], [21], and [22] suggested

TABLE II
DETAILS OF DEEPESN HYPER-PARAMETERS

Hyper-parameter Value
Input layer size EEG time series size

W in range [−0.1, 0.1]

Reservoir size (NR) 100, 150, 200, 300, 500

W resrange [−0.1, 0.1] [−0.5, 0.5] [−1, 1]

Connectivity density α 0.1, 0.25, 0.5

Spectral radius ρ 0.5, 0.8, 0.9 0.95

Output layer size Number of emotions to recognize

Leaking rate γ 0.1, 0.3, 0.5, 0.7, 1.5, 2

Regularization rate β 0.001, 0.01, 0.1

IP mean µ 0, 0.2

IP variance σ 0.1, 0.3, 1

IP learning rate η 0.0005, 0.005, 0.01

IP nb iterations 5, 10

TABLE III
COMPARISON WITH STATE-OF-THE ART METHODS ON DEAP DATASET

BASED-ON ACCURACY(%)

Study Input Classifier LVHV LAHA LDHD

[38] Multiband PSD
matrix

CapsNet 66.73 68.28 67.25

[39] PSD-VGG LSTM 71.09 72.58 —

[5] raw data ESN-IP with
offline mode

71.03 68.28 —

[2] raw data ESN-IP with
hybrid mode 71.25 69.23 —

Ours raw data Leaky
DeepESN-IP 81.95 83.02 85.32

TABLE IV
COMPARISON WITH STATE-OF-THE ART METHODS ON DREAMER

DATASET BASED-ON ACCURACY(%)

Study Input Classifier LVHV LAHA LDHD
[33] PSD SVM 62.49 62.17 61.84

[39] PSD-VGG LSTM 78.99 79.23 —

Ours raw data Leaky DeepESN-IP 82.11 83.58 84.98

to set ρ(W res) < 1 in order to satisfy the echo state property.
The reservoir layer is pre-trained using the IP rule. Numerous
values were tested for IP parameters and here we report all
the tested combinations.

B. Affective recognition results and interpretation

As mentioned in the related work section, most studies focus
on the feature extraction step and few works attempt to use
deep learning models to learn discriminative representation
from raw EEG data. Table III depicts the comparison of recent
works on DEAP dataset using features as input. Compared
to the methodology based on PSD-VGG features reduced by
PCA and classified by LSTM, our leaky DeepESN-IP achieves
an improvement with almost 10.86%, 10.44% for LVHV and
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Fig. 2. The impact of DeepESN hyper-parameters on the performance using DEAP dataset.

LAHA, respectively. For the classification of LDHD, the pro-
posed system outperforms the work based on the classification
of the multiband PSD matrix with the CapsNet to reach
85.32%. It can be seen from Table III, the deep representations
obtained with the leaky DeepESN-IP trained with the hybrid
mode increased the recognition rate with 10.70% and 13.79%
for LVHV and LAHA, respectively.

Since DREAMER dataset [33] is recently released, few
works are conducted in the literature, especially for the
subject-independent experiment. Table IV reports the basic
work of the DREAMER authors using the popular PSD
features with SVM classifier. The PSD-VGG features in [39]
again showed better results than [33] for the classification
of valence and arousal two levels. Our proposed DeepESN
reached the higher accuracy on DREAMER dataset to obtain
82.11%, 83.58% for LVHV and LAHA, respectively.

According to Tables III and IV, it is remarkable that
the highest accuracy is attained when classifying the two
dominance levels. The classification task strongly depends on
the labels of sample data. We think that the dominance level
in the SAM questionnaire was clear for the participants such
that their ratings were not overlapping.

The sensitivity analysis is very important for the reservoir
computing approach. It actually gives us detailed insights into
how changing the main hyper-parameters of the DeepESN
changes the overall behaviour of the network. Fig. 2 illustrates
the impact of changing the reservoir size, the connectivity den-
sity the spectral radius, the leaking rate and the regularization
rate. Note that, these hyper-parameters are with same values
for the two reservoir in our leaky DeepESN-IP. Since DEAP
contains more trials than DREAMER, we report the evaluation

on DEAP dataset. For instance, increasing the number of the
hidden units in each reservoir leads to overfitting problem.
The best achieved results in our work are handled with two
dense reservoirs (α = 5%). For a greater value of α, the
accuracy decreases to 70.10%. The spectral radius determines
the forgetting factor of DeepESN. When it is near 0.9, the
proposed system attains its maximum accuracy. Furthermore,
a big value for the leaking rate γ influences negatively the
accuracy. Finally, the highest the value of the regularization
rate β the better the accuracy rate is.

V. CONCLUSION

In this work, we have proposed a new method based on deep
ESNs to automatically extract suitable representations from
raw EEG time series towards real-time application context.
DeepESNs allow us to transfer the striking advantages of the
ESN methodology to the case of deep recurrent architectures,
resulting in an efficient approach to conceiving deep neural
networks for temporal data. It is interesting to note that
intrinsic plasticity can enhance the DeepESN’s performance
on emotion recognition validated on two well known affec-
tive benchmarks. The experiments are challenging since the
classification is subject-independent, i.e., is subject to high
variability of EEG signals between subjects.

Our findings suggested that DeepESN based on IP rule can
be further enhanced by optimizing the synaptic weights inside
each reservoir using the anti-Oja rule [41] or the BCM rule
[42]. Synergies between different plasticity rules as shown
in [25] will be beneficial for generating richer dynamics of
the reservoir, thereby being for efficient in learning spatio-
temporal representations raw EEG streams.
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