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Abstract—In this paper, a novel deep learning based approach
is proposed for the automatic classification of Electroencephalo-
graphic (EEG) signals of subjects diagnosed with the dementia of
Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI) and
Healthy Control (HC). Specifically, a custom Convolutional Neu-
ral Network (CNN) is designed to receive as input AD/MCI/HC
EEG segments (epochs) of the same temporal width, and perform
2-way classification tasks: AD vs. HC, AD vs. MCI, MCI vs.
HC. Our proposed architecture, termed EEG-CNN, is shown
to exhibit remarkable abilities to self-learn relevant features
directly from the EEG traces, avoiding the need for hand-crafted
feature extraction engineering. Comparative experimental results
demonstrate the promising performance of EEG-CNN, which is
based on an analysis of the EEG time series only, reporting
accuracies of 85.78 ± 2.18%, 69.03 ± 1.33%, 85.34 ± 1.86%
in AD vs. HC, AD vs. MCI and MCI vs. HC classifications,
respectively.

Index Terms—Deep Learning, Convolutional Neural Network,
Self-learning, EEG signal, Alzheimer’s disease, Mild Cognitive
Impairment.

I. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
neural degenerative disorder among dementia cases in the
elderly [1] that causes a progressive decline of cognitive
functions (such as language, memory, reasoning), deterioration
of behavior and also of visuospatial abilities and skills [2]. AD
is preceded by a prodromal stage referred as Mild Cognitive
Impairment (MCI) which often goes unnoticed. MCI is not
considered a disease on its own, it is a condition characterized
by mild neural deficits that does not heavily affect the patient’s
ability to live and act independently [3]. MCI condition may
worsen with time, remain stable or even go back to normal,
depending on its inherent etiology [4]. When the cognitively
impaired subject is no longer able to carry out her/his daily

life independently, a diagnosis of dementia may be issued
on the basis of a full neurological, clinical and cognitive
evaluation. Dementia due to Alzheimer’s Disease (AD) is the
most common form of dementia [5]. The number of MCI
subjects degenerating into AD is estimated to be nearly 10%-
15% per year and it is constantly growing, due to people
ageing [6], [7]. Once the diagnosis of dementia due to AD is
issued, it is a common practice to make the subject undertake
medical therapy, which is not however expected to stop or
revert the disease but only to help managing and controlling
symptoms. By that time, unfortunately, atrophy would have
indeed involved most of brain tissues. Whether the ineffec-
tiveness of medical drugs is due to a late intervention is still
an open question [8]. In order to reply to this question it is
necessary to develop tools than can help to diagnose AD as
early as possible. To this end, the development of objective
and reliable biomarkers of AD are necessary, possibly based
on non-invasive, well tolerated and widely spread medical
examinations. In this context, Electroencephalography (EEG)
would be a technology of choice. EEG can indeed be found
in all the neurological clinics, it is relatively affordable, non-
invasive, easy and fast to use. It consists in recording scalp
potentials produced by the bio-electromagnetic fields gener-
ated by neurons within the brain. Communication between
neurons results impaired in MCI and AD subjects, which
shows up as an abnormal behaviour of EEG signals. The
quantification of such abnormalities may provide diagnostic
information and has been widely investigated in the literature
[9], [10]. Machine learning has extensively been applied to
the classification of MCI/AD signals [11]. Trambaiolli et
al. [12] used SVM to classify healthy people and probable
AD patients, exploiting EEG signals, with 79.9% accuracy.
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Ahmadlou et al. [13] introduced a chaos-wavelet methodology
for EEG-based diagnosis of AD employing the concept of
Visibility Graph (VG) from the graph theory. They report
an accuracy of 97.7% in the discrimination between AD and
healthy controls (HC). Ahmadlou et al. [14] used two different
fractal dimensions (FD), Katz’s FD (KFD) and Higuchi’s FD
(HFD), for evaluation of the dynamical changes in the AD
brain. They report a high accuracy of 99.3% for diagnosis
of the AD based on the global KFD in the beta band of
the eyes-closed condition. The aforementioned studies lack a
validation on a large dataset or a comparison between AD vs.
MCI, which is of paramount importance in the early diagnosis
of AD. Ieracitano et al. [15] recently successfully classified
EEG signals from 63 healthy controls (HC), 63 MCI and 63
AD subjects through a novel multimodal approach based on
Continuous Wavelet Transform (CWT) and Bispectral features
extracted from the main EEG rhythms: delta (0-4Hz), theta
(4-8Hz), alpha1 (8-10.5Hz), alpha2 (10.5-13Hz) and beta (13-
30Hz). Multi-Layer Perceptron (MLP) outperformed Autoen-
coder (AE), Logistic Regression (LR) and Support Vector
Machine (SVM) classifiers. The application of Deep Learning
(DL, [16]) to MCI/AD EEG is still in its infancy. Ieracitano et.
[17] proposed a Convolutional Neural Network (CNN) to clas-
sify EEGs through their power spectral density representations,
achieving an accuracy of 93.11% in AD vs HC classification.
Bi et al. proposed a Discriminative Contractive Slab and Spike
Convolutional Deep Boltzmann Machine (CssCDBM) to carry
out EEG spectral image classification. Their algorithm applied
to a small dataset of 4 HC, 4 MCI patients and 4 mild-to-
severe AD patients [18]. Kim et al. introduced a Deep Neural
Network to discriminate 10 HC from 10 MCI subjects by
means of relative power features extracted from their EEG
signals [19]. The present paper aims at giving a contribution
in assessing the potential of deep learning approaches to
the EEG-based classification of AD, MCI and HC subjects.
Specifically, we developed a custom CNN able to self-learn
relavant features directly from the analysis of EEG recordings
only, without applying any hand-crafted feature extraction
technique. Such network is here referred as EEG-CNN and
is employed to perform the following binaries classification
tasks: (i) AD vs. HC, (ii) AD vs. MCI, (iii) MCI vs. HC.

This work is organized as follows. Section II introduces
the proposed methodology. Section III describes the EEG
dataset used and the EEG pre-processing operations. Section
IV reports the proposed classification system, including the
developed EEG-CNN. Section V reports the experimental
results. Finally, discussion and conclusions are addressed in
Section VI.

II. METHODOLOGY

Figure 1 depicts the proposed CNN based framework. EEG
signals are recorded and stored on a computer. Given a EEG
time series, first, it is cleaned from residual artifacts, then,
splitted into N non-overlapped 5s windows (i.e., epochs). A
dataset of EEG epochs is generated and used to train the
proposed DL-based classifier. Specifically, a CNN is developed

to discriminate epochs belonging to AD, MCI and HC subjects
and perform 2-way classifications (AD vs. HC, AD vs. MCI,
MCI vs. HC).
Futher deails are described in the following Sections.

III. EEG DATASET DESCRIPTION AND EEG SIGNAL
PREPROCESSING

EEG dataset description. Three groups of subjects, 63 with
AD, 63 with MCI and 63 HC were recruited at I.R.C.C.S.
(Istituto di Ricovero e Cura a Carattere Scientifico) Centro
Neurolesi Bonino-Pulejo of Messina (Italy), where the local
Ethical Committee approved the medical protocol used to
carry out this research. In particular, the diagnosis of AD
and MCI was established by following both the practical
recommendations of the Diagnostic and Statistical Manual of
Mental Disorders (fifth edition, DSM-5) [20] and the definition
of some exclusion criteria as: the presence of neurological
diseases (comprising possible psychiatric disorders) that could
cause mental impairments, traumatic brain injuries (TBI),
moderate or severe systemic diseases or the existence of
forms of epilepsy. Before undertaking any examination, each
person involved (i.e., patients and caregivers) signed a formal
consent agreement that reported purposes, advantages and
disadvantages of the present study. Moreover, all the indi-
viduals underwent to neuroradiological evaluations, in order
to exclude the presence of other cerebral disorders that may
have similar symptoms to Alzheimer’s disease (such as TBI
or tumors). It is to be noted that MCI patients were not
subjected to any medical therapy; whereas, AD patients were
under clinical treatments such as anti-epileptic drugs, anti-
psychotics, Memantine, cholinesterase inhibitors (ChEis) and
anti-depressants, to study the possible effects.
The recording of the EEG signal was carried out during the
morning. All the patients and their caregivers were asked about
the last meal and quality and length of the last rest. The
EEG recordings were acquired according with the standard
10-20 International System, consisted of the conventional 19-
electrodes (i.e., channels) montage (Figure 2) that allowed the
recording of EEGs simultaneously. The sampling rate was
of 1024 Hz and a 50 Hz notch filtering was also applied.
Finally, linked ears reference (A1-A2) were used. During
the EEG recording, AD/MCI/HC individuals were sitting in
a resting condition with eyes closed. Note that an expert
neurophysiologist technician monitored the EEG acquisition in
order to immediately detect and label possible sleep activities.
Next, the EEG signals were examinated one by one in order
to remove potential artifactual components.
EEG pre-processing. First, a band pass filter ranged between
0.5 and 32 Hz was applied to each EEG recording. Notably,
the eegfiltfft Matlab function of EEGLab toolobox [21] was
used. Then, given an EEG under analysis, it was downsampled
to 256 Hz and divided into N non-overlapping temporal
segments (i.e., EEG epochs) of the same duration, that is 5s.
Therefore, each EEG epoch was sized n x S, where n is the
number of channels (n=19) and S is the number of samples
in a 5s window (S= 256 x 5= 1280).

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



(1) EEG recording and preprocessing

Time [sec]

C
ha

nn
el

s

1

2

N

5s 
EEG epoch

(2) EEG epochs (3) Classification System

5s 
EEG epoch

AD/HC

AD/MCI

MCI/HC

Proposed EEG-CNN

Fig. 1. Procedure of the proposed methodology. (1) 19-channels EEG signals are recorded and stored on a computer. (2) Each EEG is divided into N 5s
temporal windows and a dataset of EEG epochs is created. (3) The EEG epoch of AD/MCI/HC subject is the input of the proposed Convolutional Neural
Networks (i.e. EEG-CNN) for performing binaries discriminations: AD vs. HC; AD vs. MCI; MCI vs.HC.
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Fig. 2. 10-20 International System of the 19-channels EEG recording, where
electrodes with odd numbers refer to the left hemisphere and electrodes with
even numbers refer to the right hemisphere.

IV. CLASSIFICATION SYSTEM

A Convolutional Neural Network is developed to discriminate
AD/MCI/HC subjects directly from EEG time series. After
a brief introduction of CNN (Section IV-A), the proposed
architecture (i.e., EEG-CNN), employed to perform binaries
classifications tasks (AD vs. HC, AD vs. MCI, MCI vs. HC),
is presented (Section IV-B).

A. Convolutional Neural Network

A CNN is a common DL architecture typically used in
computer vision [22]. It is composed of four main types of
layers (L): convolutional (Lc), activation (La), pooling (Lp)
and fully connected (Lfc). In a convolutional layer, the input
pattern (Xj) convolves with a set of learnable filters (Fi). In
particular, each filter (usually small-size) scans the input data
with a stride (s) and computes the dot product between the
filter’s weights and the corresponding sub-region of the input
under analysis. The result of this operation is the so called
feature or activation map (FMi):

FMi =
∑

Xj ∗ Fi +Bi (1)

where, * represents the convolution operator and Bi denotes
the bias. The estimated feature map FMi is sized fm1 x fm2:

fm1 =
x1 − f1 + 2p

s
+ 1 (2)

and
fm2 =

x2 − f2 + 2p

s
+ 1 (3)

where (x1, x2) and (f1, f2) are the corresponding dimension
(height, width) of the input X and filter F , respectively; p
is the zero-padding parameter (generally used to output the
same size of the original input). It is be noted that, in a
Lc layer, the number of feature maps is the same of the
number of filters. The activation layer consists of a nonlinear
transfer function that allows to learn nonlinear properties. The
“Rectified Linear Units” (ReLu, z(x) = max(0, x)) is the
most widely used as provides faster learning and better gener-
alization performance as compared to conventional sigmoid or
hyperbolic tangent functions [23] [24]. In a pooling layer, the
estimated feature maps (FMi) are downsampled through max
or average operations. Specifically, filters sized f̃1 x f̃2 slides
over the features map of the previous layer with step-size s
and estimates the mean or maximum value of the sub-region
selected by the filter. The result is a reduced representation of
FMj of dimension ˜fm1 x ˜fm2, where:

˜fm1 =
fm1 − f̃1

s̃
+ 1 (4)

and
˜fm2 =

fm2 − f̃2
s̃

+ 1 (5)

Here, the max pooling is used as allows to extracts invariant
features more efficiently and provides better generalization
[25]. The CNN ends with one or multiple fully connected
layers (where all neural units are connected with those of the
previous layer as a typical NN) for classification purpose.
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B. Proposed architecture: EEG-CNN

In this study, EEG epochs (5s width) are used as input
to the proposed CNN, denoted as EEG-CNN (Figure 3). It
includes 2 convolutional layers (each followed by a ReLU
activation function), 2 max pooling and 1 fully connected
layers. Specifically, the first convolutional layer (Lc1) has:
4 filters sized 3 x 3 that convolve with the input X (i.e.,
EEG epoch); stride s=1 and zero-padding parameter p=1. Four
features maps of the same input size (19 x 1280) are generated.
Next, the ReLU is applied for non-linearity (LReLU ). Lc1

is followed by a max pooling layer (Lp1) composed of a
filter sized 3 x 6 that sweeps over each FM (achieved from
the previous layer) with stride s̃=2, reducing the original FM
dimension from 19 x 1280 to 9 x 638. Similarly, the second
convolutional layer (Lc2) has 8 filters sized 3 x 3, s=1 and
p=1. After applying ReLU, the max operation of the second
max pooling layer (Lp2) dowsamples the spatial resolution
and generates 8 FM sized 4 x 317. Finally, the resulting
feature maps are reshaped as a d-dimensional vector (with d=
8 x 4 x 317=10144), subsequently used as input to a 1-fully
connected layer (Lfc1 ) comprising 5000 hidden units. EEG-
CNN ends with a softmax layer (Lsf ) that performs binaries
classifications: (i) AD vs. HC, (ii) AD vs. MCI, (iii) MCI vs.
HC.

The EEG-CNN was designed with MATLAB R2018b (The
MathWorks, Inc., Natick, MA, USA) and trained using the
Adaptive Moment (ADAM) optimization algorithm [26] on
two NVIDIA GeForce RTX 2080 Ti for 600 iterations until the
convergence of the cross entropy loss function. After several
simulation tests (trial and error strategy), the default ADAM
setting with learning rate α= 0.001, exponential decay rates
β1=0.9 and β2=0.999, has been chosen. The training time was
roughly 300s for each of the 2-way classification scenario.

V. RESULTS

The dataset used in the present research included 189 EEG
traces recorded from: 63 subjects diagnosed with AD, 63
subjects diagnosed with MCI and 63 healthy individuals. Each
EEG signal under analysis, was divided into temporal windows
of the same duration (i.e., EEG epochs) and used as input
to the proposed CNN classifier (denoted as EEG-CNN) able
to perform the 2-way EEG epoch-based classifications tasks:
AD vs. HC, AD vs. MCI, MCI vs. HC. Precision, recall, F1-
score and accuracy were the metrics employed to estimate the
effectiveness of EEG-CNN:

precision =
tp

tp+ fp
(6)

recall =
tp

tp+ fn
(7)

F1− score = 2 ∗ precision ∗ recall
precision+ recall

(8)

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(9)

where tp, fp represent the true positive and false positive;
whereas tn, fn are the true negative and false negative,
respectively [27]. For example, in AD vs. HC discrimination:
tp and fp correspond to the number of EEG epochs correctly
and erroneously detected as epochs belonging to AD patients,
respectively; while, tn, fn correspond to the number of EEG
epochs correctly and erroneously classified as epochs of HC,
respectively. In order to assess the robustness of the proposed
model the k- fold cross validation technique (with k=8) was
applied as validation criterion. Specifically, for every iteration,
70% of instances (i.e. EEG epochs) represented the train test
and 30% the test set. The overall results are quantified by
estimating the average value ± standard deviation. It is to
be noted that the best CNN topology was determined by
experimentally estimating the performance of configurations
with different processing layers (Table I). The proposed EEG-
CNN described in Section IV-B and referred in Table I as EEG-
CNN2, was firstly trained and tested with only Lc1 , LReLU ,
Lp1

, Lfc1 (EEG-CNN1); then, additional fully connected lay-
ers were used. In particular, the developed EEG-CNN was
also studied with 2-fully connected layers (Lfc1 of 5000 and
Lfc2 2000 units, respectively - EEG-CNN3) and with 3-fully
connected layers (Lfc1 of 5000, Lfc2 of 2000, Lfc3 of 500
units, respectively - EEG-CNN4). All the networks end with
a softmax output layer for binaries classification. As can be
seen from Table I, EEG-CNN2 (in this study referred simply as
EEG-CNN) achieved the maximum accuracy performance in
all the scenarios (AD vs. HC, AD vs. MCI, MCI vs. HC).
However, It is worth mentioning that higher F1-scores of
76.03 ± 4.72 %, 55.66 ± 5.57 %, 83.56 ± 1.23 % were
achieved by EEG-CNN3 (in AD vs. HC comparison), EEG-
CNN1 (in AD vs. MCI comparison), EEG-CNN4 (in the MCI
vs. HC comparison), respectively. Table II shows the EEG
epoch classification performance of the proposed EEG-CNN
in terms of precision, recall, F1-score and accuracy. Notably,
the EEG-CNN achieved the highest accuracy in the AD vs. HC
scenario with a value of 85.78 ± 2.18% and reported precision
of 80.92 ± 5.58%, recall of 69.67 ± 11.27% and consequently
F1-score of 74.17 ± 6.07 %. Very good results were observed
also in the MCI vs. HC classification task, where EEG-CNN
achieved accuracy rate up to 85.34 ± 1.86% and F1-score up
to 83.02 ± 1.55 %. Lower discrimination performance were
achieved in the AD vs. MCI, reporting an accuracy of 69.03
± 1.33% and F1-score of 50.10 ± 4.48%.

VI. DISCUSSION AND CONCLUSION

This ambitious study aims at exploring the potential of
deep learning to discriminate AD/MCI/HC subjects directly
from EEG signals. In particular, our developed innovative
approach is designed to self-learn and extract discriminating
features directly from EEG time series, without the need
for an engineering feature extraction stage. Specifically, a
custom Convolutional Neural Network (denoted as EEG-CNN,
comprising 2 convolutional layers, 2 pooling layers and 1 fully
connected followed by a softmax output layer), was developed
to perform the following 2-way classification tasks: AD vs.
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EEG input CNN Architecture

EEG-CNN

Fig. 3. Proposed EEG-CNN architecture. It is designed to receive the temporal EEG epoch (sized 19 x 1280) and comprises 2 convolutional layers (Lc1, Lc2),
2 max pooling layers (Lp1, Lp2), 1 fully connected layer (Lfc) followed by a softmax (Lsf ) for classification purpose. Note that after each convolutional
layer a ReLU activation function is applied. As an example, the figure shows the AD vs. HC classification task.

HC, AD vs. MCI, MCI vs. HC. To this end, EEG segments
were extracted from a dataset of 189 EEG recordings (63 of
AD, 63 of MCI, 63 of HC) and used directly as input to
the EEG-CNN. Comparative test results showed accuracies of
85.78 ± 2.18%, 69.03 ± 1.33%, 85.34 ± 1.86% in AD vs.
HC, AD vs. MCI, MCI vs HC, respectively (Table II). In
order to assess the validity of the proposed EEG-CNN, the
overfitting was also analyzed by comparing the accuracy of
train and test. Indeed, experimental results showed that the
performance achieved in training and testing stage do not
diverge, reporting an average accuracy gap of about 15%.
It is worth mentioning that, although the proposed network
achieved very good results (especially in AD vs. HC and
MCI vs. HC discrimination tasks), higher performances are
reported in the literature. Specifically, for a fair comparison,
we referred to recent studies that employed the AD/MCI/HC
EEG database used here and performed EEG epoch-based
2-way classifications. Table III reports positive and negative
aspects of each work. In particular, in [17], a CNN with
only 1 layer of convolutional, ReLu and max pooling, was
developed, achieving accuracy rate up to 92.95%, 84.62% and
91.88% in AD vs. HC, AD vs. MCI, MCI vs. HC, respectively.
However, the proposed methodology comprised a complex
feature-engineering step to estimate the Power Spectral Den-
sity (PSD). Spectrum profiles were then mapped into 2-d gray
scale images (PSD-images) used as input to the developed
CNN. Furthermore, the proposed PSD-based approach was
deeply influenced by the position of the dominant power peak

in the α band. In [28], each EEG signal was projected into the
time-frequency (TF) domain via Continuous Wavelet Trans-
form (CWT) and five statistical parameters (mean, standard
deviation, skewness, kurtosis entropy) were evaluated from TF
maps within every EEG sub-band δ, θ, α1, α2, β. The resulting
CWT feature vector was fed into different machine learning
based classifiers: Autoeconder (AE), Multi-Layer Perceptron
(MLP), Logistic Regression (LR) and Support Vector Machine
(SVM). Experimental results reported accuracy values of 95.76
± 0.45% and 86.84 ± 0.98% in AD vs. HC and AD vs. MCI
classification task, respectively, with 1-hidden layer MLP. In
[15], a set of higher order statistics features is extracted from
the bispectrum (BiS) representation (denoted as BiS features)
and fused together with the CWT feature vector proposed in
[28]. The multi-modal (CWT+BiS) features vector was used
as input to AE, MLP, LR and SVM architectures, achieving
accuracy rates up to: 96.95 ± 0.5% in AD vs. HC, 90.24
± 0.7% in AD vs. MCI; 96.24 ± 0.5% in MCI vs. HC.
Although the methodologies discussed above reported better
discrimination results as compared to the approach proposed
in the present work, it is to be noted that [17], [28], [15] are
based on handcrafted feature-extraction methods, specifically
for extraction of power spectral density, time-frequency or
high order statistic features. In contrast, our proposed EEG-
CNN was able to self-learn and extract discriminating features
directly from the EEG time series without any engineering fea-
ture extraction stage, with promising outcomes. Nonetheless,
the current methodology also has some drawbacks. First, the
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TABLE I
EPOCH-CLASSIFICATION PERFORMANCES EVALUATED ON THE TEST SETS OF DIFFERENT CNN CONFIGURATIONS. NOTE THAT EEG-CNN2 ACHIEVED

THE HIGHEST ACCURACY AND IN THIS STUDY, IT IS SIMPLY REFERRED AS EEG-CNN. ALL THE RESULTS (PRECISION, RECALL, F1-SCORE, ACCURACY)
ARE REPORTED AS MEAN VALUE ± STANDARD DEVIATION.

AD vs. HC

Model Precision Recall F1-score Accuracy

EEG-CNN1 77.29 ± 3.77% 67.04 ± 12.12% 71.16 ± 6.42% 84.10 ± 2.20%

EEG-CNN2 80.92 ± 5.58% 69.67 ± 11.27% 74.17 ± 6.07% 85.78 ± 2.18%

EEG-CNN3 72.88 ± 2.64% 80.68 ± 12.61% 76.03 ± 4.72% 85.08 ± 1.53%

EEG-CNN4 80.32 ± 4.36% 65.59 ± 17.26% 70.76 ± 11.25% 84.66 ± 3.39%

AD vs. MCI

Model Precision Recall F1-score Accuracy

EEG-CNN1 54.67 ± 7.27% 61.04 ± 17.08% 55.66 ± 5.572 65.40 ± 3.47%

EEG-CNN2 61.95 ± 4.33% 42.71 ± 6.97% 50.10 ± 4.48% 69.03 ± 1.33%

EEG-CNN3 56.35 ± 6.22% 41.35 ± 3.92% 47.34 ± 1.72% 66.14 ± 3.18%

EEG-CNN4 56.02 ± 5.44% 47.26 ± 10.09% 50.40 ± 4.78% 66.36 ± 2.07%

MCI vs. HC

Model Precision Recall F1-score Accuracy

EEG-CNN1 77.30 ± 5.00% 89.51 ± 8.32% 82.60 ± 2.73% 84.12 ± 2.32%

EEG-CNN2 82.23 ± 6.64% 84.87 ± 8.16% 83.02 ± 1.55% 85.34 ± 1.86%

EEG-CNN3 81.95 ± 7.25% 83.66 ± 9.76% 82.14 ± 2.59% 84.69 ± 2.31%

EEG-CNN4 82.55 ± 3.41% 84.61 ± 5.04% 83.56 ± 1.23% 84.33 ± 0.94%

TABLE II
EPOCH-CLASSIFICATION PERFORMANCES EVALUATED ON THE TEST SETS

OF THE PROPOSED EEG-CNN. ALL THE RESULTS (PRECISION, RECALL,
F1-SCORE, ACCURACY) ARE REPORTED AS MEAN VALUE ± STANDARD

DEVIATION.

Classification task Precision Recall F1-score Accuracy

AD vs. HC 80.92 ± 5.58% 69.67 ± 11.27% 74.17 ± 6.07% 85.78 ± 2.18%

AD vs. MCI 61.95 ± 4.33% 42.71 ± 6.97% 50.10 ± 4.48% 69.03 ± 1.33%

MCI vs. HC 82.23 ± 6.64% 84.87 ± 8.16% 83.02 ± 1.55% 85.34 ± 1.86%

EEG dataset is composed of MCI and AD patients at different
stages of the disorder. This means that EEG epochs of mild-
AD could have comparable properties to severe-MCI (and vice
versa), possibly causing misclassification. In the future, the
classification will be carried out taking into account the stage
of the disease. Second, different epochs of the same patients
can occur in train and test set. In the future, a larger cohort
of AD/MCI/HC subjects will be enrolled in order to avoid
that EEG segments of a AD/MCH/HC subject are included
in the test stage. Furthermore, in this work, low-density EEG
with 19 electrodes (i.e., channels) was used. We believe that a
higher number of EEG channels may allow for the extraction
of more discriminating features and consequently improve the
classification performance. To this end, in the future, high-
density EEG recordings will be collected.
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